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Entropic forces in classical many-body systems, e.g. colloidal suspensions, can lead to the for-
mation of new phases. Quantum fluctuations can have similar effects: spin fluctuations drive the
superfluidity of Helium-3 and a similar mechanism operating in metals can give rise to supercon-
ductivity. It is conventional to discuss the latter in terms of the forces induced by the quantum
fluctuations. However, focusing directly upon the free energy provides a useful alternative per-
spective in the classical case and can also be applied to study quantum fluctuations. Villain first
developed this approach for insulating magnets and coined the term order-by-disorder to describe
the observed effect. We discuss the application of this idea to metallic systems, recent progress made
in doing so, and the broader prospects for the future.
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I. INTRODUCTION

The entropic generation of forces is familiar in classical
systems. Examples include the elastic forces in stretched

rubber and the apocryphal attraction between ships in a
swell. Such forces arise due a state-dependent restriction
of the spectrum of fluctuations and thus their entropic
contribution to the free energy. In many body systems,
such forces can lead to phases that are favoured for en-
tirely entropic reasons. In colloids, they are responsible
for a variety of different phases with characteristic de-
pendence upon the shape of the colloidal particles[1, 2].
Similar effects are responsible for the folding of DNA due
to the conformational entropy of the surrounding wa-
ter, and the celebrated Berezinskii-Kosterlitz-Thouless
transition[3–5] is driven entirely by the entropy of un-
bound vortices.

Often, it is revealing to discuss these transitions di-
rectly at the level of the free energy rather than through
the resulting forces. Viewed in this way, the idea of en-
tropically driven order is a powerful unifying concept.
In engineering it comes under the banner of the term
state-dependent noise as exemplified by the noisy in-
verted pendulum[6]. Further afield, in business or evo-
lution, fluctuations may make adaptability a favourable
strategy. Essentially, fluctuations can stabilise financial
or ecological niches that would not be stable in their ab-
sence. Entropic priors in Bayesian inference bias data
analyses in the same way[7].
Quantum fluctuations can generate forces in a very

similar manner to classical entropic effects, the Van der
Waals force being the most famous example[8, 9]. Forces
generated by the fluctuations of quantum spins are re-
sponsible for the superfluidity of Helium-3[10, 11] and a
similar mechanism operating in metals can give rise to
spin-fluctuation induced superconductivity[12]. In all of
these cases, it is conventional to discuss the effect of quan-
tum fluctuations in terms of the forces that they induce.
However, focussing directly upon the free energy provides
a useful alternative perspective. In the quantum case, it
is the zero-point energy of fluctuations rather than an
entropic contribution to the free energy that is at play,
however, the effects are very similar. Indeed, the terms
Casimir force and Van der Waals force are sometimes



2

generalised beyond their original context of forces due to
zero-point fluctuations of the electromagnetic vacuum, to
refer to entropic forces in colloids.

Villain provided a concrete example of the utility of fo-
cussing directly upon the free-energy[13] and coined the
term order-by-disorder to describe the observed effect.
He considered a magnetic model whose classical ground-
states form a degenerate manifold. Allowing for fluctu-
ations (either quantum zero-point or thermal[14]) about
these classical configurations breaks the degeneracy and
picks out a particular ordered state — hence the term
order-by-disorder. These ideas have been applied in a
number of insulating magnets, especially in cases where
frustration leads to a degenerate manifold of classical
groundstate configurations that is broken by fluctuations,
though this degeneracy is not necessary for the fluctua-
tion contribution to the free energy to be appreciable.
Examples include spin ice pyrochlores[15, 16] and frus-
trated antiferromagnets on the honeycomb lattice[17].

The main focus in this perspective is the application of
order-by-disorder to metallic systems. The central phi-
losophy is simple to state: modifications of the Fermi
surface, for example by the introduction of some order
parameter, modify the electron dispersion and as a result
reconfigure the spectrum of low-lying excitations. This
in turn shifts the zero-point energy (and entropy at fi-
nite temperature) of fluctuations. When fluctuations are
large, this may self-consistently determine the Fermi sur-
face. The similarity of this to the Casmir effect is clear,
as is the importance of fermionic statistics. The Fermi
surface self-consistently provides boundary conditions for
the electrons via Pauli exclusion. One could say that
particle-hole excitations induce generalised Casimir or
Van der Waals forces between electrons. We first present
these ideas in the context of the critical itinerant ferro-
magnets, where it was initially developed. We give both

a heuristic presentation and an overview of a more formal
field theoretical derivation, emphasising the close parallel
with Villain’s order-by-disorder.

As in the classical case, the order-by-disorder approach
reveals commonalities between effects that are difficult to
appreciate from other perspectives. This can be partic-
ularly advantageous when trying to understand experi-
ments. Measurement of the fluctuation spectra and ap-
preciation of how it is altered by different types of order
can lead directly to predictions of what types of instabil-
ity a system is prone to, even in the absence of a detailed
microscopic model. We discuss several developments of
fermionic quantum order-by-disorder that were directly
influenced by experiment.

The difference between spin-fluctuation theory fo-
cussing on forces, and fermionic quantum order-by-
disorder focussing upon the free energy is one of perspec-
tive. Both encompass the same physics and, in circum-
stances where direct comparisons can be made, lead ulti-
mately to the same equations. However, there are other
methods — especially numerical — that can be used to
analyse strongly correlated quantum systems. We illus-
trate the relationship that fermionic quantum order-by-
disorder bears to them; its comparison to various ab initio
techniques, the potential for future inclusion in density
functional code, and agreement with Monte Carlo calcu-
lations for the itinerant ferromganet. Finally, we discuss
the prospects for near- and long-term development of the
technique and how the broader application of the idea has
resonance with ideas of fluctuation-induced geometry of
entanglement structure and entropic gravity.

II. THE FERROMAGNETIC METAL

A. Simple Model and Historical Development

The simplest non-trivial fermionic model to which one
can apply quantum order-by-disorder is that of electrons
with a quadratic dispersion, εk = k2, and contact inter-
action, g;

H =
∑

k,σ

εkĉ
†
k,σ ĉk,σ + g

∫
d3x ĉ†x,↑ĉ

†
x,↓ĉx,↓ĉx,↑, (1)

with ĉ†x(k),σ a fermionic creation operator in position
(momentum) space. Below, we take the spin label σ = ±
corresponding to up- and down-spin relative to the lo-
cal magnetisation. Despite its apparent simplicity, this
model displays a remarkable range of different phenom-
ena. Moreover, it finds direct realisation in cold atomic
gases where atomic interactions are local. It is a good
approximation to electrons in solids with a chemical po-
tential near the bottom of a band so that the dispersion

is approximately quadratic and where screening renders
the effective Coulomb interaction between electrons short
ranged — we shall discuss the effects of longer range in-
teractions later.

A mean-field analysis allowing for the possibility of a
finite magnetization, M =

∑
σ=± σ〈n̂x,σ〉, gives rise to

the free energy

FMF = − 1

β

∑

k,σ

ln
(

1 + e−β(εk−σgM−µ)
)

+g

∫
d3xM2(x).

(2)
This is simply the Stoner model of ferromagnetism. It
shows a second order transition between paramagnetic
and ferromagnetic phases, the temperature of which
varies with the interaction strength g and which occurs
at ρFg = 1 at zero temperature (ρF being the density of
states at the Fermi level).
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FIG. 1. Phase Diagram of the Critical Ferromagnet: Quantum fluctuations in the vicinity of the putative quantum critical
point drive a reconstruction of the phase diagram. In the vicinity of the tricritical point, where the transition becomes first
order, an expansion of the Ginzburg-Landau function to quartic order is sufficient. Approaching zero temperature, the phase
boundary is determined by singularities in the higher order terms of the expansion. Fluctuations drive a superconducting
pairing in the p-wave channel by the same mechanism as the pairing in 3He. A novel pair density wave order is found in the
region of the phase diagram where superconductivity and helimagnetic order overlap.

In his seminal paper on this model, Hertz[18] realised
that fluctuations in certain regions of the phase diagram
are profoundly affected by quantum mechanics. This
leads to behaviour in a different universality class to
that of classical phase transitions; a class that Hertz
termed quantum critical. Hertz extended the free en-
ergy given in Eq.(2) to an action for the dynamical mag-
netization field, the dynamics of which is given by the
decay of magnons into particle-hole pairs, i.e. Landau
damping[19]. This modification — and the assump-
tion that the non-analyticity of the Landau damping
does not extend to other terms under renormalization
— yields power-law dependence of physical quantities
on temperature that are characteristic of the quantum
critical point[18, 20, 21]. The presence of strong ferro-
magnetic fluctuations near to the zero-temperature limit
of the phase transition can also lead to superconducting
pairing in the p-wave channel, via a mechanism trans-
lated from superfluid[10, 11] 3He to metallic systems by
Fay and Appel[12].

However, this story is not complete. It was first
realised by Belitz, Kirkpatrick and Voijta[22] that
the Moriya-Hertz-Millis theory suffers from an internal
inconsistency[23] — the non-analyticity present in Lan-
dau damping propagates under renormalization to all
terms in an expansion of the action[22, 24–27]. This
presages the fact that fluctuations in the vicinity of the
quantum critical point are in fact so strong that they
favour a reconstruction of the phase diagram in the vicin-
ity of the quantum critical point. The Ginzburg-Landau
function for the magnetization incurs non-analyticities in
both the magnetization (of the form M4 logM in three

(a) (b)

(a) (b)

FIG. 2. Diagrams contributing to non-analytic extensions
to Moriya-Hertz-Millis theory: Re-summation of diagrams of
these types propagate non-analyticity from Landau damping
to all diagrams in the expansion. These ultimately lead to
reconstruction of the phase diagram in the vicinity of the
quantum critical point. (a) Contributions to non-analyticity
in the order parameter. (b) Contributions to non-analyticity
in gradients of the order parameter.

dimensions and M3 logM in two dimensions) and its
gradients (of the form −|q|M2 in three dimensions and
−|q|3/2M2 in two dimensions). These drive the tran-
sition into the ferromagnet first order and favour heli-
magnetic order at low temperatures in the vicinity of the
quantum critical point.

It is natural to ask whether the first order ferromag-
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FIG. 3. Illustration of Helimagnetic Order: In the vicinity of the itinerant ferromagnetic quantum critical point, fluctuations
drive the formation of helimagnetic order in which — as illustrated in (a) — the magnetic quantization axis rotates when
moving along the direction of the pitch vector q. A realisation of this in the square lattice is shown in (b).

net, helimagnet, and superconducting instabilities have a
common cause. It is not at all obvious from the diagram-
matics that they do [See Fig.2]. Moreover, it would be
desirable to have a simple heuristic picture that allows
one to anticipate the helimagnetic instability in advance
of detailed calculation. As we shall see next, fermionic
quantum order-by-disorder provides this unified descrip-
tion and has a simple heuristic interpretation.

B. Fermionic Quantum Order by Disorder

1. Heuristic Description

The essence of fermionic quantum order-by-disorder is
to combine mean-field and fluctuation (zero-point or en-
tropic/thermal) contributions to the free energy whilst
self-consistently allowing for the possibility of additional
order, such as helimagnetic or superconducting order.
When the fluctuation contributions are large, they may
provide the dominant contribution to the free energy and
determine the state adopted by the system. In the case of
the simple model given in Eq.(1), the leading fluctuation

correction to the free energy is given by

Ffl = −2g2
eff

′∑

k1...k4

f+
k1
f−k2

(f+
k3

+ f−k4
)

ε+k1
+ ε−k2

− ε+k3
− ε−k4

, (3)

where the summation is taken over momenta such that
k1 + k2 = k3 + k4. The electron dispersion for spin
σ is given, for example in the presence of helimag-
netic order [See Fig.3] with pitch vector q, by εσk =

εk − σ
√

(q · k)2 + g2
effM

2, corresponding to the disper-
sion of an electron with wave-vector k with spin up or
down (σ = + or −) relative to the helimagnetic back-
ground. A similar replacement is made in the mean
field contribution, Eq.(2) and fσk is the Fermi distri-
bution function for occupation of this mode. We have
also made a one-loop renormalization of the interaction
geff = g − 2g2

∑′
k3,k4

1
ε+k1

+ε−k2
−ε+k3

−ε−k4

allowing for the

leading order correction to the electron pair wavefunc-
tion.

The presence of the background helimagnetic order,
Mq, modifies the mean-field dispersion of the electrons
and hence the fluctuation corrections. These fluctuations
turn the ferromagnetic transition first order[28] and ul-
timately drive helimagnetic order[29] at sufficiently low
temperatures. This can be understood as follows: the
second order correction to the energy involves the virtual
excitation of pairs of particle-hole pairs — one spin-up
particle-hole pair and one spin-down particle-hole pair —

with total momentum zero. It turns out that the inte-
gral in Eq.(3) is dominated by particle-hole pairs with
momentum near 2kF . The density of such excitations
at low energy is enhanced by the presence of ferromag-
netic or helimagnetic order (see Fig. 4). Since the sec-
ond order perturbative correction is negative, this lowers
the free energy and drives ferromagnetic or helimagnetic
order in the region of the phase diagram where fluctua-
tions contributions to the free energy dominate. Indeed,
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FIG. 4. Enhanced low-energy phase space of particle-hole ex-
citations: (a) Ferromagnetic or (b) helimagnetic distortions
of the Fermi surface enhance the low-energy phase space of
particle-hole excitations lowering the zero-point energy and
driving the transition to ferromagnetic order first order or
driving helimagnetic order in the vicinity of the quantum crit-
ical point.

if Eq.(3) is expanded in powers of M and q one finds[30]
that the leading singular termsM4 and |q|2M2 both have
coefficients proportional to log T [29]. This reflects the
singularities found in diagrammatic analyses[22, 24–27].
At sufficiently low temperatures near the critical point,
these effects win out and drive first order transitions and
helimagnetic order. As temperature is lowered below this
point, singularities at higher and higher order in M and
|q| dominate[31]. At first glance, Eq.(3) appears to be
a term in an expansion in the interaction strength. Ob-
viously this is not the case as the free energy is a func-
tional of the mean-field electron dispersion, which con-
tains the interaction through its dependence upon M .
In fact, the expansion is in e−kF ξ where ξ is a typical
lengthscale of the interaction potential. As shown by
Conduit and Keyserlink in Ref.[32], the fluctuation cor-
rection Eq.(3) contains a factor in its integrand given by
the square of the Fourier transform of the interaction po-
tential, |V (k1 − k3)|2. Since the integrals in Eq.(3) are
dominated by |k1 − k3| ≈ 2kF , these factors are propor-
tional to e−kF ξ where ξ is a typical lengthscale of the
potential. The mean field dispersion does not contain
this exponential suppression of the interaction since the
potential enters there with near zero momentum.

2. Path Integral Formulation

A formal derivation of Eqs.(2,3) from a path integral
was presented in Ref.[33]. Whilst the full details are not
important here, aspects are of note because of the con-
nection that they reveal to the Moriya-Hertz-Millis the-
ory, the approximations used and their limitations. The
derivation of proceeds via the following steps: First, a
fermionic path integral is constructed for the partition
function, and the contact interaction decoupled in both

spin and charge channels using a Hubbard-Stratonovich
transformation. At this stage, the Moriya-Hertz-Millis
approach (which decouples just the spin part of this inter-
action) would be to integrate out the electrons in favour
of an effective theory for the Hubbard-Stratonovich spin
field. Quantum order-by-disorder, makes a simple, but
important modification to this. Anticipating the possibil-
ity of static magnetic or charge order, the zero- and finite-
frequency parts of the Hubbard-Stratonovich fields are
separated. The electrons (whose action is now quadratic)
are then integrated out and the resulting effective action
for the finite-frequency spin and charge fluctuations in
the static background is truncated to quadratic order.
Finally, the finite-frequency charge and spin fluctuations
are integrated out to obtain a Ginsburg-Landau function
for the spin field[34].

By organising the calculation in this way, the com-
parison with Villain’s order-by-disorder[13] is transpar-
ent. Villain considered magnetic fluctuations about
some mean-field classical background in an approxima-
tion that treated them as non-interacting. The resulting
bosonic Hamiltonian could be diagonalised by a Bogoli-
ubov transformation from which the zero-point energy
(and entropic contribution to the free energy) was de-
duced. Here, by separating zero- and finite-frequency
parts of the Hubbard-Stratonovich fields, the propaga-
tion of electrons is explicitly calculated in the presence
of some static, background order, thus accounting (af-
ter integrating out the electrons) for the modification of
spin and charge fluctuations that results. Expansion of
the effective action of the finite-frequency fluctuations
to quadratic order, similarly mirrors the non-interacting
approximation.

Moreover, the following argument demonstrates that
there are appreciable zero-point fluctuations: Within the
non-interacting approximation, the operator b̂†q,(σ,p) =

ĉ†p+qσ ĉpσ with |p + q| > kF and |p| < kF can
be considered a bosonic creation operator for spin-
σ particle-hole excitations at momentum q and addi-
tional internal index p. The mean-field Fermi sur-
face provides a vacuum for these excitations. The
propagation of these composite bosonic particles is not
trivial — it is accounted for by precisely the elec-
tronic polarization loops that generate Landau damp-
ing. However, the interaction part of the Hamiltonian
can be expressed simply and contains anomalous terms of
the form g

∑
q

∑′
p,k

[
b†−q,(↑,p)b

†
q,(↓,k) + bq,(↑,p)b−q,(↓,k)

]
,

where the prime indicates the appropriately restricted
summations over the momenta p and k. It is evident
that a Bogoliubov transformation is required to diag-
onalize the bosonic Hamiltonian, suggesting significant
zero-point fluctuations and a groundstate of the form[35]

|ψ〉 = exp


∑

q

′∑

p,k

Uq,k,pb
†
−q,(↑,p)b

†
q,(↓,k)


 |MF 〉

i.e. dressing the Fermi surface with pairs of spin-up and
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spin-down particle-hole pairs.

C. Phase Reconstruction

The singular contribution of zero-point fluctuations to
the free energy of the ferromagnet drives a rich variety
of phases, even in the simple model of Eq.(1). As in-
dicated in Fig. 1, these include a first order transition
out of the paramagnetic phase at low temperatures, he-
limagnetic order, the coexistence with p-wave supercon-
ductivity, and also the possibility of spin-antisymmetric
nematic order. Next, we will discuss how all of these can
be accommodated within a fermionic order-by-disorder
treatment. Including additional, experimentally relevant
terms in the Hamiltonian can drive further effects, which
we will turn to later.

1. 1st Order transition and Helimagnetism

1st Order Transition: Fluctuations generate a diverg-
ing negative contribution to the M4-coefficient, which
overcomes the positive mean-field contribution and drives
the transition first order at a finite-temperature tri-
critical point (See Fig.1), as found diagrammatically[22].
As the phase boundary is followed to lower and lower
temperatures, its position is determined by singularities
at higher and higher powers of M . In order to track
the transition faithfully down to zero-temperature, these
increasingly singular contributions must be re-summed
as in Ref.[31]. Note that the form M4 logM at zero-
temperature is non-analytical in M which invalidates a
conventional Ginzburg-Landau expansion. It does not
however invalidate the self-consistent calculation of fluc-
tuations at finite magnetisation employed in fermionic
quantum order-by-disorder.
Helimagnetism: The fluctuation contribution to the

free energy Eq.(3) also contains the seeds of helimag-
netic order. Heuristically, the ferromagnetic distortion
increases the low-energy phase space for pairs of particle-
hole excitations with momentum near 2kF and opposite
spin. In fact, any spin anti-symmetric distortion will also
enhance this low-energy phase space and be favoured by
the resulting lowering of zero-point energy (see Fig.4).

These arguments can be made quantitative by noting
that the free energy is a functional of the mean-field
electron dispersion, F ≡ F [εk]. Aside from a classical
contribution

∫
d3xM2, the dependence upon the order

parameter comes entirely from this dependence. The
mean-field electron dispersion in the presence of a heli-
magnetic order Mq = M(cosq · x, sinq · x, 0) is given
— for a quadratic bare dispersion of electrons — by
εσk,Mq

= εk − σ
√

(k · q)2 +M2, describing the propaga-
tion of electrons with momentum k and spin parallel or
antiparallel (σ = + or −) to the background helimag-
netic order. When the dispersion can be linearised at

the Fermi surface, the pitch of the helimagnetism q en-
ters as a directionally dependent magnetization on the
Fermi surface. This implies that coefficients of M2α are
proportional to those of |q|2βM2(α−β). When the coeffi-
cient of M4 becomes negative at the tricritical point, the
coefficient of |q|2M2 also becomes negative indicating a
minimum of the free energy at finite wave-vector and the
formation of magnetisation at that wave-vector.

2. Superconductivity and Nematic Order

The analysis of how fluctuations drive the ferromag-
netic transition first order was helped by the fact that
the interaction had finite weight in the ferromagnetic
channel. Instabilities such as superconductivity or spin
anti-symmetric Pomaranchuk/nematic order do not have
finite weight in the bare contact interaction considered in
Eq.(1). It is well-understood diagrammatically how in-
teractions may be generated in these channels[10]. An
appealing picture of how spin fluctuations might drive
p-wave superconductivity in a metallic ferromagnet was
given in Ref.[36]: an electron induces a polarization cloud
in the electronic fluid. The net energy of the polar-
ization around two parallel spins is reduced when the
clouds overlap. In essence this describes a reduction in
zero-point energy upon the formation of Cooper pairs.
One must think a little to recover the same effects in
the fermionic quantum order-by-disorder approach[37].
The central idea is to calculate a generating function
for the new type of order. For example, in the case
of p-wave superconductivity in the ferromagnet, a term∑

k

(
j∆θkc

†
k,↑c

†
−k,↑ + c.c

)
is added to the Hamiltonian,

where j∆ is a source field for the superconducting or-
der parameter, ∆ =

∑
k〈θkc

†
k,↑c

†
−k,↑〉. The analysis

then proceeds as before, diagonalising the quadratic parts
of Hamiltonian and calculating the second order per-
turbation to the free energy. Diagonalisation of the
Hamiltonian in the presence of these sources requires
a Bogoliubov transformation, which modifies the inter-
action vertex. It is this modification that accounts for
the generation of new interaction channels found in the
diagrammatic analysis. Once the fluctuation correc-
tions to the free energy have been calculated, a Leg-
endre transformation gives the Ginzburg Landau func-
tion. A similar approach has been used to study spin-
antisymmetric Pomeranchuk or nematic distortions of
the Fermi surface[33].

A trick[37] may be used to calculate the Ginzburg-
Landau function for continuous transitions: Adding
and subtracting a term

∑
k

(
∆θkc

†
k,↑c

†
−k,↑ + c.c

)
to the

Hamiltonian. Diagonalising the quadratic parts of the
Hamiltonian alongside the added ∆c†c†-term and treat-
ing the remaining terms alongside the subtracted ∆c†c†-
term perturbatively, recovers the result of adding a source
followed by Legendre transformation up to quadratic or-
der. The saddle-point equations that result from this
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analysis up to quadratic order are precisely the Eliash-
berg equations found in diagrammatic, spin-fluctuations
calculations.

3. Commentary

Fermionic quantum order-by-disorder provides a com-
plementary formulation of the physics embodied by di-
agrammatic analyses. Its alternative perspective uni-
fies the particle-instabilities (such as first order transi-
tions and the formation of helimagnetism) of the itiner-
ant ferromagnet, and particle-hole instabilities such as
superconductivity. In conventional, diagrammatic anal-
yses, these effects are treated very differently, the former
through non-analyticities of the Moriya-Hertz-Millis free
energy, and the latter through spin-fluctuation generated
pairing in the appropriate channel. The discussion above
shows how these effects are borne out in a simple model.

The approach also provides more direct access to new
phenomena. Just as in the case of classical, entropically-
driven phase transitions, focussing upon the free energy
of fluctuations directly can be very useful in deducing
the possibility of other phases and instabilities before a
detailed calculation has been performed. Knowing the
spectrum of fluctuations and how they are affected by
the introduction of certain order can be sufficient to pre-
dict the formation of new phases — even in the absence
of a microscopic model. The formulation has the advan-
tage that calculations follow directly from it. In the fol-
lowing section, we outline a number of developments to
fermionic quantum order-by-disorder driven by unusual
experimental observation.

III. EXPERIMENTALLY DRIVEN
DEVELOPMENTS

The experimental systems to which fermionic quan-
tum order-by-disorder can be applied fall into two main
classes, ultra-cold atomic gasses and solid-state itinerant
magnets. Experimental capabilities for these two types of
system are very different, placing consequently different
demands upon theoretical models.

A. Ultra-cold Atomic Gases

Ultra-cold atomic gases offer a pristine arena in which
to study collective quantum phenomena. Interactions
can be controlled with great precision by tuning Fesh-
bach resonances, requiring accurate predictions from the-

ory. Amongst the first applications of fermionic quantum
order-by-disorder was to understand the ferromagnetic
instability of cold fermionic atoms. Early predictions of
the scattering length at which this would occur were cru-
cially important[38, 39]. Moreover, since atomic gases
are naturally in the canonical ensemble, without a mech-
anism to change the total spin of the gas, it is natural to
consider systems with a fixed, spin imbalance[28, 40].

Of course, the study of atomic gases is not without its
experimental difficulties. When tuned to positive scatter-
ing lengths, there is an unavoidable loss process[41, 42],
which affected the first attempt to observe ferromagnetic
behavior [43]. Subsequent experiments have focussed on
the polaron limit [44] for which variational wavefunc-
tions may be presented[45]. Going forward the cold atom
gas offers a chance to explore not only ferromagnetism
with the contact interaction, but also systems with in-
teractions with an effective range [32], a two-dimensional
gas [46], and a mass imbalance between up and down-spin
particles [47].

B. Metallic Ferromagnets

Unlike ultra-cold atomic gases, for which precise quan-
titative predictions from realistic microscopic models are
often desirable, in the solid-state we often require min-
imal models that capture the essence of new emergent
phenomena. Fermionic quantum order-by-disorder has
provided a good guide in a variety of cases. Ferro-
magnetic transitions are thought to be generically first-
order at low temperature for precisely the reasons illumi-
nated above and this behaviour has been seen in a wide
range of materials including Sr1−xCaxRuO3 [48], CoO2

[49], UGe2[50] and URhGe [51]. Other cases in which
fermionic quantum order-by-disorder has proved illumi-
nating include:
Hard Axis Magnetism: In a few itinerant metals, such

as YbRh2Si2 and YbNi4P2, hard axis magnetic suscepti-
bility in the paramagnetic phase gives way to ferromag-
netism along the hard direction in the ordered phase[52–
55][56]. Whilst one can fit such behaviour with an insul-
tating model of frustrated magnetism[57] it is more nat-
ural to understand it from the point of view of quantum
order by disorder[58]. Establishing ferromagnetic order
in the direction anti-favoured at the mean field level costs
mean field energy, but leads to a flattened dispersion of
low energy excitations and so lower fluctuation contribu-
tion to the free energy. When fluctuations dominate, this
determines the direction of magnetic order — i.e. in the
direction anti-favoured by mean field considerations (See
Fig.5).

Partial order in MnSi: A similar argument can be
used to explain the unusual partially ordered phase of

MnSi[59, 60]. In this material, spin orbit coupling com-
bined with the absence of inversion symmetry conspire
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samples we have studied (at least 4), with neutron scat-
tering (at D23, ILL and SPINS, NIST) and with resonant
X-ray scattering (BM28, ESRF). Data obtained with res-
onant X-ray scattering have the highest q-resolution and
are shown in FIG 1. The incommensurate di↵raction sig-
nal is visible for X-ray energy at the Pr L2 resonance edge
(6.444 keV), which fluorescence and absorbance measure-
ments suggest is a simple dipole transition. The observed
intensity in neutron scattering at the same wavevector-
transfer prove that the satellites are of magnetic origin.
In both SDW states the modulation vectors are precisely
along the c-axis.
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FIG. 1. (a) and (b) are colour-scale image of di↵racted X-
ray intensity as a function of reciprocal coordinate (0, 0, L)
and temperature for scattering at the Pr L2 (L�1) resonance
edge (6.444 keV). (c) and (d) are the modulation q-vectors
as a function of temperature deduced from (a) & (b). q1 and
q01 are the wavectors associated with SDW1. q2 and q02 are
associated with SDW2. ± denote peak positions relative to
(0,0,2). (e) The ratio of modulation vectors. q02/q2 = 3 shows
that q02 is the third harmonic of q2. There is no simple ratio
between q1 and q01.

To further explore the nature of magnetic order we
measured the spin-dependence of the neutron cross-
section at wave-vector transfer (0, 0, 2±q) with the SPINS
instrument at NIST. This revealed the presence of spin-
flip (SF) scattering of intensity 1/10 the non spin-flip
(NSF) scattering for incoming neutron moments aligned
along the a-axis for SDW2. Significant SF scattering in
this geometry shows that the modulated state has a mag-
netic moments along the b-axis as well as along a. This
would be expected for a spiral. The examination of that
SDW2 satellite close to other Bragg positions revealed
there is also a moment component along the c-axis (par-
allel q) [see suppl info].

A magnetic structure consistent with these measure-
ments for the SDW2 state is shown in FIG 2. In the
figure the moments rotate in a plane whose normal is in-
clined from c-axis (about the a-axis). In addition there

is an intra-cell antiferromagnetic component to the order
(equivalent to that in the FM state), which for clarity is
not shown in the figure. The neutron cross-sections were
taken to be averages over opposite tilts and helices. A
slightly larger b-axis/a-axis moment ratio was found for
SDW1 (both for q1 and q01). Further measurements at
di↵erent Bragg positions were however not made in this
state.

FIG. 2. Two views of the moment structure for the SDW2
state over a length of approximately 1/2 the modulation pe-
riod, consistent with the measured spin dependence of neu-
tron scattering. Only the Pr Atoms are shown. These can
be viewed as two bc-plane zig-zag chains of atoms running
along the c-axis with di↵erent a-coordinate (one comprises A
sites and the other B sites). There is an additional intracell
canting of the moments along the c-axis that is not shown for
clarity, but which tilts the moments out of the shaded disks.

The above establishes unambiguously that b-axis mo-
ments are present in the modulated states.The presence
of the third order harmonic for SDW2 provides indirect
evidence that the SDW2 state is in fact a spiral state.
For a spiral along z with a constant magnitude of mo-
ment m0, the magnetisation in the presence of crystalline
anisotropy can be written

m = m0

✓
cos[qmz � �(z)]
sin[qmz � �(z)]

◆
. (1)

The inclusion of the phase �(z) allows the pitch of the
spiral to adjust to reduce the anisotropy energy. This
energy is minimised for �(z) = � sin(2qmz) with qm the
principal modulation vector. A significant third order
amplitude (�/2 for small �) is predicted. The intensity of
the 3rd order harmonic can be calculated from the mea-
sured ratio of SF/NSF (SF/NSF ⇡ 0.1 for (0,0,2.07))
scattering from EQN 1. This gives a third harmonic in-
tensity 7% of the fundamental, which agrees well with
that observed.

The changes of magnetic structure are also seen in ther-
modynamic measurements. The heat capacity has cusp-
like features at all three transitions (FIG 2). The scatter
in values at the FM-SDW2 and SDW1-SDW2 transitions
(depending on the temperature history) indicate that
these transitions are almost certainly first order. The dc
susceptibility, namely magnetisation divided by the field

q 3q

(a)

(b)

(c)

FIG. 5. Three experimental situations where the fermionic quantum order-by-disorder approach has proven fruitful, (a) Hard
axis magnetic order: In materials such as YbRh2Si2 and Yb Ni4P2, hard axis magnetic susceptibility in the paramagnetic phase
gives way to ferromagnetic order along this direction in the ordered phase. Fermionic quantum order-by-disorder captures this
by an inversion of the magnetic anisotropic in the zero-point fluctuation contributions to the free energy. The figure indicates
the phase diagram calculated for this effect in a simple itinerant model. (b) Partial Order in MnSi: A variety of explanations
have been posited for the partial order in MnSi, including the incipient formation of Skyrmion lattices. Fermionic quantum
order-by-disorder provides a relatively simple explanation; orienting the helimagnetic order in directions disfavoured in mean
field (away from [111]) lowers the energy of fluctuations and is thus favoured when fluctuations are strong near the quantum
critical point. The phase diagram indicates that this partial ordered phase occurs in the same region of the phase diagram as
the helimagnetic phase of the simple model for the ferromanget. (c) Helimagnetic Order in PrPtPl: This material is one of the
best examples so far for a fluctuation-induced helimagnetic phase. The figure summarises neutron (top) and x-ray (bottom)
scattering data obtained from PrPtAl. This supports the notion that helimagnetic order appears in region of the phase diagram
where quantum fluctuations are strong. The theory must be modified to incorporate the effects of local spins. After doing so,
a range of thermodynamic and scattering measurements are accounted for by the model.

to favour helimagnetic order, with a very long pitch [61–
63]. Crystalline anisotropy further favours the pitch vec-
tors lining up along the [111] directions. In the partially,
ordered phase near to the quantum critical point, neu-
tron scattering shows a smooth distribution of orienta-
tions of the pitch vector over the sphere that if any-
thing anti-favours the [111] directions with a slight in-
crease in the pitch of the helimagnetic order. This be-
haviour arises naturally with a minimal modification of
the ferromagnetic Hamiltonian, Eq.(1), that allows for
the Dzyalosinksii-Moriya spin orbit coupling and fluctua-
tions (See Fig.5). Directing the helimagnetism away from
the mean-field favoured directions flattens the dispersion
of excitations, lowering their zero-point energy.
Fluctuation-induced helimagnetism: The experimental

search for fluctuation-induced helimagnetism has proven
more difficult. Whilst there is circumstantial evidence

for it in ZrZn2[64] and NbFe2[65], this has not been
conclusive. Indeed, it was noted in Ref.[66] that the
fluctuation-induced helimagnet might be rather suscep-
tible to the effects of disorder, possibly explaining the
apparent spin glass behaviour in the region of the phase
diagram of CeFePO(Ref.[67]) where helimagnetism might
otherwise be predicted. More recently, two materials
have emerged as compelling candidates for the emergence
of fluctuation-induced helimagnetic order, PrPtAl[68]
and LaCrGe3[69, 70]. To capture the properties of PrP-
tAl, the simple model of Eq.(1) must be supplemented
with local spins. A range of thermodynamic and scatter-
ing measurements are accounted for by the predictions of
quantum order-by-disorder (Fig.5).
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FIG. 5. Fermi surfaces A± of the electronic bands ϵ±(k) in
the presence of helical spin-triplet d-density wave order with q =
q(1,1,0)/

√
2. Red and blue colors denote the spin-up and spin-down

character of the lobes. As we increase the value of q, moving from
left to right, we see that this spin character gets mixed, and the Fermi
surfaces deform along the (1,1,0) direction.

B. Visualization in momentum space and real space

The helical spin-triplet d-density wave is not easy to
visualize. For small q vectors, corresponding to a long period
of the modulation in real space, a Wigner representation as
used in Fig. 1 is the most convenient depiction. This is a
mixed real/momentum space representation. Over a subsystem
whose size is less then the wavelength of the modulation, the
order is approximately uniform and one may define a quasi-
Fermi-surface equivalent to that of the related homogeneous
spin-triplet nematic. The helical modulation in spin space
implies that the spin direction rotates from subsystem to
subsystem with a period 2π/q.

A purely momentum space picture is also useful as it
helps reveal how spatial modulation might be favored by
the softening of fluctuations. In Fig. 5, we show the Fermi
surfaces A+ and A− for the two electronic bands ϵ±(k) =
k2 ∓

√
(k · q)2 + η2$2

1(k), with the wave vector q in the
favored (1,1,0) direction. A+ and A− are the Fermi surfaces for
electrons with spin parallel and antiparallel to the background
helimagnetic ordering, respectively. In the limit q = 0, we
recover the elliptical Fermi surfaces of the homogeneous
spin-triplet nematic. These deformations of the Fermi surfaces
change the spectrum of electronic particle-hole excitations and
enhance the phase space for fluctuations.

We conclude this section by providing a real-space picture
of the homogeneous spin-triplet nematic and the modulated
triplet d-density wave states when projected onto a lattice. This
illustrates the connection of our continuum model to lattice-
based models of bond density wave order. For simplicity, we
consider a two-dimensional square lattice. We discretize the
order parameter η(r) = ⟨R̂

t

1(r)⟩ = 1
2 ⟨%†(r)σ (∂2

x − ∂2
y )%(r)⟩,

which (for fixed α = 1) is a three-dimensional vector in spin
space. For the homogeneous spin-triplet nematic state along
the z spin direction, we obtain the lattice order parameter

η̃ = (λ↑
x − λ↑

y ) − (λ↓
x − λ↓

y )

λx = λ↑
x − λ↓

x

λy = λ↑
y − λ↓

y

q = q(1, 1)/
√

2

q = 0(a)

(b)

spin x-direction spin y-direction

FIG. 6. Visualization of the spin-triplet nematic order parameter
on a square lattice. (a) The homogeneous state corresponds to bond
order which breaks the rotation symmetry of the square lattice. The
order parameter changes sign under 90◦ rotation, as well as under
spin inversion, and is invariant under the two combined operations.
(b) Bond-density wave order corresponding to the helical spin-triplet
d-density wave with q along the (1,1) direction. The two panels
show the x and y spin components of the modulated order parameter,
respectively.

in terms of expectation values of bond operators, λν
x(y) =

⟨ψ†
r,νψr+x̂( ŷ),ν⟩. The order parameter η̃ is shown in Fig. 6(a).

It changes sign under spin inversion, as well as under 90◦

rotation. Because ⟨R̂s
1(r)⟩ = 0, the strain components of

spin-up and spin-down electrons exactly cancel each other,
(λ↑

x − λ
↑
y ) + (λ↓

x − λ
↓
y ) = 0.

In the helical spin-triplet d-density wave, the spin direction
rotates in a plane in spin space, e.g., between the x and y
directions, as specified by the order parameter η(r) (9). This
can again be expressed in terms of expectation values of bond
operators,

η̃x(r) = ⟨%†
r σx%r+x̂⟩ − ⟨%†

r σx%r+ ŷ⟩ = η̃ cos(qr),

η̃y(r) = ⟨%†
r σy%r+x̂⟩ − ⟨%†

r σy%r+ ŷ⟩ = η̃ sin(qr).

The order-parameter components η̃x(r) and η̃y(r) are shown
in Fig. 6(b) for a q vector along (1,1) that is commensurate with
the underlying square lattice. Figure 6 is in essence a lattice
projection of the Wigner representation shown in Fig. 1.

V. EXPERIMENTAL SIGNATURES OF
THE SPIN-TRIPLET NEMATIC

Spin-triplet nematic order simultaneously breaks spatial
rotation symmetry and spin-rotation symmetry. This entan-
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Spin-triplet nematic order simultaneously breaks spatial
rotation symmetry and spin-rotation symmetry. This entan-
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FIG. 6. Twisted Spin-Antisymmetric Nematic Order: Translating the mechanism of fermionic quantum order-by-disorder to
the spin-antisymmetric nematic reveals an unusual intertwining of helimagnetic and spin-antisymmetric nematic order whereby
the spin quantization axis of the spin-antisymmetric nematic order rotates in space. a) illustrates this order in the continuum
showing how electrons with opposite spin have d-wave distortions of their fermi-surfaces with opposite sign. The quantization
of this spin axis rotates upon moving in the direction of the pitch vector q. b) illustrates the projection of this order onto a
square lattice, demonstrating its correspondence to a bond order modulation.

C. Experimental Prospects — Beyond the
Ferromagnet

The physics underlying fermionic quantum order-by-
disorder is very general and is expected to find applica-
tion far beyond the itinerant ferromagnet to which it has
initially been applied. For example, the spin-triplet ne-
matic state first proposed in [71] and studied in a simple
model by a number of authors[72–82] was first shown to
have its transition driven first order by fluctuations in
Ref.[83]. It was later shown [84], using fermionic quan-

tum order-by-disorder, that in fact fluctuations promote
the formation of a new phase near to the quantum critical
point that intertwines magnetic modulation and d-wave
orbital order in a continuum version of bond density wave
order(see Fig.6). These unusual phases have some in-
triguing observable consequences. For example, whereas
the static spin-triplet nematic responds to a uniform
magnetic field by generating an anisotropic strain[81], the
triplet d-density wave generates a spatially modulated
strain. This offers new possibilities for experimentally
isolating multipolar order.

The interplay of fluctuations with band effects is of
particular importance in real-life systems. The band dis-
persion itself may lead to phase reconstruction in some
ways similar to that caused by fluctuations driving tran-
sitions first order when the Wolfharth-Rhodes criterion
is satisfied[85] or leading to spin-antisymmetric nematic
or spin density wave due to weak nesting as found in
Sr3RuO3[86, 87]. A proper account of this interplay has
not yet been given, though a preliminary analysis was
presented in [88]. The extreme of such interplay occurs in
the critical antiferromagnet in which spin fluctuations are
thought to drive d-wave superconductivity[89–91], and
in which the subtle interplay of band effects and spin
fluctuations still leaves open questions. Analysis using
fermionic quantum order-by-disorder may be useful[92].

A range of other systems of experimental interest
may also be analysed using fermionic quantum order-by-
disorder. For example, the lattice Dirac fermions found in
graphene harbour a number of instabilities that might be
captured in this way[93–95]. Similarly, the gradual addi-
tion of new features, such as spin-orbit coupling, topolog-
ical bandstructures etc., to the toy Hamiltonian, Eq.(1)
might reveal new and unusual features. The possibilities
are very rich and best explored in concert with experi-

ment.

IV. RELATION TO OTHER APPROACHES

As we have emphasised, fermionic quantum order-by-
disorder provides a complementary view on the role of
fluctuations in forming exotic quantum phases. We have
emphasised the relation to spin-fluctuation theories and
— in the application to the itinerant ferromagnet — non-
analyitic extensions of Moriya-Hertz-Millis theory. There
are a variety of other approaches to which it is related in
spirit, and it is worth mentioning some of them here.

A. QOBD vs DFT, DMFT and Kadanoff-Baym

Whilst analytically tractable models play an important
role in the qualitative understanding of new phenomena,
sometimes numerically precise predictions are needed,
particularly when guiding experiment through a delicate
balance of competing possibilities. Though progress has
been made towards first principle calculations[96, 97],
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presently, the calculation of fluctuation-induced effects,
such as superconductivity, is carried out in parallel with
ab initio band structure calculations; the latter provid-
ing spin susceptibilities that are used in field theoretical
calculations. It would be appealing if these calculations
could be performed in concert. QOBD suggests a nat-
ural way to do so. It sits naturally in the framework
described in Ref.[98], which places density functional the-
ory, dynamical mean field and Baym-Kadanoff theory in
the unified context of Legendre transformation of an ap-
propriate generating functional. The potential for sys-
tematically including these effects into ab intio codes has
great promise.

Fermionic quantum order-by-disorder is essentially a
restriction of Baym-Kadanoff theory where the varia-
tional parameter — the Green’s function — is itself char-
acterised by a restricted set of parameters given by the
order parameters of the fields that we wish to study.
Indeed, the additional fluctuation corrections resulting
from the inclusion of superconducting order (see Ref.[37]
where these results are obtained as outlined in Section III
C), are essentially the modfications to the density func-
tional used for ab initio calculations of electronically me-
diated superconductivity in Refs.[96, 97]. This presents
broader possibilities for the inclusion of novel order, such
as spin-antisymmetric nematic order, in density func-
tional code. If successful, this would complement the
analytical description of minimal models with numerical
accuracy when applied to real materials, and would be a
potentially fruitful avenue of future study.

B. Functional Renormalisation Group

Fluctuations-driven ordering phenomena are naturally
captured in renormalisation-group (RG) approaches. As
discussed previously, certain instabilities are not directly
supported by short range Coulomb repulsion, but fluc-
tuations renormalise the low-energy theory and generate
(at one-loop order) new interaction vertices that support
the instability. The p-wave superconductivity in metal-
lic ferromagnets[10] is a good example. A more recent
example are the spin-fluctuation driven nematic and su-
perconducting instabilities of iron-based superconductors
[99, 100]. That the same physics can be described by the
QOBD mechanism [37] shows the close relation between
the two approaches.

The functional renormalization group (fRG) is, in prin-
ciple, an exact method that can be applied to both
bosonic [101] and fermionic [102] systems. A comprehen-
sive summary can be found in the review by Salmhofer
[103]. Instead of the scale dependence of a finite number
of coupling constants, fRG keeps track of the full mo-
mentum and frequency dependence of the single-particle
Green function and interaction vertices. It is a flexi-
ble and unbiased tool to study scale dependent behav-
ior in electron systems, e.g. competing magnetic, charge,
and pairing instabilities and the interplay between elec-

tronic excitations and order-parameter fluctuations. One
of the main advantages of the fRG-based one-loop com-
putation of the two-particle vertex, compared to other
weak-coupling approaches, is that particle-particle and
particle-hole channels are treated on an equal footing,
without artificial bias towards a particular channel of in-
stability [102].

Practical implementations require approximations.
Since the flow of a given vertex depends upon higher-
order vertices, the effective action must be truncated at
some order. Moreover, an infrared cut-off Λ that serves
as RG flow parameter needs to be introduced in the
free-fermion action. Typical choices are a momentum
cut-off that defines a small region around the Fermi sur-
face, similar to the Wilsonian RG approach to interact-
ing fermions [104–107], or a frequency cut-off. Once self-
energy effects are taken into account, the Fermi surface
is usually deformed in the course of the RG flow. Using a
frequency cut-off has the advantage that it does not inter-
fere with Fermi-surface deformations and that particle-
processes with small momentum transfer are captured
smoothly by the flow [108]. Finally, numerical integra-
tion requires a discretisation of the fRG equations —
usually achieved by introducing a mesh in momentum
space. Because of this, subtle changes associated with
the onset of an exotic order parameter could be missed.
For example, the fluctuation-driven helical magnetic or-
der close to ferromagnetic quantum-critical points has a
very large periodicity, corresponding to very small Fermi-
surface deformations.

Because of the computational complexity, fRG has
so far only been successfully applied to one- and two-
dimensional electron systems. In this context, it is inter-
esting to mention that early fRG studies of graphene-type
systems predicted a topological quantum spin-Hall state
for strong next-nearest neighbor interactions [109]. More
recent fRG studies with a much higher momentum reso-
lution, however, show that this transition is pre-empted
by the formation of a three-sublattice, charge-modulated
state [110]. It would be interesting to determine the pre-
dictions that QOBD makes for this system. While the
fRG equations in their full form are exact, the commonly
used truncation schemes restrict their applications to the
study of weak-coupling instabilities. At present it re-
mains an open question which truncation schemes of the
fRG equations are required to study the full range of
fluctuation-driven ordering phenomena captured by the
QOBD mechanism.

C. Monte Carlo

The exquisite precision of experiments on ultra-cold
gases alluded to in Section IV. A, places exacting de-
mands upon theoretical predictions. Precise determina-
tion of scattering lengths (the preferred measure of in-
teraction strength) at which phase transitions and insta-
bilities occur must be met with similarly precise calcu-
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lations. Various quantum Monte-Carlo calculations have
been performed to achieve this — in broad agreement
with QOBD.
Quantum Monte Carlo [111] provides an accurate nu-

merical method to probe the effects of quantum fluc-
tuations in strongly correlated systems. The method
not only offers a complementary analysis underpinned
by different approximations to the QOBD formalism,
but also a precise level of control over the Hamilto-
nian and in particular the interaction potential. The
starting point for fermionic systems is a Slater-Jastrow
trial wavefunction [111], ψ = eJD↑D↓. Here D{↑,↓}
is a Slater determinant of the up-/down-spin particle
plane-wave states corresponding to the non-interacting
ground state, and ensures the correct fermion antisym-
metry. Different polarizations are addressed by changing
the number of up-/down-spin particles in their respec-
tive determinants. J is a Jastrow factor that contains
additional variational terms in particle-particle separa-
tion [112], J =

∑
n,i,j αn,σi,σj

(ri − rj)n. In Variational
Monte Carlo the parameters {αn,σiσj} are optimized to
minimize the ground state energy. Further refinement
of this wavefunction is can be obtained using Diffusion
Monte Carlo; an accurate Green’s function method that
projects out the ground state [111].

Most ultra-cold gases have contact interactions with
zero effective range. These are characterised by the scat-
tering phase shift δ, which can be related to the scatter-
ing length a ≥ 0 according to cot δ(k) = −1/(ka) (for
a zero-range interaction). Several different approaches
have been used to capture such interactions in Monte-
Carlo: i. An explicitly repulsive top hat potential [29].
The strength and radius of the top hat can be adjusted to
give zero effective range at the cost of introducing higher
order terms in the scattering phase shift [46]. ii. The
contact interaction limit can be reached by using an at-
tractive interaction potential with short range [113, 114].
However, this potential harbors a bound state. To avoid
the system entering the bound state the trial wave func-
tion must be restricted to have no variational parameters,
meaning that the ground state cannot be reached. iii.
The short range behavior of the wave function induced
by the contact interaction can be directly imprinted upon
the Jastrow factor [113] However, this gives incorrect
scattering properties in the ` ≥ 1 scattering channels.
Notwithstanding these subtleties, it has proven possible
to extract a general, transferable pseudopotential that
gives the correct scattering properties, and which does
not harbor a bound state, allowing it to be used in a
variationally [115].

The Quantum Monte Carlo approaches have been used
to confirm the presence of a first order transition and he-
limagnetic phase [29] Moreover, these results have also
been used to define a density functional[116], thus ful-
filling part of the aim of bringing QOBD effects into the
realm of density functional theory. These results provide
independent verification of the QOBD approach: they in-
clude all possible correlations, and deliver a ground state

restricted only by the fixed node approximation. The
Quantum Monte Carlo approach also offers access to two
important extensions: the consequences of effective range
interactions [32], two-dimensional geometry [46], and dif-
ferent masses for the spin-up and spin-down particles [47].
However, the numerical calculations are performed in a
finite sized system and so cannot capture all long wave-
length fluctuations.

V. BROADER PERSPECTIVE AND
CONCLUSIONS

Fermionic QOBD has had a number of successes —
particularly in its application to ferromagnetic metals.
Development of the method to improve its range and ac-
curacy of application suggests several near- and medium-
term goals.
Near-term goals might include considering the forma-

tion of phases near the quantum critical points of differ-
ent background order — we discussed above extensions
of the original application to ferromagnetic order to spin-
anti-symmetric nematic order and anti-ferromagnetic or-
der. Charge density wave order is another interesting
possibility. However, the possibilities for QOBD effects
to operate in bands with non-trivial topological order is
perhaps more intriguing. Implicit in the latter is the ef-
fect of more intricate band structure and spin-orbit cou-
pling. Conventional band structure can itself generate
instabilities towards different types of order through nest-
ing and other features in the density of states. A system-
atic way to treat these alongside fluctuations does not yet
exist. Addition of more ingredients in this way makes as-
sessment of which effects win out more and more delicate
— a systematic, numerical way to accommodate this (for
example by inclusion in density functional theory) along-
side analytical calculations for minimal toy models is de-
sirable.

Beyond these considerations, the inclusion of new
types of instabilities and exotic order presents a num-
ber of medium-term goals. The description of local crit-
ical fluctuations[117] from this perspective and indeed
whether Mott physics can be accessed by QOBD raise
important questions. There is some hope for the latter
given the similarities between QOBD and the description
of the Mott physics using dynamical mean field theory.
Indeed a rather direct translation of the simple Landau
theory developed in Ref.[118] may indeed be able to re-
express the Mott transition in terms of QOBD.

Unconventional order such as that found in gapless
spin-liquid phases presents even greater challenges[119].
The fermionic version of QOBD might possibly be ap-
plied to understand instabilities of the spinon-fermi sur-
face. In its wider application there have been recent hints
that QOBD might be useful to understand deconfined
quantum criticality in terms of fluctuation-induced tran-
sitions in entanglement structure[120–122]. The 1/N -
effects of fluctuations in anti-ferromagnets[123] can be
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reframed as a zero-point energy breaking the degener-
acy amongst a set of states with different entanglement
structure[122]. This brings us full circle to the work of
Villain[13] and shows that his perspective can be used to
understand a large range of phenomena. This broader
perspective is closely aligned to one of the most fasci-
nating developments in fundamental physics; the notion
that gravity itself might be an entropic force[124–126]
emerging from zero-point fluctuations. The idea being
that the space-time metric can be associated with entan-
glement structure, and that this entanglement structure
is itself determined by quantum fluctuations. In the case
of fundamental physics, these ideas arise from the du-
ality between gauge theory and string theory. Villain’s
simple notion of order-by-disorder applied to condensed
matter systems, may yet provide an alternative route to
emergent geometry of entanglement.

Quantum order-by-disorder is one amongst many per-
spectives from which to view strongly correlated quan-
tum systems. Each perspective privileges a particular

way to proceed. In some cases, QOBD allows a partic-
ularly simple, heuristic picture of the physical processes
promoting certain collective behaviour, one that can very
directly be turned to concrete calculation. It is an idea
whose ramifications have yet to be fully realised.
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