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We examine the stability of magnetic order in a classical Heisenberg model with quenched random exchange
couplings. This system represents the spin degrees of freedom i higimpounds with immobile dopants.
Starting from a replica representation of the nonlineanodel, we perform a renormalization-group analysis.

The importance of cumulants of the disorder distribution to arbitrarily high orders necessitates a functional
renormalization scheme. From the renormalization flow equations we determine the magnetic correlation
length numerically as a function of the impurity concentration and temperature. From our analysis it follows

that two-dimensional layers can be magnetically ordered for arbitrarily strong but sufficiently diluted defects.

We further consider the dimensional crossover in a stack of weakly coupled layers. The resulting phase
diagram is compared with experimental data fop Lgr,CuQ,.
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. INTRODUCTION every small but finite concentration of defect botdé21°
or whether¢ is infinite up to a critical concentration even for

Although the interest in disordered spin systems reachestrong defectd® Concerning the temperature dependence of
back several decadé®r a review, see, e.g., Ref),linterest &, there is no consensus as to whether it is reerittant
has strongly revived in recent years as a result of the recogrot® To readdress these unsettled issues, we develop a the-
nition that highT . compounds exhibit phases with antiferro- oretical approach for bond-disordered spin glasses which
magnetic(AFM) order, spin-glass order, or stripe order in complements previous approaches. In particular, we calcu-
certain ranges of temperature and doping. A prominent extate the correlation length and compare our results to the
ample for such materials is La,Sr,CuQ,, in which every results of previous theoretical approaches and experiments
Cu atom carries a spif (for an overview on this material, on highT, compounds.
see, e.g., Ref.)2 The outline of the paper is as follows. In Sec. Il we es-

In these materials, the spins are located in weakly coupletiblish the model and briefly review the mechanism by
layers. Within each layer, the spins constitute a square latticeshich holes generate magnetic textures that provide the
with antiferromagnetic exchange coupling between nearegtucleus for a reduction of magnetic order. Based on this
neighbors’ In the undoped system, these spins can be reprenechanism, we further examine our motivation as to why it
sented to a good approximation by a classical twods desirable to develop an alternative to previous theoretical
dimensional model since quantum fluctuations lead to @pproaches. In Sec. Ill, we derive the functional
merely quantitative renormalization of the classicalrenormalization-group equations. These flow equations are
parameter§.Although a weak coupling between the layers evaluated numerically and our results for the magnetic cor-
and a weak easy-plane anisotropy are present in these matelation length are compared to experimental data in Sec. 1V,
rials (both are about five orders-of-magnitude smaller tharwhere we also consider the dimensional crossover from 2D
the isotropic intraplane excharmyethey become relevant to 3D behavior. We conclude with a discussion of our results
only on relatively large scales. Thus, on the finite lengthin Sec. V.
scales of experimental relevance, the spins can be described
in a first approximation by a classical Heisenberg antiferro-
magnet in two dimensions.

Doping induces holes in the layers, which can lead to In a system with sparse substitutional doping, the dopants
quenched frustration of the exchange couplings. Frustrationan be considered as randomly distributed with negligible
can occur when the holes are localized individufaflgs well  correlations and quenched over a wide temperature range. In
as when they condense into a topologically defective array ofloped Mott insulators, the effect of the dopants is twofold:
stripes which act as antiphase domain walls for the AFMthey induce holes in the cuprate planes and at the same time
order®~1° Both cases can be represented by an effectivéhey provide a random potential that localizes these holes at
bond-disordered Heisenberg model. Such a system is esufficiently low temperatures. Therefore, they are commonly
pected to display generic spin-glass behavior, as is observetssumed to be localized on the oxygen atoms between neigh-
in experiments beyond a critical dopif. boring copper atom$.’:’

On the theoretical side, Heisenberg spin glasses are much A simple argument suggests that such a hole transmutes
less understood than Ising spin glasses. While it is well esthe antiferromagnetic superexchange coupling between the
tablished for the pure two-dimension@b) system that the neighboring copper spins into a ferromagnetic one. Thereby
magnetic correlation lengtli decays exponentially with in- frustration is induced in the spin systérthe irrelevance of
creasing temperatufd,the dependence of on disorder is quantum fluctuations of the spins in the pure syétémthe
controversial. AtT=0 it is not clear whethek is finite for ~ sense that they lead only to a quantitative renormalization of

1. MODEL
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classical parameters such as the spin stiffnesggests that and the spins approach a collinear configuratisr)— S,
they may be neglected in a good approximation also fofor r— 0. To be specific, we discuss a defect bond located at
small doping: r=0 and oriented in directiom. It acts as a source of a

o dipolar distortion with a moment perpendicular t&,. For
A. Definition d=2, in particular,

Starting from a classical description of the antiferromag-
netism, we may examine an equivalent model where all spins . . o oa
of one bipartite sublattice are flipped and the sign of all ex- S(N=Se~5-—- )
change couplings is reversétj.e., we now consider the r
coupling of the undoped system to be ferromagnetic and th?

defect couplings to be antiferromagnetic. We base our analy-he .amp!|tude of the d|pole_moment IS dete_rmlned bY the
sis on the Hamiltonian nonlinearity of the model, which may be considered as inter-

action between spin waves. The magnetic textures of several
1 defect bonds are subject to a dipolar interaction at large
H== > J(nN[VS(r)]? (1)  distances>® The effects of a finite density of defects are
217 nontrivial because of the frustrated long-range interaction be-
tween the dipoles. In the presence of more than two defects,
the interaction among the dipoles typically becomes frus-
trated. Then the ground state is no longer planamNor2.

-

for spins on ahypejcubic lattice ind dimensionga single
layer is described byl=2). Spins are treated as classical
N-component vectors of unit Iengté,z(r) =1. A spin at site
r is coupled to its nearest neighbor in the direction

=1,...d via the exchange coupling;(r). We define C. Finite defect concentration

V,S(r):=S(r+a)—S(r) for a basis vectom,. The global Depending on the relative position of several defect bonds
symmetryO(N) of spin rotations is preserved for arbitrarily in a cluster, the generated texture may have a dipolar or
disordered exchange couplings. higher-order multipolar structure. In contrast to electrody-

It is convenient to rewrite the exchange coupling as namics, the multipolar moments of defect textures are not
additive since the spins act as a nonlinear medium for the
Ji(N=[1—A(r)]J 2 dipoles, giving rise to many-body interactions. In particular,
clusters of defects can lead to canting already for defect-
with the valueJ>0 of the pure system and the quenchedhond strengthdelow Agpge, i.e., in clusters of defects the
random variabled(r). Frustration effects emerge fdi(r)  threshold strength of the defect bonds is reduced. The thresh-
>1, when a ferromagnetic bond becomes antiferromagnetiald values of some specific bond configurations in ¥
To further specify the nature of the disorder, we assume @nodel are given in Refs. 22 and 28e in particular Table |

bimodal distribution of the exchange couplings, in the lattey. In general, threshold values in theY system
_ 3 are upper bounds for the thresholds in a Heisenberg system
A with probability p, since with increasingN the spins have a larger space of
Ai(r)= 0  with probability 1— p. (3 canted states which they may explore to minimize energy.

Thus, as soon as the defects are antiferromagnétic (
For square lattices such as in,LgaSr,CuQy,, the concentra- >1) they can induce canted textures due to the presence of
tion x is related to this probability bx=2p. Correlations arbitrarily large cluster$>?*~*Hence the ground state will
between different bonds are assumed to be absent. be canted foevery p>0 andA>1 (assuming that the defect
distribution has no pathological spatial correlatiorhere-
fore one may expect a system with a certain density of weak
) ) defects KA <Agngeto be qualitatively equivalent to a sys-
_ Before we address the magnetic order in the presence of@m with a(possibly much smaller concentration of strong
finite concentration of defects, it is instructive to recall yefectsA>A......

. . . . single

briefly the physics of aingle defect forN=2. While the The presence of canting certainly implies a reduction of
ground state of the pure system is collingall spins are  magnetization. However, one cannot draw direct conclusions
strictly paralle), it is canted(i.e., no longer collmealrg%?l about the range of magnetic order. For a sufficiently high
single defect beyond a certain critical stren@thge. ™" density of strong defects, one certainly has short-range order.
The thresholdA = d value can be obtained from a spin- For defects of a weaker strength or a lower concentration,
wave calculatioff (see also Appendix B The ground state one can have also quasi-long-range or@srin anXyY model
for a single defect withh > Ajyge remainsplanar for all N with quenched and uncorrelated dipofé$®see also Ref. 26
=2, i.e., apart from a global rotation, the defect texture forfor an X'y model with thermal dipoles at a fixed dengitp
Heisenberg spinsN=3) is identical to the texture foKY  phase with true long-range order is also possible but unlikely
spins (N=2). Far away from the defect bond, the texture issince it would require a highly ordered dipole configuration.

B. Single defects

described by the solution of the Laplace equdffon It is instructive to recall a “duality” relatiof’ in the
R (p,A) parameter space, since in a mixture of ferromagnetic
V2S(r)=0 (4) and antiferromagnetic bonds there are two ways to declare
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one type as “regular” bond and the other type as “defect” Unfortunately, the interpretation of the CPA is somewhat

bond (see Appendix A This duality implies a relation ambiguous® According to its construction, the CPA replaces
the disordered system by a ferromagnetic one with a homo-
Apm(1-p) geneous effective exchange constant. The strength of this

Anru(p)= App(l-p)—1 ©  effective coupling is determined from a self-consistency con-

dition that considers the fluctuations of a single bond. Thus,
between boundary lineAgy(p) and Aaem(p) limiting re-  the CPA misses effects of clusters of defect bonds. The pu-
gions with ferromagnetic ordefor A<Apy,) and antiferro-  tative transition line is defined as the border line up to which
magnetic ordetfor A>Asgy) in the (p,A) plane. Since the  self-consistent solutions exisA priori, this border line can
duality relation maps the regiopA>1 onto pA<1 it is  be interpreted in two ways: either as the onset of the canting

sufficient to examine the latter region. instability or as the onset of short-range magnetic order.
To perform first qualitative estimates, one may considerrherefore, the CPA can be only of qualitative use.
the disorder-averaged exchange coupling, which is To gain insight into the nature of the ground state, Gawiec
_ and Grempéf?’ (GG) performed numerical studies of the
Ji(r)=(1-pA)J (7) XY model in d=2. Their data suggest a transition line
AGG(p) between a phase with quasi-long-range order and

for the bimodal distribution(3). Thus, there is a tendency
i i <

tovr\]/ardsjtrzje for(rjnatlon dof ferromagdnetlc .(f)rder fpA 1 AC (0)= Aqnge=2 and follows ASS(p)=1 beyond the

(whereJ>0) and a tendency towards antiferromagnetic or- percolation transition. Thus, the data suggest short-range or-

der forpA>1 (whereJ<0). Certainly, the presence of order der for anarbitrarily small concentration of defects of a
requires more than such a tendency. A further minimum restrength exceeding the canting instability of single defects in

short-range order. It starts from at the canting instability

quirement should be that the relative fluctuations agreement with the CPA. However, as stated in Ref. 23, the
- ) question of whether one can have order forAg,qe at
o, J(N=3(N* p(1-p)A? ® sufficiently smallp remains far from settled due to finite-size
Ji(r)Z (1_pA)2 effects.

For the Heisenberg model with the bimodal bond distri-
of the exchange couplings must be small. Sidce1 and  bution, to our best knowledge, there are only very few nu-
pA<1 in the range of interesir?<1 requirespA®<1. A merical studies. For the special case of two dimensions and

very crude estimate of the boundary franT1 suggests A=Agjrgie=2, Nonomura and Ozeki postulated order for
p=<0.11 from an exact-diagonalization method 8¢ 3
Apu(p)=p~ Y2 (9)  quantum spins. This implies an even larger stability of the

classical model, and in particulakg, (0)>2. However,
For the special casa =1, the defect bonds have a van- their conclusion has to considered with care because of
ishing exchange coupling and the system is bond dilutedfinite-size effects.
The presence of magnetic ordar the sense of a finite mag- Previous analytic approachés® are implicitly restricted
netization) then requires that a finite fraction of spins is con-to defect-bond strengths exceeding the canting threshold,
nected by regular bonds. ThIS is the case below the percol&ASlngle The spin system with random bondséplacedby

tion transition, for p< 3 in d=2.78 Therefore one a spin system with homogeneous bonds coupled to an addi-
expectsAgy (p) = 1 for p= tional canting field that also generates dipolar spin textures.
In order to shed some light on the quality of this replace-
D. Previous work ment, we perform a Hubbard-Stratonovich transformation in-

To our best knowledge, there are only a few approaches iHoducmg an auxiliary bivectorial fielé; via
the literature aimed at a more sophisticated analysis, which
we briefly summarize in order to highlight our motivation to exp(— H[§]/T):J D{ftexp—H[S,f1/T), (109
reconsider this problem in an alternative way. First, the
coherent-potential approximatiofCPA) provides a simple with
self-consistent approach to determine an effective spin stiff-
ness for the random system. RN 2, the CPA yield® a ~ 1
transition line ACPA(p) smoothly interpolating between HLS, z[ViS(r)] f(r) VS(r)+ 2A( )f ()
AEP*(0)=d (reflecting the canting threshold for individual (10b)
defect bondsand A (p)=1 for p=% in d=2 and forp . L _ .
=2 in d=3. Ind=2, the location of the percolation transi- In this representauors andf; are thermally fluctuating vari-
tion is captured exactly. This has to be considered as a fombles,S with spherical constraintf; unconstrained. In the
tunate coincidence which is absentds: 3, where the loca- Hamiltonian (10b) of the transformed system, the spins in-
tion is found only approximateR? In the limit N—o the  teract directly via the homogeneous exchange couglirig
CPA yields that the stability of order require$<1,*which  addition, they couple also to the canting fidid It is pre-
results inA S (p)~p~*2 for smallp in agreement with the cisely such a coupling that was considered in Refs. 14 and
naive estimaté9). 15.
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The Hubbard-Stratonovich transformation—which yieldsmodel where the field is integrated out. Before we perform
an exact representation of the original modg—shows that g renormalization-grougRG) analysis, we use the standard
the field f; has alocal self-interaction potential replica trick to treat disorder.

Vii(r,r') =686 1 ITA(1). (11) A. Replica representation

On regular bonds with\;(r)=0, ﬂ(f) is suppressed. On After n-fold replication the Hamiltonian reads
defect bonds witl\;(r) >0, ﬂ(r) has finite fluctuations. For 1
V,;S(r)=0 one would have H(”)=§ > [1-Ai(D1Iwi(r) (149

r,i
(fia(f)fjb(r')):5ﬂb5r,r'3Ai(r)- (12) with the abbreviation

n
However, it is crucial to retain the full correlations between gi(r):= 2, [ViS*(n)]~ (14b)
a=1

the fluctuations ofS and ﬂ. The spin-wave saddle-point
equation (Upper Greek indices label replicassince we assume that
the probability distribution of\;(r) is uncorrelated and iden-

Vié(r)= ﬂ(r) (13)  tical for all bonds, disorder averaging leads to the local and
. translation symmetric HamiltonianH includes the factor

immediately shows thdt induces a canting of the spin field. 1/T)

If ﬂ(r) is considered as fixed and nonvanishing only on a 1

single bond, it induces a dipolar spin texture. It is important _

to r?otice that the original sgin rotz;)tion symmetry of I?Iamil- H_z 2 KU =RGM) (- (15

tonian (1) is preserved in the transformed mod&0b) only

if ﬂ is rotated simultaneously Wit8.
Instead of solving the full problem of two fluctuating R((r) =Inexd A (DK (r)/2 16

fields, Refs. 14 and 15 proceed with additional assumptions (.l’[/'( _))_ HAOK (/2] _ 18

about the nature of, . Glazman and loselevith(GI) con- ~ and depends implicitly ofK:=J/T. For the special case of

sider a Hamiltonian, Wheréi(r) has afixed lengthon the bimodal disordex(3),

defect bonds. Only the orientation f{r) is considered as a R(y)=In[1—p+ pe*K¥?] (173
thermal degree of freedom. Thereby the rotation symmetry is

preserved. However, fixing the length 5if(r) contradicts

Eq. (12), which shows that the magnitude f{r) is a ther-
mally fluctuating quantity that vanishes in the limit of zero 1
temperature. This means that in the approach of Gl the =AKyg+Inp for AKy—ce.
strength of disorder i®verestimatedat low temperatures. 2 (17b
This may be a reason that explains why Gl find a reentrant
temperature dependence &f Note that naturallyR(¢) =0 in the absence of disordéior

On the other hand, Cherepanevall® considerf; as a P=0 or A=0) and thatR(y)=3AKy for p=1, which
quenchedield with Gaussian correlations. This is in contra- @mounts to an unfrustrated dual model with a corresponding
diction to the annealed nature 6f as is revealed by the Stiffness (}-A)J. In the general cas&k(y) is a nonlinear

transformed mode(L0). In addition, spin rotation symmetry function which has linear asymptotics for small and large
is explicitly broken. This treatment is based on the assump&rguments, cf. Eq417).
Remarkably, the energy depends gnonly through the

tion that the spin textures freeze at low temperatures. How- e
ever, a spontaneous breaking of this symmetrydia2 is ~ combination
\r/\%?? out by'the Mermin-Wagner theoré%Thu;, one maty h() =K i— 2R(1)). (18)
y that disorder effects may hmerestimatedn this ap
proach. Possibly, the artificial symmetry breaking is relatedA priori, it is not clear whether spin fluctuations are gov-
to the spurious generation of random fields in a replica treaterned by the behavior df() at largey or at smallip.
ment as found by Cherepanet al® The stability of the ferromagnetic state with respect to
large-scale spin-wave deformations depends hfi) at
Ill. RENORMALIZATION-GROUP ANALYSIS small s and require$’(0)>0, i.e,,pA<1.(ForpA>1 the
dual antiferromagnetic ground state is locally stablhis
Although the Hubbard-Stratonovich transformation wascondition is equivalent to the requirement that the average
useful to relate previous work to the original model, the in'exchange coupling?) should remain ferromagnetic.
troduction off is accompanied with additional difficulties. While the effective stiffness is defined from the slope of
Therefore we choose to continue to work with the originalthe functionh(y) at =0, its behaviorh()~(1—A)K

The cumulant functiorR is specified by

1
szsz for AKy—0,
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for ¢—oo (which is equivalent toT —0) reflects the pres- he |attice sitegpreserving the normalizatio?(r)=1 ev-

fence of fr_u;]stratiqn. FO_'A_<1f —”i.e., ig ]Elheabsgnceof erywherd. In this limit, partial spatial derivatives replace the
rustration—h(¢) is positive for all» and fluctuations can differences inz//i(r)222=l[&i§“(r)]2 and

renormalize the stiffness to a smaller but positive value. For
A>1—i.e., in thepresenceof frustration—h(¢) is negative 1
at largey and fluctuations can renormalize the stiffness to H:f dr> [—Kz,//i(r)—R( Ji(0)) 1. (20)
zero, signaling the destruction of magnetic order. T2

In the replica representation, the canting instability for a
singledefect can be retrieved easily. To this end, we considef he replacement of differences by partial derivatives and of
the case in which a singlearticular bond is populated by a the sum by an integral should be a reasonably good approxi-
hole with probabilityp. Then, the replica Hamiltonian is Mation, i.e., the replacement ¢f should lead to small rela-
similar to Eq.(15) with the modification that one has to keep tive errors compared to unity for aarbitrary spin configu-
the cumulant functio17) only on the particular bond and ration (even with inhomogeneities on the scale of the lattice
switch it off on all other bonds. In the limT— 0 (consider- ~ spacing. A small relative error iny is equivalent to a small
ing the statistical weight for fixed and a fixed but arbitrary relative misrepresentation dfand/orA since these quanti-
spin configuration the replicas decouple sinc®(y)  ties enter the Hamiltonian only as a product with We
~1AKy+Inp. The exchange coupling of the defect bond further use the approximate replacement of the cubic Bril-
within each replica is (+ A)J independent op. Thus, cant-  louin zone by a spherical one. Thus, to preserve the volume
ing occurs in the Casp<]_ for A>Asingle as in the cas® of the Brillouin 'Zone, its radius\ has to be fixed by/\d
=1. While the threshold is independent jof the disorder- =d(2m)% Sy, with Sy:=2m¥?/T'(d/2) the surface of the
averaged dipole moment depends mnSince ¢ becomes d-dimensional unit sphere. ld=2 specifically,A2=4. In
arbitrarily small slightly above the canting threshold, thisorder to demonstrate that the fundamental frustration mecha-

dipole moment cannot be calculated from the laggmit of ~ Nism does not get lost due to the continuum approximation,
h. we briefly rederive the canting threshold in Appendix B.

Therefore in general it is important to retain tgkobal According to the scheme of the momentum-shell renor-
functional form of h(¢) [or, equivalently,R(#)]. An ap- ~ Malization group, we now integrate out the spin modes with
proximation of this function by a Taylor series near=0  Wave vectors in the shele” ™ <k<A. Thereby the original
would amount to an expansion in cumulants of the defecspin fieldS® is mapped onto the slowly varying background
distribution. The relevance d®(y) for large ¢ shows that  field s*. They are related by
one could miss essential physics by dropping high-order cu-
mulants and—in particular—using a Gaussian distribution Zar @ ale, . a’a

. . L =41- +

for A. Even worse, the functioR(¢) is nonanalytig i.e., its S 1= XaXaS"* xa®a (21)
behavior at large/ is outside the radius of convergence of a

. - _)CY . .
cumulant expansion. with the vector fieldse; forming a local orthonormal basis

{ef, ... el _,,s° at each site in each replicax. We em-
B. Flow equations ploy the sum convention for pairs of Latin indices,lp
' =1,... N—1) only. The fieldy; generates an infinitesimal

In order to address the question of magnetic order in th@pin rotation and has contributions only from wave vectors in
presence of general fluctuations @f we generalize the the momentum shell.

renormalization-group analysis of Polyakévo the repli- Derivatives of basis vectors can be expanded in the local
cated model. Instead of working with the functib(), itis  pases
more physical to use an effective bare stiffness and an effec-
tive cumulant function defined by 5% =Bes, (229
Ko:=K—=2R'(0)=(1-pA)K, (193 ; R R
dieg=—Bs“+ AL (22b)
1
Ro(¥):=R(y)— ¢yR'(0)=R(¢)— EpAKgb (19b) in terms of potential$\ andB. The arbitrariness of the choice
of the vectorséa1 is reflected in a gauge invariance of the
to remove the linear contribution d®, which represents a potentials; the gauge transformations are local rotations

trivial renormalization of the stiffness. The replacement ofarounds.3® One can exploit this gauge symmetry to show
the original quantities by the effective ones leaves the energyat the potentialA corresponds to higher-order derivatives
(15) invariant sinceK s —2R(¢) = Koy~ 2Ro(#). of the spin field®*'®*We ignore such contributions and there-
Following Polyakov’s analysis of the pure systémwe  fore omit the potential from now on.

renormalize the model by a momentum-shell integration. So For further calculationsy can be considered as small
far, the Hamiltonian(15) was written in a way to explicitly  since we consider an infinitesimal momentum shell. In addi-
retain the lattice of the spin sites. We choose the lattice SpaQi'on’ we treat temperature and disorder, which drive the fluc-
ing as the unit of length and go over to a continuum repretuations ofy, as small. In order to expand the Hamiltonian in
sentation by smoothly interpolating the fiek{r) between y, we first consider
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&iga: Bgég—x;*Brgé“+aixgég—xgaix§§“ xhere tlhe average is over the fluctuationsyofveighted by
free ONIY.
1 iin-u 4 Using the averages
- EXbXbBiaea"'O(X ) (23
1
and, ordered by powers qf, (Gixadxh)= K—|5ij Sap0dl, (289
b=+ gD+ g+ +0x%, (249
(XaXp)= A2 Sapd®Pdl, (28b)
apa o |
y9=2 BiEBL=2 (45, (24b) _
@ @ one finds
(1) —
W= 20x5BE, (249 (¥i)=0, (299
, (W)=, (29
Y= ax2aixe, (240 !
" d
: o apape _ L aRa g (== (N=2) —— 4%, (299
Y= (XExeBEBh—XiexsBLBL). (240 I KiAZ™
An expansion of the energy density for smgligives 4
° 0y densiy for smelo (1= . (290

h() =h( Y+ h (N D+ 2D 4 42
SO A L R Separating the flow oK, and of R, by the requirement
1 R/(0)=0 as in Egs(19) for the bare quantities, we finally
e, (0) (1)72 3 | ’
+ zh ()17 + O (x ). (25) obtain the flow equations

Substituting this expression back into Eg0), we rewrite

L. d—2)K——N_2—iR” 0) (303
H="Hsree™ Hint» (268 di = I A?d K l( '
H =f dr > (5K [¢<°>+¢-(2’>]—R<¢-‘°>>} d - - /
free - 2 IL ¥ i I\ ) JR|(¢)—dR|(l//)— 2+m I,DR|(1,0)
(26b)
2
+ Elﬁ[Rf'(lﬁ)—Ri'(O)]- (30b)

Hin= f o [%K.M% =R %)

Terms explicitly proportional to the number of replicas

) oo 1 have been dropped. A rescaling-e”r of lengths has been
1 2 2 " 0 1)q2
X[+ 92+ 921 = SR (M) ] included in order to keep the value of the cutoff fixed.
For arbitrary temperature, the flow Kfcan be interpreted
+0(x?). (260  as a flow of the spin stiffness at fixed temperature. Using the

dimensionless stiffnes§ =K, /K, the dimensionless tem-
perature t:=T/J=1/K, the rescaled fieldp:=AKy (we
recall thatK and A are unrenormalized quantitigsand

Ri(#):=R,(¥), we rewrite the flow equations as

Hereby we have separated the “free” and “interaction” con-
tributions in a way such that;,; vanishes fory=0 andHjee
contains the bilinear self-interaction gf

Due to the energy contributiol;,, the fluctuations cannot
be integrated out exactly. In analogy to the treatment of the
pure system, we apply standard perturbation theoryttg. d ~ N=2  4A%.
In principle, this can be done in a systematic way at low JJ'_(d_Z)J'_ Azldt_TR' (0), (31a
temperatures, wherg~TY2 Aiming at the analysis of the
stability of magnetic order for low temperature and weak

. ; e . d. . -2t .
disorder, we retain only the renormalization effects to first R —d |2+ | o
order in M. Integration overy leads to an infinitesimal di (#)=dR(4) A2/d i PRi(4)
renormalization of the Hamiltonian oA
+ 5 4RI(#)-RI(0)]. (31b)

dH = (Hip) + O(HZ), (27)
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FIG. 1. Plot of the initial functionIA?o(zb) for the valuesp . . . . .
=102, 103, 10°%, and 10°5. Note that this nonanalytic function FIG. 2. Two-dimensional phase diagramTat O in a linear and

where it assumes a slope that semilogarithmic plot. The solid line represents the transition line
Arp (p) from the magnetically ordered to the disordered phase. In
the inset the dashed line represents the linedB&t and the three
filled squares represent the points wikk- 3.7 withp=0.01, 0.015,
and 0.02 used in Sec. IV C for comparison with experiments.

is very small up tap* =2 In (1-p)/p,
is approximately independent of small

In this form, temperature and disorder strengttappear as
explicit parameters. The flow Eq$31) have to be solved
with the initial conditions

for j; and R/($) from 1=0 to largel. If j, converges for

| - to a finite value much larger thanthe system is in an

. o1 ordered state with finite renormalized stiffness and infinite
Ro(¢)=In[1—p+pe™]—zp¢. (320 correlation length, i.e.(S(r)S(r'))=limy .o(S*(r)S*(r"))

: . . decays more slowly than exponentially with the distafrce
Corresponding to the neglect of higher-ordersHf; in —r'|. If, on the other handj, becomes of orderon a finittTg

Eqg. (27), these flow e_zquatlons _contaln renormahzatl_on ef'scalelzl*, the system is disordered and we identify the
fects only to the leading order in temperature and disorder

: : \ correlation length as
Higher orders of perturbation theory would certainly gener- g
ate higher order contributions as well as a more complicated

functional form of the Hamiltonian. Anticipating thﬁﬂ’(O) g:Ae'* (33
=0 is preserved under the flow, E(B1a shows that both
thermal fluctuations and disorder tend to reduce the effectiv
stiffness.

In the given order, several features of the flow equation
are remarkable. The initial functioRy(¢) depends only
on p (see Fig. 1 The crossover from the linear regime at
small ¢ to the linear regime at largep occurs at ot 34
¢*=2In(1-p)/p, where the curvature R}(¢) =% (34
=1/16 cosR{ (¢— #*)/4] has its maximunRj($*)= . The
flow equation of the stiffness couples to disorder onlyThe influence of disorder in determining the correlation
through R}(0). For A=0, this coupling vanishes, while length is twofold: the starting valug, Eq. (328, depends
R/(¢)=0 for p=0. The flow equations depend dhonly at ~ explicitly on the disorder parameters, and the disorder con-
finite temperaturesunlike the flow equations of Ref. 15 tribution in Eq.(313 leads to a faster decreasejof
Thus, the properties at zero temperature are expected to be The critical disorder strengthgy separating a ferromag-
independenbf N. However, one has to keep in mind that the Netically ordered phase from a disordered phase can be iden-
equations apply only to spins with a continuous rotationtified with the line wheret diverges. Unfortunately, this cri-
symmetry (N=2) and that the renormalization scheme ig- terion does not aIIowl for a distinction b_etween true Iong—_
nores the effects of topological defects, which are known tdgange order and quasi-long-range order in the ferromagnetic
be particularly important foN=2. phase.

Jo=1-pA, (329

fith some constant\ of the order of the lattice spacing.
Following previous referencés:’ we specifically define this
Bcale from

IV. RESULTS AND DISCUSSION A. Zero temperature

In order to determine the large-scale properties of the At T=0, we find the transition liné gy (p) as shown in
model, we numerically integrate the coupled flow E(l) Fig. 2. This transition has the following features.
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1. Regime of smalp

For dilute disorderp—0, we find a slow but unbounded 150.0 | °
increase ofAry (p). In the range 10°<p=0.1 the line fol- & 70
lows roughly the relatiorisee the dashed line in the inset of i S
Fig. 2 ~ 60 ol

g & 1000 |

N 1 M *%50 S0 =0 -7.0
Ay (p)=~0.606+0.648 In—. (35 In(x-x,)
P 50.0 | ]

However, in the limitp—0, Agy(p) appears to increase
more slowly than logarithmically.

This finding implies order below a finite defect concen- 0-% 00 0 '04 0 '08 0 12
tration even for arbitrarily strong defect bonds. This behavior ' ' X ' '
is in disagreement with Refs. 14 and 15, where disorder
(with A>Agnge) Was suggested to destroy order for infini- ~ FIG. 3. Plot of ¢(x) for T=0 with A=3.7 andA=22 A in
tesimally smallp. As already stated in Sec. Il D, we believe order to fit the experimental datéllled squares with error baref
that the effects of disorder are overestimated in both previouBef. 36. The inset shows a double-logarithmic plotads a func-

approaches because of special assumptions about the nattig® of x—x. for A=3.7 with x,=0.019 062. Open circles con-
of the bivectorial fieldf. nected by a line represegtcalculated numerically from the flow
.

For the special casii=2, where this disagreement per- tiqggt(i)%n(')s% The dashed line is the best linear fit with slepe=
sists, further references can be included in the comparison. = '

(We assume here thatY and Heisenberg systems should

have a similar phase diagram®t0 since our lowest-order A p)~[A=Am(P)] " (36)
flow equations are independentigf Topological defects are

ignored in our work as well as in Ref. 15. Their presenceFrom the numerical integration of our flow equations we find
may further reducé.) Although theXY model with random- a mean-field-like exponent=0.500(1)(see the inset of Fig.
phase shifts i priori a different model, the effect of disor- 3). The finding of the mean-field value is probably related to
der is represented by a random distribution of dipoles such ae neglect of higher-order terms in our flow E¢31).

that in model(1).3* Various recent worksee, e.g., Refs. 25
and 35 has provided evidence that quasi-long-range order
exists for weak disordefeven in the presence of vortiges
This observation is consistent with our flow equations but Temperature enters the flow equations in two places
contradicts the flow equations of Cherepareial!® From  where it could lead to contrary effects. In E§1a, an in-

their numerical data, Gawiec and Grenfpelrgue for a dis- crease of temperature leads to a faster renormalization of the
ordered phase foA>Agge and p>0, i.e., for Apy(0)  spin stiffness to smaller valu¢gnoring the temperature de-
=2. While this conclusion is again in disagreement with ourpendence o'r:2|”(0)]. On the other hand, in Ed31b) tem-

result, the numerical data are not: Gawiec and Grefipel perature tends to suppreRswhich might in turn reduce the

present data fod =4 as the only value with>2 and they  gficiency of disorder in suppressing the spin stiffness. How-
demonstrate the absence of order only {6r0.02. FOrA — oyer from our flow equations, we always find that thermal

=4, we find order at very smaii=0.0062, which actually is ¢ty ations reduce stiffness and therefore aiso

not excluded by the numerical datef. Fig. 17 of Ref. 23 More precisely,é decreases monotonously with increas-
ing temperature. Thus, a reentrant temperature dependence
as found by GI(Ref. 19 is absent in the present treatment.
For p—1~ we find thatAgy, (p)—1" in a smooth way. We attribute this discrepancy to the fact that Gl kept the

While this is qualitatively correct, a horizontal segment with jength of the bivectorﬂ fixed, whereas its typical length
Agy (p)=1 beyond the percolation transitionat 3 is ab-  should vanish at lowl' according to Eq(12). Thereby, with
sent. However, in this range we firi, (p) which is only  decreasing temperature, the strength of disorder is increas-
slightly larger, i.e., this is a quantitative effect which may beingly overestimated, giving way to an apparent reentrance.
attributed to the continuum approximation as argued in the
text below Eq.(20). In addition, the regime neak=1 and
p=3 is a regime of strong disorder in the sense of the con-
tent of Sec. Il C sincer®=1. There our flow equations are  We now turn to check the consistency of our theory with
not quantitatively reliable because of the lowest-order trunmeasurements on La,Sr,CuQ,. To allow for a comparison
cation. On the other hand, the transition at srpadhould be  of our results with those of Cherepanevall® we refer to
well described since Eq9) is satisfied,pAZ, (p)—0 for  the same experimental data of Keimaral®® for x=0.02,

B. Finite temperatures

2. Regime of largep

C. Comparison with experiments

p—0. 0.03, and 0.04. For the moment we assume that interlayer
When the transition line is approached at fingethe  couplings and spin anisotropies can be neglected and we will
correlation length displays a divergence, come back to this issue later.
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FIG. 4. Plot of¢"(T) for x=0, 0.02, 0.03, and 0.04. Symbols

with error bars are experimental data from Ref. 36. Open circles FIG. 5. Plot of our numerical result foFy(x) (open circles
connected by lines represent our theory. connected by a line For comparison, squaréRef. 39, triangles
(Ref. 40, and crosse€Ref. 4] represent experimental datsee the
The comparison of our results f@grwith experiments in-  main tex.

volves four parameterq, A, J, and A. As already stated

above, our model parametpr=x/2 is directly related to the EXNT,p = XT0+£10p), (38)

Icilct)tpi)(?entscpoz:c(i:ﬁgtr?r:m;ir?cliZIZ Iﬁﬂ%hpzﬁglrﬁ;;hga%rd deerpoefr;[geor\]/vhich Wc_JuId imply that in _Fig. 4_the curves for diﬁ‘(_arept
: ' "’ . L should differ only by a vertical shift. In contrast, we find that

temperature and disorder itséee the discussion in Ref.

15). Such dependencies could modify the functidm,T) in tsr;ﬁ;rm:\rlpﬂuctuatmns lead to a stronger increasetof for

a subdominant way and would involve additional assump- In comparing experimental data to the results from our

tions and parameters. We refrain from including such depen- del d hether th h i
dencies for the purpose of the subsequent semiquantitati [poce! one may wonder w ether the exchange couplings can
comparison e considered as quenched at higher temperatures. Indeed,

At T=0, J does not enter the flow equations since it holes are no longer localized but have a thermally activated

Simplv sets the enerav scale andis the onlv unknown mobility characteristic of variable-range hopping which is
Ply 9y only . ery small up to temperatures near 53 Kdowever, in order
model parameter which enters the numerical calculation o

. . o0 have quenched exchange couplings it is not necessary to
[*. From the consideration of the superexchange across 9 9 ping y

ave strictly localized holes. To obtain dipolar spin textures
defect bond, one expects>170 i.e., a value clearly above % y b b

S . T at least on a coarse-grained length scélés sufficient to
the canting 'nSta.b'“tY' The finiteness of Fhe ”?e"?‘sured \_/alue ave a sufficiently inhomogeneous density distribution.
of & for x=0.02 implies that the data points lie in the disor-
dered phase, i.eA>Agy (p=0.01)~3.67.

We have determined values of the parameferé\, andJ
from the requirement that our theoretical valuesgfahould We now address the effects of a very weak interlayer cou-
be consistent with experimental data. In view of the givenpling J*. For LaCuQ,, a ratio J*/J=5x10"° was deter-
experimental errors and the approximate nature of our RGnined from experimentsFrom a simple scaling analysi$,

D. Coupled layers

calculation, we found a satisfactory agreement for one immediately obtains the flow equation
- d
A=37, (379 aJﬁzZJi, (39
J=240 K, (37b

which shows the strong relevance of this coupling. From the
condition that the interlayer coupling becomes comparable to
the intralayer couplingJ; =J, one can fix a dimensional

wherea=3.8 A is the lattice spacing. In Fig. 3 we compare CroSsover scale
our theory with data fo as a function ofx at T=0. The

A=5.8a, (379

inset shows forA=3.7 a double-logarithmic plot of(x) /izimi (40)
which reveals the mean-field-like divergenceéoéccording ’ 23
to Eq. (36) near the order-disorder transition.

The temperature dependence &€fis shown in Fig. 4. Comparing this scale with the correlation leng&83) ob-

Keeping in mind the strong fluctuations of the experimentaltained in theabsenceof the layer coupling, one expects that
data, they can be considered as consistent with our analysithe coupling actually is irrelevant fo* </*, where 2D
However, the theoretical dependenceéobn T andp does  fluctuations on small scales renormalite to zero. On the
not quantitatively confirm the empirical form@i2f other hand, for* >/, fluctuations become three dimen-
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sional on scales larger thafi-. Per the definition of*, the Our analysis involves approximations which we briefly
exchange coupling on the scalé is still large compared to Summarize (i) The originally discrete spin system is repre-
temperature such that magnetic long-range order should mented in a continuum formulation. Thus, features related to
stable. Therefore, the location of three-dimensional ordering® Specific lattice structure—such as the location of the per-

in the (x,T) plane can be determined from the implicit con- colation transition forA =1—cannot be captured quantita-
dition tively. (ii) As in the pure case, the renormalization scheme

accounts only for interactions between spin waves, ignoring
1 3 the role of topological Qefects. Thus, the degree of magnetic
I*(x,T)==In—. (41  order may be overestimatddecall that forN=2 the pure
2 gt system erroneously appears to be ordered at all temperatures

) » ) if vortices are neglected(iii) The flow equations are trun-
We have evaluated this condition numerically Br/J=5  cated to lowest order in temperature and disorder. In prin-

X10"° and the parameter se37). The resulting Nel tem-  ciple, the analysis could be extended to higher orders. In
perature is plotted in Fig. 5 as a function of doping. Thepractice, this extension is hampered by a much more com-
transition temperature is normalized by its valiig(0) plicated functional form of the Hamiltonian which is gener-
~300 K in the absence of disorder, which essentially re-ated during the flow.
flects the value of. While the precise value afmay vary to Due to the nonanalytic nature of the cumulant functiyn
some extent with the employed fitting procedure for the pawe found it necessary to developfanctional renormaliza-
rameter set, the shape of the normalized transition line i§on group, i.e., to keep track @irbitrarily high cumulantsof
very robust. AtT=0, the critical disorder strengtksp is  the disorder distribution. To the best of our knowledge, func-
increased by the interlayer coupling only slightly over,  tional flow equations for disordered spin systems have been
~0.1906, K3p —X2p)/Xop~10 2, because of the extremely considered previously only for different types of disorder, in
slow divergence ot for x—X3p - particular for random fields and random anisotr&py®

In comparison to the theory in Ref. 15, we find tAgi(x) The flow Egs.(31) are the central result of the analytic
decays less abruptly neas, . We compare our results to part of this work. For comparison, the analysis of
data from Hall measuremenissquares in Fig. 5 suscepti- Cherepanowet al,'> which employs approximations corre-
bility measuremenf§ (triangles, and perturbed angular cor- sponding to the ones listed above, is restricted to a single
relation measuremetifs(crosses The overall agreement is disorder parameter that corresponds to the lowest cumulant
satisfying, although the experimental data partially suggesef the disorder distribution.
that disorder is less effective in reducing the transition tem- As @ main physical result of our RG analysis, we find that
perature. This tendency may be attributed to the fact that théhe two-dimensional spin system can be magnetically or-
samples were partially oxygen dopéat higher temperature, dered aff =0 in the presence of a sufficiently small Hirite
oxygen is not quenched and is less effective in generatingoncentration of arbitrarily strong defecta$ Agnge). At
spin frustration as well as the fact that we have neglectedthis point it is worthwhile to recall that we have identified
the easy-plane spin anisotropy, which also tends to stabiliz&1agnetic order from the length scale where the spin stiffness
the magnetic order. is renormalized down to the scale of thermal fluctuations. In

While we have thus shown that a mechanism based othe absence of explicit calculations for the spin-spin correla-
spin frustration by quenched disorder is consistent with thdion function it is natural to assume that this scale coincides
experimental data, completely different mechanigfosex- ~ With the magnetic correlation length Such a calculation
ample, nonlinearr models with effective, doping dependent Would be desirable in order to clarify whether the ordered
exchange constaffs® have been suggested in the pastphase(with §=«) has quasi-long-range order or true long-
which also lead to qualitatively similar phase diagrams. Furfange order. We have determingdy a numerical integra-
thermore, the assumption of a site dilution by holes can leation of our flow equations for the strictly two-dimensional
to a similar phase diagraf.In order to discriminate be- System as well as for weakly coupled layers. In the first case
tween the different models it would be desirable to haveour zero-temperature phase diagram is consistent with nu-
experimental data from which one can decide whether th&erical simulationg® In the second case, the calculated de-
spin-correlation function at low temperatures has true longpendence of¢ on temperature and disorder strength is in
range order(this would be consistent with a homogeneousgood agreement with measurements on cuprates. In both
spin system with effective spin stiffnéser whether it has cases the comparison was restrictedfitite length scales
only quasi-long-range orddthis would be consistent with given by the computationally manageable system sizes or the

the frustration mechanism experimental error bars, respectively.
Nevertheless, concerning the question of whether mag-
V. CONCLUSIONS netic order is stable against bond disorder in two dimensions

on largest scales, our positive answer, shared by Ref. 16,
In this paper, we have reexamined a classical model fodisagrees with previous negative orté$°In the end of Sec.
N-component spinsN=2) with random exchange couplings Il D we have given specific reasons why in our opinion the
and we have chosen an approach complementary to previopsevious answers cannot be considered as final. In view of
studies by Glazman and loselevi¢land Cherepanogt al'>  the complementary approaches and approximations in-
Special care has been taken to preserve the quenched natvdved, this question has to be considered as an open one
of disorder and the global spin rotation symmetry. that calls for additional research.
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APPENDIX A: DUALITY H:%j dr > [1-6,;6(rAI[4S(r)]% (B1)

For the bimodal distribution3) with A>1, our system . R
consists of a fractiorp of “defective” antiferromagnetic ~We introduce a canting fif'd(f),»)(z(f)$1, perpendicular
bonds and a fraction-1 p of “regular” ferromagnetic bonds. to a collinear ground stat§y(r) =S, of the pure system via
The relative strength of bonds [apy /Jem|=1—A. From
a dual point of view, one may say that the system consists of S(r)=V1—x2(r)So+ x(r). (B2)

a fractipnp::1~—p of “cjefectiv:i” fer_romagnetic bpnds and To show the canting instability we insert E@2) into the

a fraction 1-p=p of “regular” antiferromagnetic bonds. Hamiltonian and minimize the energy with respect to the
Sm_ce for cIas§|ca}I Spins therm(_)dynam|c properties are In'anting field)? after expanding the Hamiltonian up to qua-
variant under flipping one sublattice a~nd reversing the sign o ratic order in this field. In Fourier space the saddle-point
thg exchange coupling Jgey =:—Jgm and Jgy =: equation reads

—Jaem )22 the system is equivalent to a system with a frac-
tion p:=1—p of “defective” antiferromagnetic bonds and a
fraction 1-p=p of “regular” ferromagnetic bonds of rela-
tive strength/Jaey /JIem |=1/(1—A)=:1—A.%" Thus dual-
ity provides a mapping,

N qu N
=A— | Kixk. B3
Xq o i Xk (B3)

Multiplying Eq. (B3) with g; and integrating oveq we get

J—-J=(1-A)J, (Ala) ﬁi=%5”,2j, (B4)
p—p=1-p, (Alb)  with
A—)Z:i, (Alc) ,in‘=f Ki X - (BS)
A-1 k
for all temperatures. This self-consistency condition gm; implies
APPENDIX B: CONTINUUM LIMIT A=Agnge=d (B6)

We show that the spin frustration mechanism is well capfor a nonvanishing solution of the saddle-point equation
tured in the continuum representation of our model. To thigB3).

1K. Binder and A. P. Young, Rev. Mod. Phys8, 801 (1986. 10y 3. Emery and S. A. Kivelson, PhysicaZ09, 597 (1993.
2G. Shirane, R. J. Birgeneau, U. Endoh, and M. A. Kastner*F. C. Chou, N. R. Belk, M. A. Kastner, R. J. Birgeneau, and A.
Physica B197, 158 (1994. Aharony, Phys. Rev. Letf75, 2204(1995.

SWe refer to the square lattice only in a topological sense, not in?A. M. Polyakov, Phys. Lett59B, 79 (1975.
the strict geometric sense. The materials of interest may exist if®J. Villain, Z. Phys. B33, 31 (1979.
tetragonal and in orthorhombic phases. In the latter the squaré$L. I. Glazman and A. S. loselevich, Z. Phys. B: Condens. Matter
are deformed leading to a reduced symmetry. We neglect a pos- 80, 133(1990.
sible anisotropy in the exchange couplings as well as couplingd®V. Cherepanov, I. Y. Korenblit, A. Aharony, and O. Entin-

between more distant spins. Wohlman, Eur. Phys. J. B, 511(1999.
43, Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Re¥9B 183, p. Rodriguez, J. Bonca, and J. Ferrer, Phys. Rev1,B3616
2344(1989. (1995.

5B. Keimer, A. Aharony, A. Auerbach, R. J. Birgeneau, A. Cas-*’V. J. Emery and G. Reiter, Phys. Rev.3B, 4547 (1988.
sanho, Y. Endoh, R. W. Erwin, M. A. Kastner, and G. Shirane,'8For anisotropic bond-disordered spin systems this assumption is

Phys. Rev. B45, 7430(1992. supported by a ¥ expansion for the phases with long-range
SA. Aharony, R. J. Birgeneau, A. Coniglio, M. A. Kastner, and H.  order [P. Gawiec and D. R. Grempel, Phys. Rev.58 3343

E. Stanley, Phys. Rev. Leit0, 1330(1988. (1996)].
R. J. Gooding and A. Mailhot, Phys. Rev., 11 852(199J. 19€ . Fradkin, B. A. Huberman, and S. H. Shenker, Phys. Rel8B
8H. J. Schulz, J. PhygFrance 50, 2833(1989. 4789(1978.
9J. Zaanen and O. Gunnarsson, Phys. Re¢0B7391(1989. 203, Villain, J. Phys. C10, 4793(1977.

224502-11



FRANK KRUGER AND STEFAN SCHEIDL PHYSICAL REVIEW B65 224502

213, Villain, J. Phys(France 38, 385 (1977. 3M. A. Kastner, R. J. Birgeneau, C. Y. Chen, Y. M. Chiang, D. R.
22\W. M. Saslow and G. N. Parker, Phys. Rev38 11 733(1988. Gabbe, H. P. Jenssen, T. Junk, C. J. Peters, P. J. Picone, T. Thio,
23p. Gawiec and D. R. Grempel, Phys. Rev4& 2613(1991). T. R. Thurston, and H. L. Tuller, Phys. Rev.3, 111(1988.

24G- N. Parker and W. M. Saslow, Phys. Rev38 11 718(1988. 383 M. Kosterlitz and D. J. Thouless, Rrogress in Low Tempera-
5T Nattermann, S. SCheld', S.E. KOfShUnOV, and M. S. Li, J. PhyS ture Phys|cs edited by D. E Brewe(North_Ho”and, Amster-

s 'S, 565(1999. dam, 1978, Vol. VII B.

C. Timm and K. H. Bennemann, Phys. Rev. L8#, 4994(2000.  39¢ 'y, chen, R. J. Birgeneau, M. A. Kastner, N. W. Preyer, and T.
27p. Gawiec and D. R. Grempel, Phys. Rev4& 7114(1993. Thio, Phys. Rev. B43, 392 (1991).
?M. F. Sykes and J. W. Essam, J. Math. Pys1117(1964). 403 H. Cho, F. C. Chou, and D. C. Johnston, Phys. Rev. [Z6it.

293, Vannimenus, S. Kirkpatrick, F. D. M. Haldane, and C.
Jayaprakash, Phys. Rev.3®, 4634(1989.

30see also the related discussion in Ref. 23.

31Y. Nonomura and Y. Ozeki, J. Phys. Soc. Jpd, 2710(1995.

32N. D. Mermin and H. Wagner, Phys. Rev. LetZ, 1133(1966.

33A. M. Polyakov,Gauge Fields and Stringddarwood, Academic,
Sutherland, Chur, 1987

222(1993.
413. Saylor and C. Hohenemser, Phys. Rev. L6#t.1824(1990.
42/, H. Castro Neto and D. Hone, Phys. Rev. L&8, 2165(1996.
43E. C. Marino and M. B. Silva Neto, Phys. Rev. @, 092511
(200).
44y.-C. Chen and A. H. Castro Neto, Phys. Rev.6&, R3772

34M. Rubinstein, B. Shraiman, and D. R. Nelson, Phys. Re27B . (2000'_
1800(1983 5D. S. Fisher, Phys. Rev. B1, 7233(1985.
" 6 .y ¢ .
353, Scheidl, Phys. Rev. B5, 457 (1997). “°D. E. Feldman, Pis'ma Zh.Ksp. Teor. Fiz70, 130(1999 [ JETP

36B. Keimer, N. Belk, R. J. Birgeneau, A. Cassanho, C. Y. Chen, M. Lett. 70, 135(1999].
Greven, M. A. Kastenr, A. Aharony, Y. Endoh, R. W. Erwin, and "' D. E. Feldman, Phys. Rev. 81, 382(2000.
G. Shirane, Phys. Rev. B6, 14 034(1992. 48D, E. Feldman, Phys. Rev. Le88, 177202(2002.

224502-12



