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Bond-disordered spin systems: Theory and application to doped high-Tc compounds
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We examine the stability of magnetic order in a classical Heisenberg model with quenched random exchange
couplings. This system represents the spin degrees of freedom in high-Tc compounds with immobile dopants.
Starting from a replica representation of the nonlinear-s model, we perform a renormalization-group analysis.
The importance of cumulants of the disorder distribution to arbitrarily high orders necessitates a functional
renormalization scheme. From the renormalization flow equations we determine the magnetic correlation
length numerically as a function of the impurity concentration and temperature. From our analysis it follows
that two-dimensional layers can be magnetically ordered for arbitrarily strong but sufficiently diluted defects.
We further consider the dimensional crossover in a stack of weakly coupled layers. The resulting phase
diagram is compared with experimental data for La22xSrxCuO4.
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I. INTRODUCTION

Although the interest in disordered spin systems reac
back several decades~for a review, see, e.g., Ref. 1!, interest
has strongly revived in recent years as a result of the rec
nition that high-Tc compounds exhibit phases with antiferr
magnetic~AFM! order, spin-glass order, or stripe order
certain ranges of temperature and doping. A prominent
ample for such materials is La22xSrxCuO4, in which every
Cu atom carries a spin12 ~for an overview on this material
see, e.g., Ref. 2!.

In these materials, the spins are located in weakly coup
layers. Within each layer, the spins constitute a square la
with antiferromagnetic exchange coupling between nea
neighbors.3 In the undoped system, these spins can be re
sented to a good approximation by a classical tw
dimensional model since quantum fluctuations lead to
merely quantitative renormalization of the classic
parameters.4 Although a weak coupling between the laye
and a weak easy-plane anisotropy are present in these m
rials ~both are about five orders-of-magnitude smaller th
the isotropic intraplane exchange5!, they become relevan
only on relatively large scales. Thus, on the finite leng
scales of experimental relevance, the spins can be desc
in a first approximation by a classical Heisenberg antifer
magnet in two dimensions.

Doping induces holes in the layers, which can lead
quenched frustration of the exchange couplings. Frustra
can occur when the holes are localized individually6,7 as well
as when they condense into a topologically defective arra
stripes which act as antiphase domain walls for the AF
order.8–10 Both cases can be represented by an effec
bond-disordered Heisenberg model. Such a system is
pected to display generic spin-glass behavior, as is obse
in experiments beyond a critical doping.11

On the theoretical side, Heisenberg spin glasses are m
less understood than Ising spin glasses. While it is well
tablished for the pure two-dimensional~2D! system that the
magnetic correlation lengthj decays exponentially with in
creasing temperature,12 the dependence ofj on disorder is
controversial. AtT50 it is not clear whetherj is finite for
0163-1829/2002/65~22!/224502~12!/$20.00 65 2245
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every small but finite concentration of defect bonds13,14,2,15

or whetherj is infinite up to a critical concentration even fo
strong defects.16 Concerning the temperature dependence
j, there is no consensus as to whether it is reentrant14 or
not.15 To readdress these unsettled issues, we develop a
oretical approach for bond-disordered spin glasses wh
complements previous approaches. In particular, we ca
late the correlation length and compare our results to
results of previous theoretical approaches and experim
on high-Tc compounds.

The outline of the paper is as follows. In Sec. II we e
tablish the model and briefly review the mechanism
which holes generate magnetic textures that provide
nucleus for a reduction of magnetic order. Based on t
mechanism, we further examine our motivation as to why
is desirable to develop an alternative to previous theoret
approaches. In Sec. III, we derive the function
renormalization-group equations. These flow equations
evaluated numerically and our results for the magnetic c
relation length are compared to experimental data in Sec
where we also consider the dimensional crossover from
to 3D behavior. We conclude with a discussion of our resu
in Sec. V.

II. MODEL

In a system with sparse substitutional doping, the dopa
can be considered as randomly distributed with negligi
correlations and quenched over a wide temperature rang
doped Mott insulators, the effect of the dopants is twofo
they induce holes in the cuprate planes and at the same
they provide a random potential that localizes these hole
sufficiently low temperatures. Therefore, they are commo
assumed to be localized on the oxygen atoms between ne
boring copper atoms.6,17,7

A simple argument suggests that such a hole transm
the antiferromagnetic superexchange coupling between
neighboring copper spins into a ferromagnetic one. Ther
frustration is induced in the spin system.6 The irrelevance of
quantum fluctuations of the spins in the pure system4 ~in the
sense that they lead only to a quantitative renormalization
©2002 The American Physical Society02-1
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FRANK KRÜGER AND STEFAN SCHEIDL PHYSICAL REVIEW B65 224502
classical parameters such as the spin stiffness! suggests tha
they may be neglected in a good approximation also
small doping.18

A. Definition

Starting from a classical description of the antiferroma
netism, we may examine an equivalent model where all sp
of one bipartite sublattice are flipped and the sign of all
change couplings is reversed,19 i.e., we now consider the
coupling of the undoped system to be ferromagnetic and
defect couplings to be antiferromagnetic. We base our an
sis on the Hamiltonian

H5
1

2 (
r ,i

Ji~r !@¹iSW ~r !#2 ~1!

for spins on a~hyper!cubic lattice ind dimensions~a single
layer is described byd52). Spins are treated as classic
N-component vectors of unit length,SW 2(r )51. A spin at site
r is coupled to its nearest neighbor in the directioni
51, . . . ,d via the exchange couplingJi(r ). We define
¹iSW (r )ªSW (r1ai)2SW (r ) for a basis vectorai . The global
symmetryO(N) of spin rotations is preserved for arbitrari
disordered exchange couplings.

It is convenient to rewrite the exchange coupling as

Ji~r !5@12D i~r !#J ~2!

with the valueJ.0 of the pure system and the quench
random variableD i(r ). Frustration effects emerge forD i(r )
.1, when a ferromagnetic bond becomes antiferromagn
To further specify the nature of the disorder, we assum
bimodal distribution of the exchange couplings,

D i~r !5H D with probabilityp,

0 with probability 12p.
~3!

For square lattices such as in La22xSrxCuO4, the concentra-
tion x is related to this probability byx52p. Correlations
between different bonds are assumed to be absent.

B. Single defects

Before we address the magnetic order in the presence
finite concentration of defects, it is instructive to rec
briefly the physics of asingle defect for N>2. While the
ground state of the pure system is collinear~all spins are
strictly parallel!, it is canted~i.e., no longer collinear! for a
single defect beyond a certain critical strengthDsingle.

13,20,21

The thresholdDsingle5d value can be obtained from a spin
wave calculation22 ~see also Appendix B!. The ground state
for a single defect withD.Dsingle remainsplanar for all N
>2, i.e., apart from a global rotation, the defect texture
Heisenberg spins (N53) is identical to the texture forXY
spins (N52). Far away from the defect bond, the texture
described by the solution of the Laplace equation13

“

2SW ~r !50 ~4!
22450
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and the spins approach a collinear configuration,SW (r )→SW 0
for r→`. To be specific, we discuss a defect bond located
r50 and oriented in directiona. It acts as a source of a
dipolar distortion with a momentmW perpendicular toSW 0. For
d52, in particular,

SW ~r !2SW 0'
mW

2p

a•r

r 2
. ~5!

The amplitude of the dipole moment is determined by
nonlinearity of the model, which may be considered as in
action between spin waves. The magnetic textures of sev
defect bonds are subject to a dipolar interaction at la
distances.13,20 The effects of a finite density of defects a
nontrivial because of the frustrated long-range interaction
tween the dipoles. In the presence of more than two defe
the interaction among the dipoles typically becomes fr
trated. Then the ground state is no longer planar forN.2.

C. Finite defect concentration

Depending on the relative position of several defect bo
in a cluster, the generated texture may have a dipolar
higher-order multipolar structure. In contrast to electrod
namics, the multipolar moments of defect textures are
additive since the spins act as a nonlinear medium for
dipoles, giving rise to many-body interactions. In particul
clusters of defects can lead to canting already for defe
bond strengthsbelow Dsingle, i.e., in clusters of defects th
threshold strength of the defect bonds is reduced. The thr
old values of some specific bond configurations in theXY
model are given in Refs. 22 and 23~see in particular Table I
in the latter!. In general, threshold values in theXY system
are upper bounds for the thresholds in a Heisenberg sys
since with increasingN the spins have a larger space
canted states which they may explore to minimize energ

Thus, as soon as the defects are antiferromagneticD
.1) they can induce canted textures due to the presenc
arbitrarily large clusters.13,22–24Hence the ground state wil
be canted forevery p.0 andD.1 ~assuming that the defec
distribution has no pathological spatial correlations!. There-
fore one may expect a system with a certain density of w
defects 1,D,Dsingle to be qualitatively equivalent to a sys
tem with a~possibly much! smaller concentration of stron
defectsD.Dsingle.

The presence of canting certainly implies a reduction
magnetization. However, one cannot draw direct conclusi
about the range of magnetic order. For a sufficiently h
density of strong defects, one certainly has short-range or
For defects of a weaker strength or a lower concentrat
one can have also quasi-long-range order~as in anXY model
with quenched and uncorrelated dipoles;23,25see also Ref. 26
for an XY model with thermal dipoles at a fixed density!. A
phase with true long-range order is also possible but unlik
since it would require a highly ordered dipole configuratio

It is instructive to recall a ‘‘duality’’ relation27 in the
(p,D) parameter space, since in a mixture of ferromagne
and antiferromagnetic bonds there are two ways to dec
2-2
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BOND-DISORDERED SPIN SYSTEMS: THEORY AND . . . PHYSICAL REVIEW B65 224502
one type as ‘‘regular’’ bond and the other type as ‘‘defec
bond ~see Appendix A!. This duality implies a relation

DAFM~p!5
DFM~12p!

DFM~12p!21
~6!

between boundary linesDFM(p) and DAFM(p) limiting re-
gions with ferromagnetic order~for D,DFM) and antiferro-
magnetic order~for D.DAFM) in the (p,D) plane. Since the
duality relation maps the regionpD.1 onto pD,1 it is
sufficient to examine the latter region.

To perform first qualitative estimates, one may consi
the disorder-averaged exchange coupling, which is

Ji~r !5~12pD!J ~7!

for the bimodal distribution~3!. Thus, there is a tendenc
towards the formation of ferromagnetic order forpD,1
~whereJ̄.0) and a tendency towards antiferromagnetic
der forpD.1 ~whereJ̄,0). Certainly, the presence of orde
requires more than such a tendency. A further minimum
quirement should be that the relative fluctuations

s2
ª

Ji
2~r !2Ji~r !2

Ji~r !2
5

p~12p!D2

~12pD!2
~8!

of the exchange couplings must be small. SinceD.1 and
pD,1 in the range of interest,s2!1 requirespD2!1. A
very crude estimate of the boundary froms.1 suggests

DFM~p!.p21/2. ~9!

For the special caseD51, the defect bonds have a va
ishing exchange coupling and the system is bond dilu
The presence of magnetic order~in the sense of a finite mag
netization! then requires that a finite fraction of spins is co
nected by regular bonds. This is the case below the perc
tion transition, i.e., for p, 1

2 in d52.28 Therefore one
expectsDFM (p)51 for p> 1

2 .

D. Previous work

To our best knowledge, there are only a few approache
the literature aimed at a more sophisticated analysis, wh
we briefly summarize in order to highlight our motivation
reconsider this problem in an alternative way. First,
coherent-potential approximation~CPA! provides a simple
self-consistent approach to determine an effective spin s
ness for the random system. ForN52, the CPA yields29 a
transition line DFM

CPA(p) smoothly interpolating betwee
DFM

CPA(0)5d ~reflecting the canting threshold for individua
defect bonds! andDFM

CPA(p)51 for p> 1
2 in d52 and forp

> 2
3 in d53. In d52, the location of the percolation trans

tion is captured exactly. This has to be considered as a
tunate coincidence which is absent ind53, where the loca-
tion is found only approximately.29 In the limit N→` the
CPA yields that the stability of order requiress2,1,16 which
results inDFM

CPA(p)'p21/2 for small p in agreement with the
naive estimate~9!.
22450
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Unfortunately, the interpretation of the CPA is somewh
ambiguous.30 According to its construction, the CPA replace
the disordered system by a ferromagnetic one with a ho
geneous effective exchange constant. The strength of
effective coupling is determined from a self-consistency c
dition that considers the fluctuations of a single bond. Th
the CPA misses effects of clusters of defect bonds. The
tative transition line is defined as the border line up to wh
self-consistent solutions exist.A priori, this border line can
be interpreted in two ways: either as the onset of the can
instability or as the onset of short-range magnetic ord
Therefore, the CPA can be only of qualitative use.

To gain insight into the nature of the ground state, Gaw
and Grempel23,27 ~GG! performed numerical studies of th
XY model in d52. Their data suggest a transition lin
DFM

GG(p) between a phase with quasi-long-range order a
short-range order. It starts from at the canting instabi
DFM

GG(0)5Dsingle52 and follows DFM
GG(p)51 beyond the

percolation transition. Thus, the data suggest short-range
der for an arbitrarily small concentration of defects of a
strength exceeding the canting instability of single defects
agreement with the CPA. However, as stated in Ref. 23,
question of whether one can have order forD.Dsingle at
sufficiently smallp remains far from settled due to finite-siz
effects.

For the Heisenberg model with the bimodal bond dis
bution, to our best knowledge, there are only very few n
merical studies. For the special case of two dimensions
D5Dsingle52, Nonomura and Ozeki31 postulated order for
p&0.11 from an exact-diagonalization method forS5 1

2

quantum spins. This implies an even larger stability of t
classical model, and in particularDFM (0).2. However,
their conclusion has to considered with care because
finite-size effects.

Previous analytic approaches14,15 are implicitly restricted
to defect-bond strengths exceeding the canting thresholdD
@Dsingle . The spin system with random bonds isreplacedby
a spin system with homogeneous bonds coupled to an a
tional canting field that also generates dipolar spin textu
In order to shed some light on the quality of this replac
ment, we perform a Hubbard-Stratonovich transformation
troducing an auxiliary bivectorial fieldfW i via

exp~2H@SW #/T!5E D$ fW%exp~2H̃@SW , fW#/T!, ~10a!

with

H̃@SW , fW#5J(
r ,i

H 1

2
@¹iSW ~r !#22 fW i~r !•¹iSW ~r !1

1

2D i~r !
fW i

2~r !J .

~10b!

In this representation,SW and fW i are thermally fluctuating vari-
ables,SW with spherical constraint,fW i unconstrained. In the
Hamiltonian ~10b! of the transformed system, the spins i
teract directly via the homogeneous exchange couplingJ. In
addition, they couple also to the canting fieldfW i . It is pre-
cisely such a coupling that was considered in Refs. 14
15.
2-3



ds

r

en
t

.

n
il-

g
on

y

ro
th
.
a

a-

y

ow

te
a

a
in
.
a

rd

t
-
nd

f

ing

ge

v-

to

age

of

FRANK KRÜGER AND STEFAN SCHEIDL PHYSICAL REVIEW B65 224502
The Hubbard-Stratonovich transformation—which yiel
an exact representation of the original model~1!—shows that
the field fW i has alocal self-interaction potential

Vi j ~r ,r 8!5d i j d r ,r8J/D i~r !. ~11!

On regular bonds withD i(r )50, fW i(r ) is suppressed. On
defect bonds withD i(r ).0, fW i(r ) has finite fluctuations. Fo
¹iSW (r )50 one would have

^ f i
a~r ! f j

b~r 8!&5d i j
abd r ,r8

T

J
D i~r !. ~12!

However, it is crucial to retain the full correlations betwe
the fluctuations ofSW and fW i . The spin-wave saddle-poin
equation

¹iSW ~r !5 fW i~r ! ~13!

immediately shows thatfW i induces a canting of the spin field
If fW i(r ) is considered as fixed and nonvanishing only on
single bond, it induces a dipolar spin texture. It is importa
to notice that the original spin rotation symmetry of Ham
tonian ~1! is preserved in the transformed model~10b! only
if fW i is rotated simultaneously withSW .

Instead of solving the full problem of two fluctuatin
fields, Refs. 14 and 15 proceed with additional assumpti
about the nature offW i . Glazman and Ioselevich14 ~GI! con-
sider a Hamiltonian, wherefW i(r ) has afixed lengthon the
defect bonds. Only the orientation offW i(r ) is considered as a
thermal degree of freedom. Thereby the rotation symmetr
preserved. However, fixing the length offW i(r ) contradicts
Eq. ~12!, which shows that the magnitude offW i(r ) is a ther-
mally fluctuating quantity that vanishes in the limit of ze
temperature. This means that in the approach of GI
strength of disorder isoverestimatedat low temperatures
This may be a reason that explains why GI find a reentr
temperature dependence ofj.

On the other hand, Cherepanovet al.15 considerfW i as a
quenchedfield with Gaussian correlations. This is in contr
diction to the annealed nature offW i as is revealed by the
transformed model~10!. In addition, spin rotation symmetr
is explicitly broken. This treatment is based on the assum
tion that the spin textures freeze at low temperatures. H
ever, a spontaneous breaking of this symmetry ind<2 is
ruled out by the Mermin-Wagner theorem.32 Thus, one may
worry that disorder effects may beoverestimatedin this ap-
proach. Possibly, the artificial symmetry breaking is rela
to the spurious generation of random fields in a replica tre
ment as found by Cherepanovet al.15

III. RENORMALIZATION-GROUP ANALYSIS

Although the Hubbard-Stratonovich transformation w
useful to relate previous work to the original model, the
troduction of fW is accompanied with additional difficulties
Therefore we choose to continue to work with the origin
22450
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model where the fieldfW is integrated out. Before we perform
a renormalization-group~RG! analysis, we use the standa
replica trick to treat disorder.

A. Replica representation

After n-fold replication the Hamiltonian reads

H (n)5
1

2 (
r ,i

@12D i~r !#Jc i~r ! ~14a!

with the abbreviation

c i~r !ª (
a51

n

@¹iSW
a~r !#2. ~14b!

~Upper Greek indices label replicas.! Since we assume tha
the probability distribution ofD i(r ) is uncorrelated and iden
tical for all bonds, disorder averaging leads to the local a
translation symmetric Hamiltonian (H includes the factor
1/T)

H5(
r ,i

H 1

2
Kc i~r !2R~c i~r !!J . ~15!

The cumulant functionR is specified by

R~c i~r !!ª ln exp@D i~r !Kc i~r !/2# ~16!

and depends implicitly onKªJ/T. For the special case o
bimodal disorder~3!,

R~c!5 ln@12p1peDKc/2# ~17a!

'H 1

2
pDKc for DKc→0,

1

2
DKc1 ln p for DKc→`.

~17b!

Note that naturallyR(c)50 in the absence of disorder~for
p50 or D50) and thatR(c)5 1

2 DKc for p51, which
amounts to an unfrustrated dual model with a correspond
stiffness (12D)J. In the general case,R(c) is a nonlinear
function which has linear asymptotics for small and lar
arguments, cf. Eqs.~17!.

Remarkably, the energy depends onc only through the
combination

h~c!ªKc22R~c!. ~18!

A priori, it is not clear whether spin fluctuations are go
erned by the behavior ofh(c) at largec or at smallc.

The stability of the ferromagnetic state with respect
large-scale spin-wave deformations depends onh(c) at
smallc and requiresh8(0).0, i.e.,pD,1. ~For pD.1 the
dual antiferromagnetic ground state is locally stable.! This
condition is equivalent to the requirement that the aver
exchange coupling~7! should remain ferromagnetic.

While the effective stiffness is defined from the slope
the functionh(c) at c50, its behaviorh(c);(12D)Kc
2-4
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BOND-DISORDERED SPIN SYSTEMS: THEORY AND . . . PHYSICAL REVIEW B65 224502
for c→` ~which is equivalent toT→0) reflects the pres
ence of frustration. ForD,1 — i.e., in the absenceof
frustration—h(c) is positive for allc and fluctuations can
renormalize the stiffness to a smaller but positive value.
D.1—i.e., in thepresenceof frustration—h(c) is negative
at largec and fluctuations can renormalize the stiffness
zero, signaling the destruction of magnetic order.

In the replica representation, the canting instability fo
singledefect can be retrieved easily. To this end, we cons
the case in which a singleparticular bond is populated by a
hole with probability p. Then, the replica Hamiltonian i
similar to Eq.~15! with the modification that one has to kee
the cumulant function~17! only on the particular bond an
switch it off on all other bonds. In the limitT→0 ~consider-
ing the statistical weight for fixedn and a fixed but arbitrary
spin configuration!, the replicas decouple sinceR(c)
' 1

2 DKc1 ln p. The exchange coupling of the defect bo
within each replica is (12D)J independent ofp. Thus, cant-
ing occurs in the casep,1 for D.Dsingle as in the casep
51. While the threshold is independent ofp, the disorder-
averaged dipole moment depends onp. Since c becomes
arbitrarily small slightly above the canting threshold, th
dipole moment cannot be calculated from the large-c limit of
h.

Therefore in general it is important to retain theglobal
functional form of h(c) @or, equivalently,R(c)#. An ap-
proximation of this function by a Taylor series nearc50
would amount to an expansion in cumulants of the def
distribution. The relevance ofR(c) for large c shows that
one could miss essential physics by dropping high-order
mulants and—in particular—using a Gaussian distribut
for D. Even worse, the functionR(c) is nonanalytic, i.e., its
behavior at largec is outside the radius of convergence of
cumulant expansion.

B. Flow equations

In order to address the question of magnetic order in
presence of general fluctuations ofc, we generalize the
renormalization-group analysis of Polyakov12 to the repli-
cated model. Instead of working with the functionh(c), it is
more physical to use an effective bare stiffness and an ef
tive cumulant function defined by

K0ªK22R8~0!5~12pD!K, ~19a!

R0~c!ªR~c!2cR8~0!5R~c!2
1

2
pDKc ~19b!

to remove the linear contribution ofR, which represents a
trivial renormalization of the stiffness. The replacement
the original quantities by the effective ones leaves the ene
~15! invariant sinceKc22R(c)5K0c22R0(c).

Following Polyakov’s analysis of the pure system,12 we
renormalize the model by a momentum-shell integration.
far, the Hamiltonian~15! was written in a way to explicitly
retain the lattice of the spin sites. We choose the lattice sp
ing as the unit of length and go over to a continuum rep
sentation by smoothly interpolating the fieldSW (r ) between
22450
r
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the lattice sites@preserving the normalizationSW 2(r )51 ev-
erywhere#. In this limit, partial spatial derivatives replace th
differences inc i(r )5(a51

n @] iSW
a(r )#2 and

H5E ddr(
i

H 1

2
Kc i~r !2R~c i~r !!J . ~20!

The replacement of differences by partial derivatives and
the sum by an integral should be a reasonably good appr
mation, i.e., the replacement ofc should lead to small rela
tive errors compared to unity for anarbitrary spin configu-
ration ~even with inhomogeneities on the scale of the latt
spacing!. A small relative error inc is equivalent to a smal
relative misrepresentation ofJ and/orD since these quanti
ties enter the Hamiltonian only as a product withc. We
further use the approximate replacement of the cubic B
louin zone by a spherical one. Thus, to preserve the volu
of the Brillouin zone, its radiusL has to be fixed byLd

5d(2p)d/Sd, with Sdª2p (d/2)/G(d/2) the surface of the
d-dimensional unit sphere. Ind52 specifically,L254p. In
order to demonstrate that the fundamental frustration mec
nism does not get lost due to the continuum approximati
we briefly rederive the canting threshold in Appendix B.

According to the scheme of the momentum-shell ren
malization group, we now integrate out the spin modes w
wave vectors in the shellLe2dl,k<L. Thereby the original
spin fieldSW a is mapped onto the slowly varying backgroun
field sWa. They are related by

SW a5A12xa
axa

asWa1xa
aeWa

a ~21!

with the vector fieldseWa
a forming a local orthonormal basi

$eW1
a , . . . ,eWN21

a ,sWa% at each siter in each replicaa. We em-
ploy the sum convention for pairs of Latin indices (a,b
51, . . . ,N21) only. The fieldxa

a generates an infinitesima
spin rotation and has contributions only from wave vectors
the momentum shell.

Derivatives of basis vectors can be expanded in the lo
bases

] isW
a5Bia

a eWa
a , ~22a!

] ieWa
a52Bia

a sWa1Aiab
a eWb

a ~22b!

in terms of potentialsA andB. The arbitrariness of the choic
of the vectorseWa is reflected in a gauge invariance of th
potentials; the gauge transformations are local rotati
aroundsW.33 One can exploit this gauge symmetry to sho
that the potentialA corresponds to higher-order derivative
of the spin field.33,15We ignore such contributions and ther
fore omit the potentialA from now on.

For further calculations,x can be considered as sma
since we consider an infinitesimal momentum shell. In ad
tion, we treat temperature and disorder, which drive the fl
tuations ofx, as small. In order to expand the Hamiltonian
x, we first consider
2-5
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] iSW
a5Bia

a eWa
a2xa

aBia
a sWa1] ixa

aeWa
a2xa

a] ixa
asWa

2
1

2
xb

axb
aBia

a eWa
a1O~x4! ~23!

and, ordered by powers ofx,

c i5c i
(0)1c i

(1)1c i
(28)1c i

(29)1O~x3!, ~24a!

c i
(0)5(

a
Bia

a Bia
a 5(

a
~] isW

a!2, ~24b!

c i
(1)5(

a
2] ixa

aBia
a , ~24c!

c i
(28)5(

a
] ixa

a] ixa
a , ~24d!

c i
(29)5(

a
$xa

axb
aBia

a Bib
a 2xb

axb
aBia

a Bia
a %. ~24e!

An expansion of the energy density for smallx gives

h~c i !5h~c i
(0)!1h8~c i

(0)!@c i
(1)1c i

(28)1c i
(29)#

1
1

2
h9~c i

(0)!@c i
(1)#21O~x3!. ~25!

Substituting this expression back into Eq.~20!, we rewrite

H5Hfree1Hint , ~26a!

Hfree5E ddr(
i

H 1

2
Kl@c i

(0)1c i
(28)#2Rl~c i

(0)!J ,

~26b!

Hint5E ddr(
i

H 1

2
Kl@c i

(1)1c i
(29)#2Rl8~c i

(0)!

3@c i
(1)1c i

(28)1c i
(29)#2

1

2
Rl9~c i

(0)!@c i
(1)#2J

1O~x3!. ~26c!

Hereby we have separated the ‘‘free’’ and ‘‘interaction’’ co
tributions in a way such thatHint vanishes forx50 andHfree
contains the bilinear self-interaction ofx.

Due to the energy contributionHint the fluctuations canno
be integrated out exactly. In analogy to the treatment of
pure system, we apply standard perturbation theory toHint .
In principle, this can be done in a systematic way at l
temperatures, wherex;T1/2. Aiming at the analysis of the
stability of magnetic order for low temperature and we
disorder, we retain only the renormalization effects to fi
order in Hint . Integration overx leads to an infinitesima
renormalization of the Hamiltonian

dH5^Hint&1O~Hint
2 !, ~27!
22450
e

t

where the average is over the fluctuations ofx weighted by
Hfree only.

Using the averages

^] ixa
a] jxb

b&5
1

Kl
d i j dabd

abdl , ~28a!

^xa
axb

b&5
d

KlL
2
dabd

abdl , ~28b!

one finds

^c i
(1)&50, ~29a!

^c i
(28)&5

n

Kl
dl , ~29b!

^c i
(29)&52~N22!

d

KlL
2
c i

(0)dl , ~29c!

^@c i
(1)#2&5

4

Kl
c i

(0)dl . ~29d!

Separating the flow ofKl and of Rl by the requirement
Rl8(0)50 as in Eqs.~19! for the bare quantities, we finally
obtain the flow equations

d

dl
Kl5~d22!Kl2

N22

L2/d
2

4

Kl
Rl9~0!, ~30a!

d

dl
Rl~c!5dRl~c!2S 21

N22

KlL
2/d

D cRl8~c!

1
2

Kl
c@Rl9~c!2Rl9~0!#. ~30b!

Terms explicitly proportional to the number of replicasn
have been dropped. A rescalingr→edlr of lengths has been
included in order to keep the value of the cutoff fixed.

For arbitrary temperature, the flow ofK can be interpreted
as a flow of the spin stiffness at fixed temperature. Using
dimensionless stiffnessj lªKl /K, the dimensionless tem
perature tªT/J51/K, the rescaled fieldfªDKc ~we
recall that K and D are unrenormalized quantities!, and
R̂l(f)ªRl(c), we rewrite the flow equations as

d

dl
j l5~d22! j l2

N22

L2/d
t2

4D2

j l
R̂l9~0!, ~31a!

d

dl
R̂l~f!5dR̂l~f!2S 21

N22

L2/d

t

j l
D fR̂l8~f!

1
2D

j l
f@R̂l9~f!2R̂l9~0!#. ~31b!
2-6
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In this form, temperature and disorder strengthD appear as
explicit parameters. The flow Eqs.~31! have to be solved
with the initial conditions

j 0512pD, ~32a!

R̂0~f!5 ln@12p1pef/2#2 1
2 pf. ~32b!

Corresponding to the neglect of higher-orders ofHint in
Eq. ~27!, these flow equations contain renormalization
fects only to the leading order in temperature and disor
Higher orders of perturbation theory would certainly gen
ate higher order contributions as well as a more complica
functional form of the Hamiltonian. Anticipating thatR̂l9(0)
>0 is preserved under the flow, Eq.~31a! shows that both
thermal fluctuations and disorder tend to reduce the effec
stiffness.

In the given order, several features of the flow equatio
are remarkable. The initial functionR̂0(f) depends only
on p ~see Fig. 1!. The crossover from the linear regime
small f to the linear regime at largef occurs at
f* 52ln (12p)/p, where the curvature R̂09(f)

51/16 cosh2@(f2f* )/4# has its maximumR̂09(f* )5 1
16 . The

flow equation of the stiffness couples to disorder on
through R̂09(0). For D50, this coupling vanishes, while

R̂l(f)50 for p50. The flow equations depend onN only at
finite temperatures~unlike the flow equations of Ref. 15!.
Thus, the properties at zero temperature are expected t
independentof N. However, one has to keep in mind that t
equations apply only to spins with a continuous rotat
symmetry (N>2) and that the renormalization scheme
nores the effects of topological defects, which are known
be particularly important forN52.

IV. RESULTS AND DISCUSSION

In order to determine the large-scale properties of
model, we numerically integrate the coupled flow Eqs.~31!

FIG. 1. Plot of the initial functionR̂0(f) for the valuesp
51022, 1023, 1024, and 1025. Note that this nonanalytic function
is very small up tof* 52 ln (12p)/p, where it assumes a slope th
is approximately independent of smallp.
22450
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for j l and R̂l(f) from l 50 to large l. If j l converges for
l→` to a finite value much larger thant, the system is in an
ordered state with finite renormalized stiffness and infin

correlation length, i.e.,̂ SW (r )SW (r 8)&5 limn→0^SW
a(r )SW a(r 8)&

decays more slowly than exponentially with the distanceur
2r 8u. If, on the other hand,j l becomes of ordert on a finite
scale l 5 l * , the system is disordered and we identify t
correlation length as

j5Ael* ~33!

with some constantA of the order of the lattice spacing
Following previous references,4,15 we specifically define this
scale from

j l* 5
t

2p
. ~34!

The influence of disorder in determining the correlati
length is twofold: the starting valuej 0, Eq. ~32a!, depends
explicitly on the disorder parameters, and the disorder c
tribution in Eq.~31a! leads to a faster decrease ofj l .

The critical disorder strengthDFM separating a ferromag
netically ordered phase from a disordered phase can be i
tified with the line wherej diverges. Unfortunately, this cri
terion does not allow for a distinction between true lon
range order and quasi-long-range order in the ferromagn
phase.

A. Zero temperature

At T50, we find the transition lineDFM (p) as shown in
Fig. 2. This transition has the following features.

FIG. 2. Two-dimensional phase diagram atT50 in a linear and
semilogarithmic plot. The solid line represents the transition l
DFM (p) from the magnetically ordered to the disordered phase
the inset the dashed line represents the linear fit~35! and the three
filled squares represent the points withD53.7 with p50.01, 0.015,
and 0.02 used in Sec. IV C for comparison with experiments.
2-7
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FRANK KRÜGER AND STEFAN SCHEIDL PHYSICAL REVIEW B65 224502
1. Regime of smallp

For dilute disorder,p→0, we find a slow but unbounde
increase ofDFM (p). In the range 1025<p<0.1 the line fol-
lows roughly the relation~see the dashed line in the inset
Fig. 2!

DFM ~p!'0.60610.648 ln
1

p
. ~35!

However, in the limitp→0, DFM (p) appears to increas
more slowly than logarithmically.

This finding implies order below a finite defect conce
tration even for arbitrarily strong defect bonds. This behav
is in disagreement with Refs. 14 and 15, where disor
~with D.Dsingle) was suggested to destroy order for infin
tesimally smallp. As already stated in Sec. II D, we believ
that the effects of disorder are overestimated in both prev
approaches because of special assumptions about the n
of the bivectorial fieldfW i .

For the special caseN52, where this disagreement pe
sists, further references can be included in the compari
~We assume here thatXY and Heisenberg systems shou
have a similar phase diagram atT50 since our lowest-orde
flow equations are independent ofN. Topological defects are
ignored in our work as well as in Ref. 15. Their presen
may further reducej.! Although theXY model with random-
phase shifts isa priori a different model, the effect of disor
der is represented by a random distribution of dipoles suc
that in model~1!.34 Various recent work~see, e.g., Refs. 25
and 35! has provided evidence that quasi-long-range or
exists for weak disorder~even in the presence of vortices!.
This observation is consistent with our flow equations
contradicts the flow equations of Cherepanovet al.15 From
their numerical data, Gawiec and Grempel23 argue for a dis-
ordered phase forD.Dsingle and p.0, i.e., for DFM (0)
52. While this conclusion is again in disagreement with o
result, the numerical data are not: Gawiec and Gremp23

present data forD54 as the only value withD.2 and they
demonstrate the absence of order only forp*0.02. ForD
54, we find order at very smallp&0.0062, which actually is
not excluded by the numerical data~cf. Fig. 17 of Ref. 23!.

2. Regime of largep

For p→12 we find thatDFM (p)→11 in a smooth way.
While this is qualitatively correct, a horizontal segment w
DFM (p)51 beyond the percolation transition atp5 1

2 is ab-
sent. However, in this range we findDFM (p) which is only
slightly larger, i.e., this is a quantitative effect which may
attributed to the continuum approximation as argued in
text below Eq.~20!. In addition, the regime nearD51 and
p* 1

2 is a regime of strong disorder in the sense of the c
tent of Sec. II C sinces2*1. There our flow equations ar
not quantitatively reliable because of the lowest-order tr
cation. On the other hand, the transition at smallp should be
well described since Eq.~9! is satisfied,pDFM

2 (p)→0 for
p→0.

When the transition line is approached at finitep, the
correlation length displays a divergence,
22450
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j~D,p!;@D2DFM ~p!#2n. ~36!

From the numerical integration of our flow equations we fi
a mean-field-like exponentn50.500(1)~see the inset of Fig.
3!. The finding of the mean-field value is probably related
the neglect of higher-order terms in our flow Eqs.~31!.

B. Finite temperatures

Temperature enters the flow equations in two pla
where it could lead to contrary effects. In Eq.~31a!, an in-
crease of temperature leads to a faster renormalization o
spin stiffness to smaller values@ignoring the temperature de
pendence ofR̂l9(0)#. On the other hand, in Eq.~31b! tem-

perature tends to suppressR̂, which might in turn reduce the
efficiency of disorder in suppressing the spin stiffness. Ho
ever, from our flow equations, we always find that therm
fluctuations reduce stiffness and therefore alsoj.

More precisely,j decreases monotonously with increa
ing temperature. Thus, a reentrant temperature depend
as found by GI~Ref. 14! is absent in the present treatmen
We attribute this discrepancy to the fact that GI kept t
length of the bivectorfW i fixed, whereas its typical length
should vanish at lowT according to Eq.~12!. Thereby, with
decreasing temperature, the strength of disorder is incr
ingly overestimated, giving way to an apparent reentranc

C. Comparison with experiments

We now turn to check the consistency of our theory w
measurements on La22xSrxCuO4. To allow for a comparison
of our results with those of Cherepanovet al.15 we refer to
the same experimental data of Keimeret al.36 for x50.02,
0.03, and 0.04. For the moment we assume that interla
couplings and spin anisotropies can be neglected and we
come back to this issue later.

FIG. 3. Plot of j(x) for T50 with D53.7 andA522 Å in
order to fit the experimental data~filled squares with error bars! of
Ref. 36. The inset shows a double-logarithmic plot ofj as a func-
tion of x2xc for D53.7 with xc50.019 062. Open circles con
nected by a line representj calculated numerically from the flow
equations. The dashed line is the best linear fit with slope2n5
20.500 07.
2-8
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BOND-DISORDERED SPIN SYSTEMS: THEORY AND . . . PHYSICAL REVIEW B65 224502
The comparison of our results forj with experiments in-
volves four parameters,p, D, J, and A. As already stated
above, our model parameterp5x/2 is directly related to the
dopant concentrationx. A is a length scale of the order of th
lattice spacing. In principle, this parameter can depend
temperature and disorder itself~see the discussion in Re
15!. Such dependencies could modify the functionj(x,T) in
a subdominant way and would involve additional assum
tions and parameters. We refrain from including such dep
dencies for the purpose of the subsequent semiquantita
comparison.

At T50, J does not enter the flow equations since
simply sets the energy scale andD is the only unknown
model parameter which enters the numerical calculation
l * . From the consideration of the superexchange acro
defect bond, one expectsD@1,6 i.e., a value clearly above
the canting instability. The finiteness of the measured val
of j for x>0.02 implies that the data points lie in the diso
dered phase, i.e.,D.DFM (p50.01)'3.67.

We have determined values of the parametersD, A, andJ
from the requirement that our theoretical values forj should
be consistent with experimental data. In view of the giv
experimental errors and the approximate nature of our
calculation, we found a satisfactory agreement for

D53.7, ~37a!

J5240 K, ~37b!

A55.8a, ~37c!

wherea53.8 Å is the lattice spacing. In Fig. 3 we compa
our theory with data forj as a function ofx at T50. The
inset shows forD53.7 a double-logarithmic plot ofj(x)
which reveals the mean-field-like divergence ofj according
to Eq. ~36! near the order-disorder transition.

The temperature dependence ofj is shown in Fig. 4.
Keeping in mind the strong fluctuations of the experimen
data, they can be considered as consistent with our anal
However, the theoretical dependence ofj on T and p does
not quantitatively confirm the empirical formula2,36

FIG. 4. Plot ofj21(T) for x50, 0.02, 0.03, and 0.04. Symbo
with error bars are experimental data from Ref. 36. Open circ
connected by lines represent our theory.
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j21~T,p!5j21~T,0!1j21~0,p!, ~38!

which would imply that in Fig. 4 the curves for differentp
should differ only by a vertical shift. In contrast, we find th
thermal fluctuations lead to a stronger increase ofj21 for
smallerp.

In comparing experimental data to the results from o
model one may wonder whether the exchange couplings
be considered as quenched at higher temperatures. Ind
holes are no longer localized but have a thermally activa
mobility characteristic of variable-range hopping which
very small up to temperatures near 50 K.37 However, in order
to have quenched exchange couplings it is not necessa
have strictly localized holes. To obtain dipolar spin textur
~at least on a coarse-grained length scale! it is sufficient to
have a sufficiently inhomogeneous density distribution.15

D. Coupled layers

We now address the effects of a very weak interlayer c
pling J'. For La2CuO4, a ratio J'/J5531025 was deter-
mined from experiments.5 From a simple scaling analysis,38

one immediately obtains the flow equation

d

dl
Jl

'52Jl
' , ~39!

which shows the strong relevance of this coupling. From
condition that the interlayer coupling becomes comparabl
the intralayer coupling,Jl

'5J, one can fix a dimensiona
crossover scale

l '5
1

2
ln

J

J'
. ~40!

Comparing this scale with the correlation length~33! ob-
tained in theabsenceof the layer coupling, one expects th
the coupling actually is irrelevant forl * ,l ', where 2D
fluctuations on small scales renormalizeJ' to zero. On the
other hand, forl * .l ', fluctuations become three dimen

FIG. 5. Plot of our numerical result forTN(x) ~open circles
connected by a line!. For comparison, squares~Ref. 39!, triangles
~Ref. 40!, and crosses~Ref. 41! represent experimental data~see the
main text!.
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FRANK KRÜGER AND STEFAN SCHEIDL PHYSICAL REVIEW B65 224502
sional on scales larger thanl '. Per the definition ofl * , the
exchange coupling on the scalel ' is still large compared to
temperature such that magnetic long-range order shoul
stable. Therefore, the location of three-dimensional orde
in the (x,T) plane can be determined from the implicit co
dition

l * ~x,T!5
1

2
ln

J

J'
. ~41!

We have evaluated this condition numerically forJ'/J55
31025 and the parameter set~37!. The resulting Ne´el tem-
perature is plotted in Fig. 5 as a function of doping. T
transition temperature is normalized by its valueTN(0)
'300 K in the absence of disorder, which essentially
flects the value ofJ. While the precise value ofJ may vary to
some extent with the employed fitting procedure for the
rameter set, the shape of the normalized transition line
very robust. AtT50, the critical disorder strengthx3D is
increased by the interlayer coupling only slightly overx2D
'0.1906, (x3D 2x2D )/x2D '1022, because of the extremel
slow divergence ofj for x→x2D

1 .
In comparison to the theory in Ref. 15, we find thatTN(x)

decays less abruptly nearx3D . We compare our results t
data from Hall measurements39 ~squares in Fig. 5!, suscepti-
bility measurements40 ~triangles!, and perturbed angular co
relation measurements41 ~crosses!. The overall agreement i
satisfying, although the experimental data partially sugg
that disorder is less effective in reducing the transition te
perature. This tendency may be attributed to the fact that
samples were partially oxygen doped~at higher temperature
oxygen is not quenched and is less effective in genera
spin frustration! as well as the fact that we have neglect
the easy-plane spin anisotropy, which also tends to stab
the magnetic order.

While we have thus shown that a mechanism based
spin frustration by quenched disorder is consistent with
experimental data, completely different mechanisms~for ex-
ample, nonlinear-s models with effective, doping depende
exchange constants42,43! have been suggested in the pa
which also lead to qualitatively similar phase diagrams. F
thermore, the assumption of a site dilution by holes can l
to a similar phase diagram.44 In order to discriminate be
tween the different models it would be desirable to ha
experimental data from which one can decide whether
spin-correlation function at low temperatures has true lo
range order~this would be consistent with a homogeneo
spin system with effective spin stiffness! or whether it has
only quasi-long-range order~this would be consistent with
the frustration mechanism!.

V. CONCLUSIONS

In this paper, we have reexamined a classical model
N-component spins (N>2) with random exchange coupling
and we have chosen an approach complementary to prev
studies by Glazman and Ioselevich14 and Cherepanovet al.15

Special care has been taken to preserve the quenched n
of disorder and the global spin rotation symmetry.
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Our analysis involves approximations which we brie
summarize.~i! The originally discrete spin system is repr
sented in a continuum formulation. Thus, features related
the specific lattice structure—such as the location of the p
colation transition forD51—cannot be captured quantita
tively. ~ii ! As in the pure case, the renormalization sche
accounts only for interactions between spin waves, ignor
the role of topological defects. Thus, the degree of magn
order may be overestimated~recall that forN52 the pure
system erroneously appears to be ordered at all tempera
if vortices are neglected!. ~iii ! The flow equations are trun
cated to lowest order in temperature and disorder. In p
ciple, the analysis could be extended to higher orders
practice, this extension is hampered by a much more c
plicated functional form of the Hamiltonian which is gene
ated during the flow.

Due to the nonanalytic nature of the cumulant functionR,
we found it necessary to develop afunctional renormaliza-
tion group, i.e., to keep track ofarbitrarily high cumulantsof
the disorder distribution. To the best of our knowledge, fun
tional flow equations for disordered spin systems have b
considered previously only for different types of disorder,
particular for random fields and random anisotropy.45–48

The flow Eqs.~31! are the central result of the analyt
part of this work. For comparison, the analysis
Cherepanovet al.,15 which employs approximations corre
sponding to the ones listed above, is restricted to a sin
disorder parameter that corresponds to the lowest cumu
of the disorder distribution.

As a main physical result of our RG analysis, we find th
the two-dimensional spin system can be magnetically
dered atT50 in the presence of a sufficiently small butfinite
concentration of arbitrarily strong defects (D.Dsingle). At
this point it is worthwhile to recall that we have identifie
magnetic order from the length scale where the spin stiffn
is renormalized down to the scale of thermal fluctuations
the absence of explicit calculations for the spin-spin corre
tion function it is natural to assume that this scale coincid
with the magnetic correlation lengthj. Such a calculation
would be desirable in order to clarify whether the order
phase~with j5`) has quasi-long-range order or true lon
range order. We have determinedj by a numerical integra-
tion of our flow equations for the strictly two-dimension
system as well as for weakly coupled layers. In the first c
our zero-temperature phase diagram is consistent with
merical simulations.23 In the second case, the calculated d
pendence ofj on temperature and disorder strength is
good agreement with measurements on cuprates. In
cases the comparison was restricted tofinite length scales
given by the computationally manageable system sizes or
experimental error bars, respectively.

Nevertheless, concerning the question of whether m
netic order is stable against bond disorder in two dimensi
on largest scales, our positive answer, shared by Ref.
disagrees with previous negative ones.14,15 In the end of Sec.
II D we have given specific reasons why in our opinion t
previous answers cannot be considered as final. In view
the complementary approaches and approximations
volved, this question has to be considered as an open
that calls for additional research.
2-10
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APPENDIX A: DUALITY

For the bimodal distribution~3! with D.1, our system
consists of a fractionp of ‘‘defective’’ antiferromagnetic
bonds and a fraction 12p of ‘‘regular’’ ferromagnetic bonds.
The relative strength of bonds isuJAFM /JFM u512D. From
a dual point of view, one may say that the system consist
a fractionp̃ª12p of ‘‘defective’’ ferromagnetic bonds and
a fraction 12 p̃5p of ‘‘regular’’ antiferromagnetic bonds
Since for classical spins thermodynamic properties are
variant under flipping one sublattice and reversing the sign
the exchange coupling (JAFM 5:2 J̃FM and JFM 5:
2 J̃AFM ),19 the system is equivalent to a system with a fra
tion p̃ª12p of ‘‘defective’’ antiferromagnetic bonds and
fraction 12 p̃5p of ‘‘regular’’ ferromagnetic bonds of rela
tive strengthuJ̃AFM / J̃FM u51/(12D)5:12D̃.27 Thus dual-
ity provides a mapping,

J→ J̃5~12D!J, ~A1a!

p→ p̃512p, ~A1b!

D→D̃5
D

D21
, ~A1c!

for all temperatures.

APPENDIX B: CONTINUUM LIMIT

We show that the spin frustration mechanism is well c
tured in the continuum representation of our model. To t
e

t i
st
ar
po
ing

s
e

H.
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end, we rederive the canting instability thresholdDsingle5d
for a single defect bond. For a single defect bond located
r50 and oriented in directionej the Hamiltonian reads

H5
J

2E ddr(
i

@12d i j d~r !D#@] iSW ~r !#2. ~B1!

We introduce a canting fieldxW (r ), xW 2(r )<1, perpendicular
to a collinear ground stateSW 0(r )[SW 0 of the pure system via

SW ~r !5A12xW 2~r !SW 01xW ~r !. ~B2!

To show the canting instability we insert Eq.~B2! into the
Hamiltonian and minimize the energy with respect to t
canting fieldxW after expanding the Hamiltonian up to qu
dratic order in this field. In Fourier space the saddle-po
equation reads

xW q5D
qj

q2Ek
kjxW k . ~B3!

Multiplying Eq. ~B3! with qi and integrating overq we get

mW i5
D

d
d i j mW j , ~B4!

with

mW iªE
k
kixW k . ~B5!

This self-consistency condition onmW i implies

D5Dsingle5d ~B6!

for a nonvanishing solution of the saddle-point equat
~B3!.
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