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The spin dynamics of bilayer cuprate compounds are studied in a basic model. The magnetic spectral
properties are calculated in linear spin-wave theory for several stripe configurations which differ by the relative
location of the stripes in the layers. We focus on the bilayer splitting of the magnon bands near the incom-
mensurate low energy peaks as well as near thep resonance, distinguishing between the odd and even channel.
We find that an x-shaped dispersion near thep resonance is generic for stripes. By comparison of our results
to neutron scattering data for YBa2Cu3O6+x we conclude that the stripe model is consistent with characteristic
features of bilayer high-Tc compounds.
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I. INTRODUCTION

Subsequent to predictions of stripe formation,1–3 charac-
teristic signatures of spin and charge order have been found
in a variety of high-Tc cuprate superconductors, including
La2−xSrxCuO4 (LSCO) and YBa2Cu3O6+x (YBCO). Neutron
scattering experiments4,5 have provided evidence for spin or-
der at low energies through a pattern of incommensurate
peaks around the antiferromagnetic wave vector. Although
more difficult to detect, charge order has been observed in
LSCO codoped with Nd(Ref. 6) as well as in YBCO without
codoping.7

Since LSCO and YBCO are paradigmatic for monolayer
and bilayer compounds, stripelike “low”-energy response is
characteristic for both classes of materials. On the other
hand, at “high” energies spin fluctuations appeared to be
qualitatively different since a commensuratep resonance
had been observed only in bilayer compounds, notably
in YBa2Cu3O6+x (Refs. 8 and 9) and Bi2Sr2CaCu2O8+x,

10

whereas it seemed to be absent in monolayer compounds.
This apparent distinction between monolayer and bilayer
compounds lost its justification only recently, when thep
resonance was discovered in Tl2Ba2CuO6+x (Ref. 11) as the
first monolayer compound. The fact that thep-resonant
mode has not been detected in LSCO so far can possibly be
ascribed to a larger effective strength of disorder, since the Sr
dopants are randomly distributed whereas in the oxygen
doped compounds the access oxygen orders in chains. Thus,
one may believe that, in principle, monolayer and bilayer
compounds have qualitatively similar features also at higher
energies. This universality of low- and high-energy features
calls for an even more unifying framework.12

In a recent article13 we have analyzed an elementary
monolayer model assuming that charges form a perfectly or-
dered site-centered stripe array which imposes a static spatial
modulation of spin-exchange couplings. The resulting spin
dynamics was studied using linear spin-wave theory. As a
result, we found that the incommensurability and thep reso-
nance appear as complementary features of the band struc-
ture at different energy scales. Furthermore, the doping de-
pendence of the resonance frequency was found in good
agreement with experimental observations.

In this work we extend this model to bilayer systems in
order to predict the corresponding features of the magnon

band structure and the magnetic structure factor. Within each
layer, holes are assumed to form unidirectional site-centered
stripes. We consider several possibilities(parallel and per-
pendicular relative orientations) of the charge order in the
antiferromagnetically coupled neighboring layers. The band
structure and theT=0 inelastic structure factor for even and
odd excitations are calculated in linear spin-wave theory.
Particular attention is paid to the band splitting in the vicinity
of the antiferromagnetic wave vector and to the influence of
the interlayer coupling on thep-resonance energy.

The outline of this paper is as follows. In Sec. II the
spin-only model for a bilayer system is introduced and mo-
tivated. Classical ground states and the resulting phase dia-
grams for competing types of magnetic order are obtained.
They are needed as a starting point for the linear spin-wave
theory. A customized formulation thereof is outlined in Sec.
III. The results, namely the spin-wave band structure, the
zero-temperature structure factor for even and odd excita-
tions, and the dependence of the band splitting at the antifer-
romagnetic wave vector on the strength of the interlayer cou-
pling are presented in Sec. IV and compared to experiments
in Sec. V.

II. MODEL

Stripes are a combined charge- and spin-density wave. If
the charge periodpa is a multiple of the Cu spacinga with
integerp, lock-in effects tend to suppress phasonlike fluctua-
tions of the density modulation. In a reductionist real-space
picture, one may think of the holes forming parallel site-
centered rivers of widtha, which act as antiphase domain
boundaries for the antiferromagnetic spin domains in
between.6 This implies that the period of the spin modulation
is twice that of the charge modulation.

To implement that the charge stripes act like antiphase
boundaries we follow our previous work13 and choose the
simplest possible implementation of exchange couplings
within the layers stabilizing this magnetic structure: antifer-
romagnetic exchange couplingsJ between neighboring spins
within the domains and antiferromagnetic couplingslJ be-
tween closest spins across a stripe.

In our previous work13 we have studied this model for a
single layer allowing for diagonal and vertical stripe orienta-
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tions. Here we focus on vertical stripes as observed in the
superconducting cuprates and restrict our analysis to the rep-
resentative casep=4. This corresponds to a doping of one
hole per eight Cu sites since the rivers have a line charge of
only half a hole per lattice constant. In addition to the in-
plane couplings we consider an antiferromagnetic exchange
mJ between two layers(cf. Fig. 1). The Hamiltonian of this
bilayer model is given by

H = o
a=1,2

Ha + H1,2, s1ad

Ha =
1

2o
r ,r8

*

Jasr ,r 8dSasr dSasr 8d, s1bd

H1,2= mJo
r

*

S1sr dS2sr d, s1cd

where r specifies the square-lattice position anda=1,2
numbers the layers. The asterisks indicate that the sums do
not include positions of charge rivers. The in-plane couplings
Jasr ,r 8d defined in the text above are illustrated in Fig. 1.
They explicitly depend on the layer index if the charge dis-
tribution is different in both layers.

For simplicity we neglect spin anisotropy, the weak three-
dimensional coupling between bilayers, and more compli-
cated exchange processes such as cyclic exchange or
Dzyaloshinskii-Moriya interactions, which all may be impor-
tant for quantitative purposes. Obviously, this simple spin-
only model does not account for electronic correlation ef-
fects, e.g., a spin gap at low energies due to the formation of

Cooper pairs is not incorporated. Nevertheless we expect that
our model provides a qualitatively adequate description of
the spin fluctuations well above the gap energy.

The actual stripe configuration is determined by several
influences. Besides the magnetic exchange energy one must
also take into account the Coulomb energy, and in principle
also a further reduction of the fourfold symmetry of CuO2
planes in orthorhombic structures which may favor a certain
alignment of the stripes. In YBa2Cu3O6+x the formation of
CuO chains along theb direction may favor a parallel align-
ment of stripes.

We find that three different stripe configurations may be
realized physically(see Fig. 1). The exchange energy favors
parallel stripeslying exactly on top of each other. This con-
figuration is free of magnetic exchange frustration, each
bond can be fully saturated. However, this configuration is
disfavored by the Coulomb energy which would favor a con-
figuration where stripes areparallel but shiftedwith respect
to each other by half a stripe spacing.(In our simple model,
where holes are assumed to be site centered, this configura-
tion is only compatible with even stripe spacingsp.) The
gain in Coulomb energy must be paid by a loss of exchange
energy. For certain parameters, a third configuration may be
favorable, where the charge stripes of the two layers are
perpendicular.

For the latter analysis it is instructive to anticipate that for
these configurations the Hamiltonian has discrete symme-
tries. We focus on symmetries involving an exchange of lay-
ers. For parallel and shifted parallel stripes, this symmetry is
just the reflectionz→−z combined with a translation(coor-
dinates are chosen such that the planes are parallel to thexy
plane). For perpendicular stripes, one needs to add a rotation
around thez axis.

FIG. 1. Classical ground states for bilayer
systems with parallel(upper row), shifted parallel
(middle row), and perpendicular hole stripes
(lower row) for a stripe spacingp=4. The ex-
change couplings of the simple model are illus-
trated in the lower row: AF couplingsJ.0 for
nearest neighbors within the domains(bold
dashed), lJ between nearest neighbors across a
hole stripe(zig-zag) and couplingsmJ between
spins one above the other(dashed). Frustration of
exchange coupling may lead to a canting of spins
(calculated form=0.09 andl=0.07 in the middle
and bottom row, respectively). Possible magnetic
unit cells are outlined by gray lines, identical
gray levels of spins correspond to identical cant-
ing angles.
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A. Energetic estimates

To estimate the Coulomb energy for the three stripe con-
figurations, we assume a charge-density modulationrsr d
=r1sr ddszd+r2sr ddsz−dd with rasr d=ra

s0dcosskar d where the
planes separated byd are perpendicular to thez direction.
For simplicity, only the first harmonic of the charge modula-
tion is retained. Parallel stripes are described byk1=k2

=kex andr1
s0d=r2

s0d= r̄, shifted parallel stripes are realized for
k1=k2=kex and r1

s0d=−r2
s0d= r̄, and perpendicular stripes for

k1=kex, k2=key andr1
s0d=r2

s0d= r̄. For a stripe spacingpa the
charge-modulation wave vectors are given byk=2p / spad,
the amplitude byr̄=e/ s2pa2d. Calculating the Coulomb cou-
pling energy per square lattice site

EC =
1

4pe0

a2

A
E d3r E d3r8

r1sr dr2sr 8d
ur − r 8u

, s2d

whereA denotes the area of the planes, we find, in the limit
A→`, a vanishing Coulomb coupling for perpendicular
stripes, an energy cost

DEC =
e2

32pe0pa
expS− 2p

d

pa
D s3d

for parallel stripes, and an energy gain of the same size for
shifted parallel stripes. For YBCO witha<3.85 Å, d
<3.34 Å, J=125 meV,S= 1

2 and for a stripe spacingp=4
we obtainDEC<29 meV.

For antiferromagnetic YBCO the magnetic interlayer su-
perexchange is reported to bem<0.08.14 For parallel stripes,
spins are not frustrated and, in a classical picture, antiparallel
in different layers,S1sr d=−S2sr d. Thus, the exchange cou-
pling roughly leads to an energy gain of ordermJS2

<3 meV, whereas the energy gain will be smaller for the
other two configurations due to frustration.

Thus, within our rough estimate, the Coulomb energy ap-
pears to be up to one order of magnitude larger than the
exchange energy, such that one might expect the parallel
shifted configuration to be the only physical one. On the
other hand, the actual Coulomb energy may be significantly
smaller than the result of our estimate since we have com-
pletely neglected screening. For almost undoped YBCO a
relative large value ofe<15 for the static dielectric constant
at T=4 K is reported.15 Therefore the Coulomb energy might
be of the same order of magnitude as the magnetic exchange
energy. Because of the crudeness of our estimate no stripe
configuration can be strictly ruled out.

B. Classical ground states

Due to frustration effects, the ground-state structure is
nontrivial for shifted parallel and perpendicular stripes. We
now determine these ground states treating spins as classical.
These ground states will be a necessary prerequisite for the
subsequent spin-wave analysis. We continue to focus on the
representative casep=4.

Depending on the values of the couplingsl andm we find
two different types of ground states. For a nearest neighbor
exchange across a stripe in the range 0,l,lc (lc<0.59

for shifted parallel andlc<0.35 for perpendicular stripes)
the ground state has a canted planar topology up to a value
mcsld of the interlayer exchange(cf. Fig. 2). For m.mcsld
spins lock into a collinear texture.

To characterize these different phases, we start with the
planar one. As already indicated above, the frustration can
lead to a canting of spins. The origin of the canting is easily
understood. Form=0 the layers are decoupled and the sub-
lattice magnetization in both layers can have an arbitrary
relative orientation. For small interlayer couplingm the spins
start to cant starting from a configuration where spins lying
on top of each other are perpendicular. Only in this case the
interlayer couplings lead to an energy gain proportional to
small canting angles while the intralayer couplings lead to an
energy cost of second order in the canting angles. Such
canted planar ground states are illustrated in Fig. 1. In Fig. 3
the corresponding tilting angles are plotted forl=0.1 as a
function of m. The tilting angles increase monotonously in a
way that spins lying on top of each other become increas-
ingly antiparallel with increasingm.

In the other phase, form.mcsld, the interlayer coupling
m dominates the couplingl across the stripes and the topol-
ogy of the ground state changes into a collinear configuration
where the spins lying on top of each other are strictly anti-
parallel and nearest neighbor spins across a stripe are strictly
parallel although they are antiferromagnetically coupled.
This configuration is stable against a canting of the spins
because for smalll the energy gain forl bonds and the
energy costs form bonds as well as the couplings within the
domains would be quadratic in the tilting angles. Since this
ground state has lost the antiphase-boundary character of the
charge stripes it resembles a diluted antiferromagnet. This
would lead to a static magnetic response at the antiferromag-
netic wave vector in disagreement with experimental obser-
vations. Therefore, these collinear phases probably are
not relevant for the magnetic properties of the cuprate
compounds.

For small values ofl the phase boundary is approxi-
mately given bymcsld<2l for both stripe configurations

FIG. 2. Classical ground-state phase diagrams for shifted paral-
lel and perpendicular stripes. Form,mcsld the ground states show
a canted planar spin pattern illustrated in Fig. 1. Form.mcsld the
topology of the ground states changes into a collinear pattern where
spins lying on top of each other are strictly antiparallel and nearest
neighbors across a stripe are parallel. Forl→lc (lc<0.59 for
shifted parallel andlc<0.35 for perpendicular stripes) mc goes to
infinity. Above lc the ground states are always planar.
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(cf. Fig. 2). In the limit l→lc the critical valuemc goes to
infinity. Above lc the ground states remain canted planar for
all values of the interlayer couplingm.

Comparing the classical magnetic ground-state energies
for the two frustrated configurations, we find that—in con-
trast to the Coulomb energy — the exchange coupling favors
perpendicular stripes over shifted parallel stripes. For this
reason we retain perpendicular stripes in our consideration.

III. SPIN-WAVE THEORY

In this analytic part we derive general expressions for the
magnon band structure and the spectral weight at zero tem-
perature in a framework of linear spin-wave theory(for a
review in the context of cuprates, see e.g., Ref. 16). These
expressions are evaluated numerically later on in Sec. IV for
parallel, shifted parallel, and perpendicular stripes and fixed
stripe spacingp=4.

A. Holstein-Primakoff representation

The ground-state analysis of the preceding section has
made clear that spin waves now have to be introduced as
excitation of a noncollinear ground state. However, our nu-
merical calculations of the classical ground states have
shown planar spin textures(here, a collinear texture is con-
sidered as a special subcase of a planar texture).

In the following we consider a general planar ground
state which can be captured by a vector fieldSasr d
=hcosfasr d ,sin fasr d ,0j, where the tilting angles of the

spins obey the translational symmetryfasr d=fasr +Ad for
an arbitrary magnetic lattice vectorA =m1A

s1d+m2A
s2d. For

the spin textures displayed in Fig. 1, corresponding magnetic
unit cells are given byA s1d=s4,1d andA s2d=s0,2d for paral-
lel stripes and for shifted parallel stripes, and byA s1d

=s8,0d andA s2d=s0,8d for perpendicular stripes.
To study the quantum fluctuation around the classical

ground state we rotate all spins by their planar anglesfasr d
according to

Sa
xsr d = S̃a

xsr dcosfasr d − S̃a
ysr dsin fasr d, s4ad

Sa
ysr d = S̃a

xsr dsin fasr d + S̃a
ysr dcosfasr d, s4bd

Sa
zsr d = S̃a

zsr d, s4cd

such thatS̃sr d has a classical ferromagnetic ground state

S̃sr d=Sh1,0,0j. In the transformed spin basis we introduce
Holstein-Primakoff(HP) bosons in the standard way(using

S̃±=S̃y± iS̃z),

S̃a
+sr d = Î2S− n̂r ,abr ,a, s5ad

S̃a
−sr d = br ,a

† Î2S− n̂r ,a, s5bd

S̃a
xsr d = − n̂r ,a + S, s5cd

and obtain the spin-wave Hamiltonian

H =
S

2o
r ,r8

*

o
a,a8

hfa,a8sr ,r 8dfbra
† br8a8 + brabr8a8

† g

+ ga,a8sr ,r 8dfbrabr8a8 + bra
† br8a8

† gj, s6d

where the functionsf andg are defined by

fa,a8sr ,r 8d =
1

2
fJasr ,r 8dda,a8 + mJdr ,r8s1 − da,a8dg

3 fDa,a8sr ,r 8d + 1g

− dr ,r8da,a8o
r9

Jasr ,r 9dDa,asr ,r 9d

− mJdr ,r8da,a8o
a9

s1 − da,a9dDa,a9sr ,r d,

s7ad

ga,a8sr ,r 8d = 1
2fJasr ,r 8dda,a8 + mJdr ,r8s1 − da,a8dg

3 fDa,a8sr ,r 8d − 1g, s7bd

Da,a8sr ,r 8d = cosffasr d − fa8sr 8dg. s7cd

To diagonalize the Hamiltonian, we Fourier transform the
bosonic operators viabasr d=ek expsikr dbaskd, where ek
=s2pd−2ed2k and thek integrals run over the Brillouin zone
of the square lattice with an areas2p /ad2. Following our
calculations for the monolayer system13 we decompose a

FIG. 3. Upper row: Energy per lattice site in units ofJS2 as a
function ofm for l=0.1. For both stripe configurations the energies
of the canted planar and the collinear spin pattern are plotted. The
curves intersect atm=mc where the topology of the ground states
changes. Lower row: Relative values of the tilting angles of the
spins in the planar configuration as a function of the interlayer
couplingm for l=0.1.
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square lattice vectorr into a magnetic lattice vectorA and a
decoration vectora sr =A +ad. The number of vectorsa is
denoted byn (the area of the magnetic unit cell). In momen-
tum space, the reciprocal magnetic basisQsid, i =1,2, spans
the corresponding magnetic Brillouin zonesBZd. Wave vec-
tors k can be uniquely decomposed intok =Q+q with q
PBZ andQ=m1Q

s1d+m2Q
s2d. Within the Brillouin zone of

the square lattice there aren vectorsQ which we denote by
Qn. Using these decompositions we rewrite the spin-wave
Hamiltonian as

H =
1

2
E

q
o
n,n8

o
a,a8

Fna,n8a8sqdfba,q+Qn

† ba8,q+Qn8

+ ba,−q−Qn
ba8,−q−Qn8

† g +
1

2
E

q
o
n,n8

o
a,a8

Gna,n8a8sqd

3fba,q+Qn

† ba8,−q−Qn8

† + ba,−q−Qn
ba8,q+Qn8

g, s8d

where

Fna,n8a8sqd =
S

no
A

o
a,a8

fa,a8sa + A,a8d

3 cosfqA + qsa − a8d + Qna − Qn8a8g s9d

is essentially the Fourier transform off,

S

n
fa,a8sQn + q,Qn8 + q8d = dsq + q8dFna,n8a8sqd. s10d

Analogous expressions relateG to g. The Hamiltonian(8)
has exactly the same structure as in the monolayer case
[compare Eq.(8) in Ref. 13] and can be diagonalized by a
Bogoliubov transformation in an analogous way. The final
diagonal form is given by

H = o
g=1

2n E
q

vgsqdhbg
†sqdbgsqd + 1

2j , s11d

where the squared energiesvg
2 are eigenvalues of the Her-

mitian matrix M −1/2KM −1/2. Thereby M −1=F−G denotes
the inverse mass matrix andK =F+G the coupling matrix.

B. Structure factor

We now proceed to calculate the inelastic zero-
temperature structure factor for even and odd excitations

S±
insk,vd: = o

F
o

j=x,y,z
ukFuS1

j skd ± S2
j skdu0lu2dsv − vF d.

s12d

Here,u0l denotes the ground state(magnon vacuum) charac-
terized bybgsqdu0l=0 and we consider only single-magnon
final states uFl=bg

†sqdu0l with excitation energyvF: =EF

−E0. k =skx,kyd denotes the in-plane wave vector, odd exci-
tations correspond tokz

−=s2n+1dp /d [L−=s2n+1dc/ s2dd in
reciprocal lattice units], even ones tokz

+=2np /d sL+=nc/dd,
whered is the distance of the two layers within the ortho-
rhombic unit cell. For YBCO with d<3.34 Å and c

<11.7 Å the corresponding values for even and odd modes
areL−<1.75,5.25 andL+<0,3.5.

Expressing the spin operators by the final bosonic opera-
tors bgsqd it is straightforward to calculate the structure fac-
tor. Using a pseudo-Dirac notation and denoting the
2n-dimensional Cartesian basis byun ,all sn=1, . . . ,N,a
=1,2d and the orthonormal eigenbasis ofM −1/2KM −1/2 by
ugll, the structure factor can be rewritten in a compact form,

S±
insq + Qn,vd = So

g

Sg
±sq + Qndd„v − vgsqd…, s13ad

Sg
±sq + Qnd =

1

2 o
X=C,S,vg

−1K

kkn, ±uXM −1/2ugll

3
1

vg

kkguM −1/2X un, ±ll, s13bd

where we have definedun ,±ll=s1/Î2dfun ,1ll± un ,2llg and
introduced the matricesS andC according to

sna,n8a8 =
1

n
daa8o

a

*

sin fasadeisQn−Qn8da, s14ad

cna,n8a8 =
1

n
daa8o

a

*

cosfasadeisQn−Qn8da. s14bd

IV. RESULTS

We now evaluate the magnon dispersion and the inelastic
structure factor for even and odd excitations numerically.
From a comparison of our findings for the monolayer system
to neutron scattering data for the cuprate compounds we
found13 the couplinglJ across a stripe to be about one order
of magnitude smaller than the nearest neighbor couplingJ
within the domains. For the couplingmJ between the layers
a valuem<0.08 is reported14 for antiferromagnetic YBCO in
the absence of stripes. Therefore in the stripe system the
couplingsl andm can be assumed to be of the same order. In
the following we keep the value ofl fixed and discuss the
effects of increasingm starting from the case of decoupled
layers sm=0d where the band structure of the monolayer
system13 should be recovered. In this parameter regime the
classical ground states for shifted parallel and perpendicular
charge stripes show the canted planar texture and the an-
tiphase domain boundary character of the charge stripe is
weakened by the interlayer coupling but still pronounced.
Finally we shortly present the excitation spectra for shifted
parallel and perpendicular stripes for parameters belonging
to the collinear ground state regime.

In the case of decoupled layerssm=0d the results of the
monolayer system are trivially recovered. Since the two lay-
ers are uncorrelated, the structure factor does not depend on
the L component of the wave vector. For parallel stripes
(with or without a relative shift of the stripes) where the
charge modulation is unidirectional withQ1

ch=Q2
ch=s1/4,0d

we just obtain an additional twofold degeneracy of each of
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the three bands due to the equivalence of the two layers.
Therefore the degeneration of the bands is fourfold since in
the monolayer case each band is twofold degenerated due to
the equivalence of the two sublattices.13 The lowest, acous-
tical band has zeros at the magnetic superstructure vectors
which are located ats j /4 ,0d and s j /4+1/8,1/2d, j
=0, . . . ,3, within the Brillouin zone of the square lattice(we
choose 0øH ,K,1). The spectral weight is concentrated
near the lowest harmonic incommensurate wave vectorsQ
=s1/2±1/8,1/2d. With increasing energy the incommensu-
rability decreases and the branches of the acoustic magnon
band close at the antiferromagnetic wave vectors1/2,1/2d
and an energyvp which we associate with thep resonance.
Along the sH ,1 /2d direction the acoustic band is gapped to
the overlying optical magnon band(see upper left panels in
Figs. 4 and 5). Along the orthogonal directions1/2,Kd, one
optical band has vanishing spectral weight and only two
bands are visible(see middle-left panels in Figs. 4 and 5).

In twinned samples with stripe domains oriented orthogo-
nal to each other, a scan along thesH ,1 /2d direction results
in the superposition of the signals obtained from scans in
directionssH ,1 /2d and s1/2,Hd of a single-domain sample.
For domains of equal size, one thus obtains an apparent
symmetry sH ,Kd↔ sK ,Hd and a fourfold pattern of the
static incommensurate wave vectors located atQ
=s1/2±1/8,1/2d and Q=s1/2,1/2±1/8d also for (shifted)
parallel stripes. In Figs. 4 and 5, the panels in the third row
are just obtained by superimposing the panels of the first and
second row. Since the acoustic band of the monolayer system
has a saddle point at the antiferromagnetic wave vector, the
resulting band structure is x-shaped in the vicinity of the
p-resonance energy.

The configuration of hole stripes lying perpendicular to
each other corresponds to charge modulation wave vectors
Q1

ch=s1/4,0d and Q2
ch=s0,1/4d. For decoupled layers, the

resulting band structure contains the bands of the monolayer
system and the same bands rotated by 90 degrees leading to
the symmetryvsH ,Kd=vsK ,Hd and therefore to a fourfold
pattern of the static incommensurate wave vectors located at
Q=s1/2±1/8,1/2d and Q=s1/2,1/2±1/8d. Thus, for m
=0, the structure factor is identical for perpendicular stripes
and twinned parallel stripes(left lower panel in Figs. 4 and
5).

With increasing interlayer couplingm the bands start to
split with different distributions of the spectral weights in the
odd and even channel(cf. Figs. 4–6). For parallel and shifted
parallel stripes the Hamiltonian is invariant under the reflec-
tion z→−z combined with a translation. This implies that the
magnon states—modulo a phase factor which does not enter
the structure factor — have a well-defined parity with respect
to an exchange of both layers. As a consequence, nondegen-
erate bands are visible only either in the even or the odd
channel.

Nevertheless the excitation spectra of the two parallel
stripe configurations deviate significantly, e.g., the even ex-
citations are gapped for parallel stripes whereas for shifted
parallel stripes the intensity of even excitations is only re-
duced at low energies(cf. middle columns of Figs. 4 and 5).
For stripes on top of each other, each band — which is four-
fold degenerate atm=0 — splits up into twofold degenerate
bands which have identical parity. For shifted stripes each
band splits up into three bands. One of them is twofold de-
generate and both subbands are of opposite parity. Therefore
this degenerated band is visible in both channels(cf. Fig. 5).

FIG. 4. Band structure and spectral weight
along thesH ,0.5,L±d and s0.5,H ,L±d directions
for parallel stripes lying on top of each other and
couplings l=0.15 andm=0,0.08. The last row
shows the band structure of a twinned sample
(see text). L+ corresponds to even,L− to odd ex-
citations. Darker and larger points correspond to
a larger weight of the inelastic structure factor.
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For perpendicular stripes the symmetry is more com-
plicated. The Hamiltonian is invariant under a reflection
z→−z in combination with a 90° rotation along thez axis.
Since this rotation mixes different wave vectors, almost all
eigenstates do not have a well-defined parity and will be
partially visible in the odd and even channel. The exception
are modes at particular wave vectors such as the antiferro-
magnetic wave vector which are mapped onto themselves
(modulo a reciprocal lattice vector). Only there the excita-
tions can be classified due to their symmetry. Like for the
shifted parallel stripes the excitations are not gapped in the
even channel(cf. Fig. 6).

We now focus on the band splitting and the distribution of
the spectral weights of even and odd excitations at the anti-
ferromagnetic wave vectors1/2,1/2d. With increasing inter-
layer couplingm, the resonance energyvp splits up into two
different energiesvp

− andvp
+ for centered-parallel stripes and

into three energiesvp
−, vp

0, andvp
+ for the other stripe con-

figurations as schematically illustrated in Fig. 7. It is com-
mon to all stripe configurations thatvp

− has a finite spectral
weight only in the odd channel, whereasvp

+ has a finite
weight only in the even channel. For shifted parallel and
perpendicular stripes, in both channels a finite intensity is
found at the intermediate energyvp

0. This intensity is how-
ever smaller than atvp

±.
The splitting of the resonance energy for shifted parallel

and perpendicular stripes looks quite similar.vp
− andvp

+ are
almost equidistant to the intermediate energyvp

0 which in-
creases only slightly withm (cf. Fig. 8). For small couplings
the splitting is quadratic inm. For centered-parallel stripes
the splitting looks different,vp

+ increases almost linearly

with m whereasvp
− is almost independent of the interlayer

coupling.
Finally, we calculate the band structures for shifted paral-

lel and perpendicular stripes for couplingsl,lc and
m.mcsld where the ground states are collinear and the

FIG. 5. Band structure and spectral weight
along thesH ,0.5,L±d and s0.5,H ,L±d directions
for shifted parallel stripes and couplingsl=0.15
andm=0,0.08. The last row shows the resulting
band structure of a twinned sample.

FIG. 6. Band structure and spectral weight for even(left panel)
and odd(right panel) excitations alongsH ,0.5,L±d direction for
perpendicular stripes with couplingsl=0.15 across the stripes and
interlayer couplingsm=0.04(upper row) andm=0.08(lower row).
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charge stripes lose their antiphase domain boundary charac-
ter. We implicitly assume thatm is not too large, otherwise
spins on top of each other dimerize and lose their magneti-
zation. In this regime the magnetic fluctuations are drasti-
cally changed. For both stripe orientations, the odd channel
now has a static signal at the antiferromagnetic wave vector,
whereas in the even channel the spectral weight is concen-
trated at incommensurate positions1/2±1/4,1/2d (cf. Fig.
9). For perpendicular stripes we also find small intensity at
this position in the odd channel. The incommensurability is
doubled compared to the regime of canted planar ground
states reflecting that the charge stripes do not act like an-
tiphase domain boundaries in the regime of strongly coupled
layers. In the even channel the intensity at the antiferromag-
netic wave vector is peaked at an energyvp which increases
with the interlayer couplingm and is approximately the same
for both stripe configurations.

V. DISCUSSION

In this section we compare our results to neutron scatter-
ing data for the bilayer high-Tc compound YBa2Cu3O6+x. We
wish to stress that—because of the simplifications assumed
in our model—it is not our goal to obtain a quantitative
agreement. Rather we wish to draw a qualitative comparison
in order to fortify the hypothesis that the stripe picture is a
suitable approach to describe spin fluctuations. Furthermore,
we hope that a comparison of future experimental data with
our calculations will help to identify the realized stripe
configuration.

Since a spin gap with an energyvgap—e.g., due to
Cooper-pair formation — is not incorporated in our model,
the results apply only to energies abovevgap where the mag-
non dispersion is not masked by the superconducting con-
densate. In particular in the underdoped regime wherevgap

decreases with the doping level, the calculated spectral fea-
tures become visible over an increasing energy range. Our
calculations are restricted to zero temperature. Therefore, a
comparison can also be made only to experiments performed
at temperatures well below the superconducting transition
temperature.

Experiments17–19 in (partially) detwinned YBCO provide
evidence for unidirectional order, i.e., that a fourfold pattern
of incommensurate peaks near the antiferromagnetic wave
vector kAF=s1/2,1/2d results only from the twinning. The
stripes seem to be parallel and oriented along the direction of
the oxygen chains in the adjacent planes. This immediately
speaks against the scenario of perpendicular stripes for which
detwinning would not affect the fourfold symmetry.

FIG. 7. Schematic illustration of the band
splitting in the vicinity of the antiferromagnetic
wave vectors1/2,1/2d along thesH ,1 /2d direc-
tion. In the cases of parallel stripes the band
structures for twinned samples are shown. Even
and odd bands are gathered together.

FIG. 8. Splitting of the resonance energy as a function of the
interlayer couplingm for l=0.15. In the odd channelsL=L−d the
spectral weight is concentrated atvp

− and no intensity is found at
vp

+, in the even channelsL=L+d no excitations atvp
− are observable

and the spectral weight is concentrated atvp
+. For shifted and per-

pendicular stripes in both channels a small intensity is found at the
intermediate energyvp

0.

FIG. 9. Band structure in the collinear regimem.mcsld along
the direction sH ,1 /2 ,L±d for shifted parallel and perpendicular
stripes withl=0.07 andm=0.50.
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We briefly recall some neutron scattering measurements
on YBa2Cu3O6+x which provide insight into the incommen-
surability and thep resonance over a wide doping and tem-
perature range. It was controversial for quite some time
whether both phenomena would exist aboveTc until in un-
derdoped materials the incommensurability was found also
aboveTc.

20 Likewise, the appearance of the magnetic reso-
nance was found aboveTc, occurring together with the
pseudogap at a temperatureT* .Tc determined from trans-
port and nuclear resonance.21 Although thep resonance per-
sists as a well-defined feature also in the normal state above
Tc, its intensity can be reduced significantly atTc.

19 For near
optimally doped compounds, the resonance is not detectable
in the normal phase22 sinceT* almost coincides withTc. Dai
et al.23 concluded that the resonance exists aboveTc for x
ø0.8 and that incommensurate spin fluctuations appear in
the normal state forxø0.6. Arai et al.24 also observed in-
commensurate fluctuations in the normal state for a sample
with an oxygen concentration ofx=0.7. Thus, superconduc-
tivity is not a prerequisite for incommensurability andp
resonance in bilayer compounds as well as in monolayer
compounds.

For underdoped YBCO with various oxygen concentra-
tions, the experimentally observed spin dynamics data(see
Table I) look qualitatively very similar. There is a systematic
increase of the incommensurability and of thep-resonance
frequency with doping, which is consistent with our model.
We have shown this recently for a monolayer model.13 The
bilayer stripe model shares this feature and therefore we fo-
cus in this paper exclusively on specific bilayer features.

Experimentally, constant energy scans slightly above the
gap in the odd channel alongsH ,1 /2 ,L−d show a broad in-
tensity peak atkAF, before incommensurate scattering sets in
and the data can be compared to our model. The intensity
shows magnetic peaks at a distancedksvd away fromkAF.
The incommensurabilityd is determined by extrapolating
dksvd to v=0 and it is connected to the stripe spacingp
throughd=1/s2pd. The incommensurate peaks are best de-
fined if the stripe spacing is nearly a multiple of the lattice
spacing(integer p) since the stripes are stabilized by the
lattice.7

The three stripe configurations examined for our model
are not equivalent in their low-energy behavior. For(un-
shifted) parallel stripes(see Fig. 4), an incommensurability

is visible at low energies only in the odd channel since the
even channel has a relatively large gap not related to super-
conductivity. In contrast, for shifted parallel and perpen
dicular stripes the even channel shows incommensurate re-
sponse down to the superconducting gap. Experimental
evidence21,25,26 for a large gap in the even channel(well
above the resonance energy in odd channel) therefore favors
the configuration with unshifted parallel stripes.

With increasing energy, the separationdksvd of the in-
commensurate peaks decreases and the branches close atkAF

at certain energiesvp. Depending on the stripe configuration,
there are two or three such energies, compare Fig. 7. Accord-
ing to our model, an energy scan of the odd channel atkAF

would show a first resonance at the intersection with the
lowest magnon band atvp

− which we identify with the reso-
nance frequency.8,27 For shifted parallel and perpendicular
stripes, a second line atvp

0 contributes to the odd channel. It
has significantly less weight and is separated from the first
one by only a small energy splitting(of the order of a few
meV) which would be hard to be resolved experimentally.

In a similar way, the even channel has a resonance at an
energyvp

+ .vp
−, and for shifted parallel and perpendicular

stripes also a weaker resonance at an intermediate frequency
vp

0 (cf. Fig. 7). Experimentally,19,27,28 a strong oscillatory
dependence of the scattering intensity onL shows that the
resonance frequencies in the odd and even channel are well
separated. Energy scans at the antiferromagnetic wave vector
show peaks atvp

− in the odd channel andvp
+ in the even

channel, no peak at the intermediate energyvp
0 which should

be visible in both channels is resolved.25 This again favors
unshifted parallel stripes, which(in contrast to shifted paral-
lel and perpendicular stripes) have no shared resonance fre-
quencyvp

0. Although we restricted our comparison to experi-
ments on underdoped samples, overdoped compounds also
show two distinct resonance modes of opposite symmetry,29

which could be identified withvp
− andvp

+.
From a comparison of the band splittingDvp=vp

+ −vp
− to

experimental values(cf. Table I) we can estimate the strength
of the interlayer couplingm. For l=0.15 we find m
<0.02–0.06 almost independent of the stripe configuration.
This value is reasonable since the effective couplingm in the
stripe system should be slightly reduced compared to the
undoped case where a value ofm<0.08 is reported.14

Above vp the response is found to become incommensu-
rate again with increasing separationdksvd. The momentum
width is larger and the intensity is weaker than belowvp.
Overall, the dispersion is “x-shaped.” As pointed out in Sec.
IV such a shape appears basically for every nonunidirec-
tional stripe configuration, for parallel stripes in twinned
crystals as well as in perpendicular stripes. The x-shape has
been observed explicitly in Refs. 7 and 24–26. It would be
interesting to verify in detwinned samples that the relative
intensities of the upper and lower branches of the x-shape are
related to the population ratio of the twin domains.

In conclusion, we have calculated the bilayer effects in
the magnetic excitation spectrum in striped states. As a
generic feature of the stripe model we find an x-shaped
dispersion in the vicinity of thep resonance, which is

TABLE I. Spin dynamics data for YBa2Cu3O6+x for various
oxygen concentrationsx characterized by the critical temperatures
Tc, incommensurabilityd, corresponding stripe periodp, the reso-
nance energyvp

− observed in the odd channel, andvp
+.

x 0.35 0.45 0.5 0.5 0.6 0.7 0.7 0.7

Tc sKd 39 48 52 59 63 67 67 74

d sr.l.u.d 1/16 0.08 0.10 1/8 0.1

p 8 6.25 5 4 5

vp
− smeVd 23 30.5 31.5 33 34 36 33 37

vp
+ smeVd 41 50

Ref. 7 23 23 19 23 24 25 23
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consistent with experimental data. We have obtained a bi-
layer splitting of single-layer bands into two or three bilayer
bands. From the three stripe configurations studied, the un-
shifted parallel case overall is most consistent with neutron
scattering data, although it seems to be energetically unfa-
vorable at first sight.
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