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Two distinct Mott-insulator to Bose-glass transitions and breakdown of self-averaging in the
disordered Bose-Hubbard model
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We investigate the instabilities of the Mott-insulating phase of the weakly disordered Bose-Hubbard model
within a renormalization group analysis of the replica field theory obtained by a strong-coupling expansion
around the atomic limit. We identify an order parameter and associated correlation length scale that are capable
of capturing the transition from a state with zero compressibility, the Mott insulator, to one in which the
compressibility is finite, the Bose glass. The order parameter is the relative variance of the disorder-induced mass
distribution. In the Mott insulator, the relative variance renormalizes to zero, whereas it diverges in the Bose glass.
The divergence of the relative variance signals the breakdown of self-averaging. The length scale governing the
breakdown of self-averaging is the distance between rare regions. This length scale is finite in the Bose glass
but diverges at the transition to the Mott insulator with an exponent of ν = 1/D for incommensurate fillings.
Likewise, the compressibility vanishes with an exponent of γ = 4/D − 1 at the transition. At commensurate
fillings, the transition is controlled by a different fixed point at which both the disorder and interaction vertices
are relevant.
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I. INTRODUCTION

Two distinct mechanisms localize interacting bosons mov-
ing in a random environment. Either repulsions from local
onsite interactions on a D-dimensional lattice lock the bosons
in place or disorder inhibits tunneling from site to site. The
former insulating state is an incompressible Mott insulator
(MI), while the second is a compressible Bose glass (BG). In
this paper, we identify an order parameter and an associated
length scale that can describe the vanishing of the compress-
ibility at the MI-BG transition. The order parameter is the
relative variance of the disorder-induced mass distribution.
The key insight leading to this observation is that despite the
relevance of the disorder vertex in D < 4 spatial dimensions, it
is possible to identify a Mott-insulating fixed point where the
mass, corresponding to the Mott gap, diverges fast enough
such that the relative variance of the mass distribution is
renormalized to zero. Sufficiently close to the MI, both the
mean and the relative variance diverge, identifying the adjacent
phase as an insulating BG, irrespective of the boson filling. We
show that the length scale underlying this order parameter is
the effective distance between rare regions.

In their initial treatment of this problem, known as the
disordered Bose-Hubbard (BH) model, Fisher and colleagues1

situated the BG between the MI and superfluid (SF), thereby
preventing a direct SF-MI phase transition. They pointed
out, however, that it is in principle possible but extremely
unlikely that for sufficiently weak disorder the BG phase is
completely suppressed at commensurate boson fillings. For
more than twenty years, this question remained controversial
as simulations and analytical arguments both support2–11 and
negate12–18 the possibility of a direct MI-SF transition in the
presence of weak disorder. Only recently, strong arguments19

based on a mathematical theorem have been presented for the
existence of the BG upon the destruction of the MI, thereby
precluding a direct transition to the SF. Given this result, it is
important to establish precisely how the MI to BG transition

occurs. In this paper, we are concerned with the critical theory
for the MI-BG transition for strongly interacting bosons on a
D-dimensional lattice subject to weak disorder. Of particular
interest is the universality of the transition, for example, the
identification of a diverging length scale and the determination
of the critical exponent describing the divergence of the inverse
compressibility. Despite extensive numerical2,3,5,6,8,9,17 and
analytical4,7,10–16,18–20 studies of the disordered BH model, the
nature of the MI-BG transition remains elusive.

To be more specific, in the following we consider the
disordered BH model in its simplest form,

Ĥ = −t
∑
〈i,j〉

(b̂†i b̂j + H.c.) +
∑

i

(εi − μ)n̂i

+ U

2

∑
i

n̂i(n̂i − 1), (1)

describing bosons with creation and annihilation operators b̂
†
i ,

b̂i (n̂i = b̂
†
i b̂i) which are hopping with amplitude t between

neighboring sites i,j on a D-dimensional hypercubic lattice
and which are subject to an onsite repulsion U . The chemical
potential μ controls the boson filling and disorder enters via
random uncorrelated onsite potentials εi which must be appro-
priately bounded for the model to exhibit stable MI phases.1

Since the formation of the MI is a consequence of strong
repulsive interactions, the MI-SF transition in the clean system
can be understood only within an effective long-wavelength
theory which is dual to the original BH model (1) and derived
by a strong coupling expansion around the atomic limit.1,21,22

The mass in the theory is given by the Mott gap, which vanishes
at the transition and turns negative in the SF. In the latter
broken-symmetry state, the finite bosonic order parameter is
proportional to the SF density. Although the underlying strong
coupling expansion breaks down in the SF where the renor-
malization group (RG) flow is toward weak coupling,20 the
effective long-wavelength theory can be used to analyze the
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FRANK KRÜGER, SEUNGMIN HONG, AND PHILIP PHILLIPS PHYSICAL REVIEW B 84, 115118 (2011)

instability of the MI. Since the theory is controlled in the MI
state, it should serve as a starting point to also analyze the
instability toward the formation of the BG in the presence of
weak disorder.

At the outset, it would seem that an effective theory in terms
of the bosonic order parameter is completely inapplicable
to the MI-BG transition since in both insulating phases the
mass gap is finite and the SF correlations are short ranged.
Certainly, the relevant length scale at the MI-BG transition
has nothing to do with the SF correlation length but instead
should be intrinsically related to the disorder. Such a divergent
length scale should exist since the transition is expected to
be continuous with a divergent inverse compressibility. In this
work, we demonstrate that the order parameter for the MI-BG
transition can be extracted from the disorder-averaged replica
version of the bosonic order parameter theory. The relevant
quantity is the relative variance of the disorder-induced
mass distribution which renormalizes to zero in the MI and
diverges in the BG and hence serves as the order parameter
for the MI-BG transition. The corresponding length scale
is the distance between rare regions in the BG which causes
the breakdown of self-averaging in the system, as indicated by
a diverging relative variance. This correlation length is finite
in the BG and diverges on approaching the MI.

From the analysis of the RG flow of the mean value and
relative variance of the mass distribution, we obtain the key
results that (i) the instability of the MI is always toward a BG,
in agreement with recent arguments,19 and that (ii) the MI-
BG transitions at incommensurate and commensurate boson
fillings are not in the same universality class. In the former case
of incommensurate fillings, we calculate the critical exponents
at one-loop order: ν = 1/D for the correlation length and
γ = 4/D − 1 for the inverse compressibility.

The paper is organized as follows. In Sec. II, we argue that
the relative variance of the disorder-induced mass distribution
serves as the order parameter for the MI-BG transition which
vanishes in the MI and acquires a finite value in the BG. We
further identify the corresponding correlation length as the dis-
tance between rare regions in the BG which cause a breakdown
of self-averaging in the system. The disorder-averaged replica
theory describing the long-wavelength physics at strong
coupling is derived in Sec. III. In Sec. IV, the RG equations
are reviewed and reformulated in a new set of variables, which
permits us to extract the scale dependence of the relative
variance of the induced random-mass distribution. The results
are presented in Sec. V. The phase boundary between the MI
and the BG is determined by a numerical integration of the
RG equations. For incommensurate boson fillings, we obtain
analytical results for the correlation length and compressibility
exponents. Finally, we show that the MI-BG at commensurate
boson fillings is in a different universality class. In Sec. VI our
main results are discussed.

II. BREAKDOWN OF SELF-AVERAGING

The MI in the disordered BH model exists in the strong
coupling limit. While the disorder must be appropriately
bounded for the MI to persist,1 the key limit that defines strong
coupling is the ratio U/t � 1, where U is the onsite energy and
t is the hopping matrix element. As with all strong coupling

problems, the natural variables that uncloak the physics
are not related straightforwardly to those in the ultra-violet
(UV)-complete Hamiltonian. Further, if a critical theory is to
correctly describe the destruction of the MI, it should contain
the seeds of the BG phase, which Fisher and co-workers1

argued are due to the physics of rare regions. Consequently,
the underlying critical theory might have nothing to do with
the bare bosonic propagator and the associated superfluid
correlation length but rather a new length scale that is
intrinsically related to the disorder.

Consider the atomic limit of this problem. A scaling
analysis around this regime23 demonstrates that the correlation
length, ξ , defined as the length scale beyond which the
system encounters rare-region physics is finite in the BG
and diverges at the transition to the MI with an exponent of
ν = 1/D for generic bounded disorder distributions such as
the box distribution P (ε) = 1/(2�) for |ε| � � and P (ε) = 0
for |ε| > �. The violation of the lower bound of ν � 2/D,
known as the quantum Harris criterium,24 was attributed
to a breakdown of self-averaging23 in the BG phase. That
is, the fluctuations are not governed by the central-limit
theorem. Several years ago, Aharony and Harris25 showed
that a breakdown of self-averaging implies that the relative
variance of any thermodynamic quantity must be finite. Taken
in tandem, these results imply that characterizing a transition
governed by the physics of rare regions requires two quantities
to be finite: (1) a finite length scale, ξ , over which a rare region
is encountered and (2) a finite value of the relative variance of
any thermodynamic quantity.

The central idea we advance here is that the nature of the
MI-BG transition can be understood using perturbative RG
techniques but with a set of variables and length scales that
contain the information about the rare regions. The mass r

in the effective long-wavelength theory in the clean system
corresponds to the Mott gap, which renders the correlations
of the bosonic order parameter short ranged. Any form of
disorder in the microscopic BH model, for example, the
potential disorder εi following a distribution P (ε), will induce
an effective disorder distribution P̃ (r) of the mass coefficient
r . Since in any insulating phase the superfluid order parameter
must vanish on large scales, in both phases, the MI and the
BG, the mean r̄ of the distribution must diverge under the RG,
r̄(�) → ∞. Hence, it cannot be used to distinguish between the
MI and BG phases. Given the general considerations above,
the natural quantity to distinguish the BG from the MI is the
relative variance Rr of the mass distribution,

Rr = (r − r̄)2

r̄2
. (2)

In the MI phase, the system is self-averaging and therefore
Rr (�) → 0 since relative variances of extensive quantities have
to vanish in the thermodynamic limit as a consequence of
the central-limit theorem. Since the BG is characterized by a
breakdown of self-averaging, Rr is nonzero in the thermody-
namic limit and therefore serves as the order parameter for the
MI-BG transition. In this paper, break down of self-averaging
refers entirely to the fact that Rr �= 0. Note, Rr (�) → 0 in the
MI implies that ξ diverges at the transition; that is, there is
no finite length scale over which rare regions exist. We point
out that a breakdown of self-averaging, as defined here, has
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nothing to do with a finite-size effect. Rather, it is a function
entirely of whether in the thermodynamic limit, ξ , the distance
over which rare regions exist, is finite. If it is, Rr is necessarily
nonzero, as we demonstrate by an explicit calculation.

To work out the RG flow of Rr , we use that the disorder
vertex in the disorder-averaged replica theory is proportional to
the variance of the mass distribution. We proceed by recasting
the RG equations in terms of Rr and show that these equations
admit a stable MI fixed point at r̄ = ∞ and Rr = 0 as well
as a critical MI-BG fixed point at r̄ = ∞ and finite Rr . We
point out that such an identification of fixed points is only
possible because of the identification of the relevant variables.
Whereas the standard equations that are used to study this
problem capture only a runaway flow away from the MI-SF
fixed point of the clean system,1,20 in the new variables we
find that the unstable MI-SF fixed point is connected with
the new critical MI-BG fixed point by a separatrix. Our
analysis further demonstrates that the MI-BG transition at
commensurate fillings belongs to a different universality class.

III. EFFECTIVE REPLICA THEORY

We analyze the instability of the MI state toward the
formation of the BG using the disorder-averaged replica
version of the effective long-wavelength theory, which is
derived by an expansion around the atomic limit of the stable
MI state. In this theory, the replica mixing disorder vertex is
proportional to the variance of the mass distribution, which
allows us to extract the RG flow of the relative variance Rr (2),
which we have identified as the order parameter for the MI-BG
transition. In the absence of disorder, the effective action
capturing the long-wavelength physics at strong coupling,
t/U � 1,

S=
∫

x,x0

(γ1φ
∗∂0φ + γ2|∂0φ|2 + |∇φ|2 + r|φ|2 + h|φ|4),

(3)

can be constructed using a coherent state path-integral rep-
resentation of the BH model (1) and decoupling the off-
diagonal hopping terms with a Hubbard-Stratonovich (HS)
transformation. In this action, we have rescaled the length
and imaginary time τ to dimensionless units, x = �r with �

the momentum cutoff and x0 = Uτ . The precise dependence
of the coupling constants on the microscopic parameters is
known analytically.22 For example, the mass coefficient which
corresponds to the Mott gap is given by

r = 1 − y

(
m + 1

m − x
+ m

1 − m + x

)
, (4)

with x = μ/U , y = 2Dt/U , and m the number of bosons per
site. The interaction vertex h is proportional to y2 reflecting
the underlying strong-coupling expansion around the atomic
limit (y = 0). An explicit expression for h can be found
elsewhere.20,22 At the mean-field level, the MI-SF phase
boundary is determined by r = 0. The MI states for different
fillings m are characterized by a finite Mott gap, r > 0, and
〈φ〉 = 0. The SF obtains for r < 0 where the SF density is
proportional to 〈φ〉 �= 0.

As a consequence of the U (1) symmetry of the fields,21

the temporal gradient terms are given by γ1 = −∂r/∂x and

γ2 = − 1
2∂2r/(∂x)2 and are therefore related to the slope and

the curvature of the mean-field phase boundary. At the tips of
the MI lobes at values xm of the chemical potential where the
boson filling is commensurate with the lattice and the MI states
are most stable, γ1 = 0, and the critical theory is characterized
by a dynamical exponent z = 1. At incommensurate fillings,
γ1 �= 0, corresponding to z = 2 dynamics.

Consider now the disordered case. The site energies εi

will be uncorrelated and chosen from a bounded distribu-
tion, εi ∈ [−�,�]. The identical HS transformation can be
performed,20 yielding a dual theory with coefficients given by
the expressions for the clean system but with the chemical
potential x = μ/U shifted by the random potential εi/U on
each site, for example, ri = r(x − εi/U ) for the mass term.
This expression is well defined on every site if the disorder
distribution P (εi) is bounded, and the chemical potential x lies
in the intervals [m − 1 + δ,m − δ] and δ = �/U < 1/2. Note
that this stability condition ensures that the system exhibits
stable MI phases in the presence of disorder.

The procedure for constructing the effective action is now
standard: Restore translational symmetry by performing the
disorder average of the free energy using the replica trick and
and take the continuum limit. In the resultant expression,

Seff =
∑

α

S[φ∗
α,φα] − ḡ

2

∑
αβ

∫
x,x0,x

′
0

|φα(x0)|2|φβ(x ′
0)|2, (5)

the first term corresponds to n identical copies of the disorder-
averaged action with α being the replica indices. Note that
also for the disorder-averaged coefficients γ̄1 = −∂r̄/∂x and
γ̄2 = − 1

2∂2r̄/(∂x)2. The replica-mixing disorder vertex arises
from the quadratic order of the cumulant expansion and is
given by the variance of the mass distribution,

ḡ = (�r)2 = (ri − r̄)2. (6)

As is evident, it is nondiagonal in imaginary time as a
consequence of the perfect correlation of the disorder along the
imaginary time direction. Since the disorder also couples to the
temporal gradient terms, the replica theory contains disorder
vertices with additional time derivatives.12,18 These terms turn
out to be irrelevant and do not change the universality of the
transitions between the MI and the BG and hence are not
considered any further.

As a consequence of the underlying strong-coupling ex-
pansion, the variance (�r)2 of the mass distribution is not
simply given by the variance of the random-site disorder
in the BH model.20 This is easily seen by expanding ri =
r(x − εi/U ) for small εi/U yielding (�r)2 = γ 2

1 ε2/U 2 +
γ 2

2 (ε4 − ε2
2
)/U 4 + · · · with εn being the nth moment of

P (ε) = P (−ε). Hence, the effective disorder ḡ is a continuous
function of the chemical potential entering via the coefficients
γ1,2 and is strongly suppressed at the tips of the MI lobes
where γ1 = 0. Therefore, the inclusion of higher moments of
the distribution P (ε) is essential not only to account for the
boundedness of the distribution but also to capture the coupling
to disorder at commensurate fillings. In order to retain the
moments to infinite order, without loss of generality, we use
the discrete distribution

P (ε) = (1 − 2p)δ(ε) + pδ(ε − �) + pδ(ε + �), (7)
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FIG. 1. (a) Phase boundary between the MI (m = 1) and the
BG obtained from numerical integration of the RG equations. The
disorder corresponds to site energies increased or decreased by
δ = �/U = 0.2 with probability p = 0.1. The solid line shows the
unphysical mean-field phase boundary (r̄ = 0) between the MI and
SF. (b) Extraction of the correlation length exponent for different
values x of the chemical potential as indicated in (a).

corresponding to onsite energies which occur with the same
probability p < 1/2 increased or decreased by � < U/2.
The resulting mean r and variance g of the induced mass
distribution entering the replica theory (5) are given by

r = r(x − εi/U )

= (1 − 2p)r(x) + p[r(x − δ) + r(x − δ)], (8)

g = [r(x − εi/U ) − r)]2

= (1 − 2p)r2(x) + p[r2(x − δ) + r2(x + δ)] − r2, (9)

and contain the moments of P (ε) to infinite order. The MF
phase boundary between the m = 1 MI and the SF obtained
by the condition r = 0 is shown in Fig. 1(a). Whereas at
incommensurate fillings the interaction vertex h̄ is irrelevant
for D > 2, the disorder vertex is always relevant in D < 4,
rendering the MF theory meaningless. In order to determine
the stability region of the MI and subsequent phase transitions,
we employ the RG.

IV. RENORMALIZATION GROUP ANALYSIS

We proceed with the RG analysis of the effective replica
field theory (5). From the RG flow of the mean r̄ and the
variance ḡ of the disorder-induced mass distribution, we can
subsequently determine the scale dependence of the relative
variance Rr = ḡ/r̄2 to analyze the instability of the MI toward
the formation of a BG.

A. Renormalization group equations

After successively eliminating modes of highest energy
corresponding to momenta from the infinitesimal shell e−d� �
|k| � 1 and rescaling of momenta (k → ked�), frequencies
(ω → ωezd�), and fields (φα → φ−λd�

α ), we obtain to one-loop
order20

dr̄

d�
= 2r̄ + 2I1h̃ − I0g̃, (10a)

dγ̄1

d�
= (2 − z)γ̄1 + I 2

0 γ̄1g̃, (10b)

dγ̄2

d�
= (2 − 2z)γ̄2 + I 2

0

(
I0γ̄

2
1 + γ̄2

)
g̃, (10c)

dh̃

d�
= (4 − D − z)h̃ − (J0 + 4J1)h̃2 + 6I 2

0 g̃h̃, (10d)

dg̃

d�
= (4 − D)g̃ + 4I 2

0 g̃2 − 4J1g̃h̃, (10e)

where the scaling dimension λ of the fields has been de-
termined such that the coefficient of the spatial gradient
term remains constant. Further, we have absorbed a numer-
ical factor arising from the shell integration by redefining
h̃ = 2SD/(2π )Dh and g̃ = SD/(2π )Dg with SD being the
surface of the D-dimensional unit sphere. The frequency inte-
grals are defined as I0 = C(0) = 1/(1 + r̄), I1 = ∫

ω
C(ω) =

[γ̄ 2
1 + 4γ̄2(1 + r̄)]−1/2, J0 = ∫

ω
C2(ω) = I0I1/2, and J1 =∫

ω
|C(ω)|2 = 2γ̄2I

3
1 with

∫
ω

= ∫ ∞
−∞

dω
2π

and C(ω) = 1/(1 +
r̄ − iγ̄1ω + γ̄2ω

2) the on-shell propagator.

B. New variables

From the RG equations, it is evident that for D < 4, the
variance g̃ increases with the scale, which suggests that the
RG flow is always toward strong disorder. This interpretation
is inconsistent with perturbative arguments, which show that
the disordered BH model exhibits stable MI phases in the
regime of weak disorder,1 and does not take into account that
in the insulating phases the mean r̄ also diverges under the RG.
Therefore, the question of whether disorder is strong can be
answered only by analyzing the relative variance Rr ∼ g̃/r̄2.
In the stable MI phase, disorder is irrelevant and we expect
that Rr (�) → 0.

Realizing that r̄ diverges for both insulating phases, we
implement the approach of Aharony and Harris25 by focusing
on the relative variance Rr of the disorder-induced mass
distribution. As we argued in Sec. II, Rr serves as the
order parameter for the MI-BG transition characterized by
a breakdown of self-averaging.

Putting this into practice in the RG equations requires a
new set of variables. Instead of the mass r̄ , we use I0 = 1/(1 +
r̄), which corresponds to the on-shell propagator in the static
limit, C(0), and asymptotically becomes the inverse mass in
the insulating phases where r̄(�) → ∞. In addition, we work
with �i = I0γi (i = 1,2) for the temporal gradient terms and
H = I 2

0 h̃, G = I 2
0 g̃ for the interaction and disorder vertices,

respectively. In the following, we identify the MI phase by the
conditions that r̄(�) → ∞ but Rr (�) → 0. In the BG, Rr (�) �=
0. In the large mass regime, G corresponds precisely to the
relative variance Rr of the mass distribution.

V. RESULTS

A. Numerical integration

We start with a numerical integration of the full set of RG
equations (10) in terms of the variables introduced above to see
if we can indeed identify the MI-BG transition. Since γ̄1 �= 0
away from the tips of the Mott lobes, we use a dynamical
exponent z = 2. Note that for small r̄ close to the MI-SF
transition in the clean system, the spatial gradient term γx = 1
serves as a cutoff in C(ω) and the corresponding frequency
integrals.
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Indeed, we find a regime where the system flows toward a
stable MI fixed point PMI with I0 = 0 and G = 0. Therefore,
in the MI phase the mean r̄ of the mass distribution diverges
fast enough that the relative variance Rr of the distribution
renormalizes to zero. As expected, �1,2 and H renormalize to
zero in the MI.

Using the analytic expressions for the bare coefficients
as a function of the microscopic parameters, we obtain the
MI phases in the presence of disorder. Figure 1(a) shows the
resulting m = 1 MI lobe in D = 3 as a function of x = μ/U

and y = 2Dt/U for p = 0.1 and δ = 0.2. Sufficiently close
to the MI state, G diverges at a certain scale �∗ whereas I0(�∗)
is practically zero. This clearly identifies the adjacent phase as
an insulating BG. Note that the mass distribution spreads faster
than it shifts to infinity. Hence it is the tail of the distribution
which destabilizes the MI, indicative of rare-region physics.

In the following, we determine the phase boundary yc(x)
by bisection and follow the divergence of the correlation
length ξ = e�∗

as y → y+
c . Note that the correlation length

defined here is determined by the scale �∗ where Rr diverges
and self-averaging breaks down. The correlation length ξ

therefore corresponds to the distance of rare regions in the
BG which cause the breakdown of self-averaging (see Sec. II).
Sufficiently close to the MI, we expect a power-law divergence,
ξ ∼ (y − yc)−ν , defining the correlation-length exponent ν.
To extract ν, in Fig. 1(b) we plot ∂(ln ξ )/∂[ln(y − yc)]
as a function of ln(y − yc) for different values of x. For
y → y+

c , the functions indeed converge to a constant value
corresponding to ν = 1/3.

Interestingly, on approaching commensurate boson fillings,
the length scale upon which universal behavior is observed
increases and possibly even diverges. Whereas an increase
might be simply a quantitative effect originating from the
suppression of the bare disorder vertex by commensuration, a
divergence would indicate a different universality class at the
tips of the MI lobes.

B. Universality of the MI/BG transition
at incommensurate filling

To better understand the nature of the transitions, we
proceed with an analytical investigation of the incommensurate
case (z = 2). Since for D > 2 the interaction vertex h̄ is
irrelevant at the MI-SF transition of the clean system, in the
vicinity of the fixed point PMI−SF (G = 0, I0 = 1) we can
simplify the RG equations by setting h̃ = 0. The resulting RG
equations for I0 and G,

dI0

d�
= (G − 2)I0 + 2I 2

0 , (11a)

dG

d�
= (4I0 − D)G + 6G2, (11b)

are decoupled from �1,2. Our analysis of these equations
is strictly in the perturbative regime where G(�) � 1. The
divergence of I0 which then obtains for G(�) > 2 is spurious
and outside the range of validity of the perturbative RG
equations. In addition to PMI−SF and the stable MI fixed
point PMI(I0 = 0,G = 0), the RG equations (11) exhibit an
additional fixed point PMI−BG(0,D/6), which turns out to be
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FIG. 2. (Color online) RG flow for (a) D = 3 and (b) D = 5
for incommensurate boson fillings as a function of I0 and G

corresponding (in the limit of large mass r̄) to the inverse mean
and the relative variance of the mass distribution, respectively.

critical fixed point determining the universality of the MI-
BG transition at incommensurate fillings. From linearization
around PMI−BG, we find dH/d� = (D/3 − 2)H , indicating
that the interaction vertex remains irrelevant.

For G = 0, we obtain a trivial flow equation for I0 capturing
the MI-SF of the clean system. For I0 < 1, the flow is toward
PMI, while for I0 > 1 (r̄ < 0), I0(�) → ∞, signaling the
instability toward the formation of a SF.

For D < 4, PMI−SF is unstable for small disorder, G >

0. However, instead of a runaway flow, we find a separatrix
Gs(I0) which connects PMI−SF and PMI−BG as shown in the
case D = 3 in Fig. 2(a). Linearizing around the fixed points,
we find that asymptotically Gs(I0) � (D − 2)(1 − I0) in the
vicinity of PMI−SF and Gs(I0) � D/6 − 4I0/(12 − D) close
to PMI−BG, respectively.

For initial values I0(0) < 1 and G(0) < Gs(I0(0)), the
system flows toward the MI fixed point, whereas for G(0) >

Gs[I0(0)], G(�) will eventually diverge. For initial values
very close to the MI phase, the trajectory [I0(�),G(�)] will
track the separatrix and consequently, sufficiently close to
the transition, the divergence of G(�) is controlled by the
fixed point PMI−BG. Linearizing around this point, we find
G(�) = (�G)eD� with �G = G0 − Gs being the infinitesimal
distance to the separatrix. From the condition G(�∗) � 1,
we obtain the correlation length ξ ∼ (�G)−1/D , implying a
correlation length exponent of ν = 1/D, in perfect agreement
with the value extracted from numerical integration of the full
set of RG equations for D = 3 [see Fig. 1(b)] and a previous
real-space RG and scaling analysis.7,23

Since G �= 0 at the fixed point and in the BG, the fluctu-
ations are no longer25 governed by the central-limit theorem.
This implies that self-averaging breaks down. Consequently,
the bound ν � 2/D (Ref. 24) no longer applies. That the BG
is mediated by rare localized regions is the efficient cause of
this effect. In quantum systems, such rare events play a more
pronounced26 role than in classical systems because of the
perfect correlation of the disorder along the imaginary time
direction.

It is also the divergence of the relative variance that is re-
sponsible for a finite compressibility κ = (βU )−1∂2ln Z/∂r̄2

in the BG. Using the asymptotic form of Seff in which
only the r̄ and ḡ terms are retained, we obtain to leading
order κ ≈ 1/r̄2(1 + 4ḡ/r̄2) which clearly vanishes in the
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MI. However, in the BG sufficiently close to the transition,
κ ≡ κ(l∗) ∼ ξD−4 ∼ (y − yc)γ with γ = 4/D − 1.

For completeness, we briefly discuss the case D > 4 in
which a small amount of disorder is irrelevant at the MI-SF
transition. The inversion of the RG flow along the G direction
is a consequence of the presence of an additional unstable fixed
point Q(1 − ε/8,ε/4) in D = 4 + ε located on the separatrix
[see Fig. 2(b)]. Therefore, in D > 4 the disorder has to exceed
a critical value in order to induce a BG phase in contrast to
recent claims.19

C. Commensurate filling

We now focus on commensurate boson fillings to under-
stand the nature of the transition at the tips of the MI lobes
where γ̄1 = 0 and z = 1. The smaller dynamical exponent
makes the interaction vertex H = I 2

0 h̃ more relevant and in fact
marginal at the MI-SF transition of the clean system in D = 3.
However, for D = 4 − ε, H remains irrelevant at PMI−SF,
suggesting that the critical behavior is controlled by the
same separatrix as for incommensurate fillings. Interestingly,
this is not the case. A numerical integration of the RG
equations shows that in the disordered phase close to the
MI, H (l) diverges simultaneously with G(l). This behavior
is easily understood upon linearizing around PMI−BG, yielding
dH/dl = (D/3 − 1)H , which demonstrates that H becomes
relevant for D > 3. Therefore, for any finite value H (0) > 0,
the separatrix obtained by projection into the I0-G plane does
not terminate in PMI−BG but diverges as Gs ∼ I

−D/(12−D)
0 .

Consequently, the MI-BG transition at commensurate fillings
is not controlled by PMI−BG but by a different fixed point which
is not accessible in the present calculation. However, from the
divergence along the seperatrix, Gs ∼ e

D
6 l we estimate ν =

6/D, which is significantly larger than the incommensurate
value and satisfies the bound ν � 2/D.24

VI. FINAL REMARKS

To summarize, we have analyzed the instabilities of the
MI state of the weakly disordered BH model within an
RG analysis of the disorder-averaged replica theory valid in
the strong-coupling regime. Our analysis shows that the MI
always becomes unstable toward a BG regardless of the boson
filling, in agreement with recent work,19 which, based on a
mathematical theorem, excludes the possibility of a direct
MI-SF transition in the presence of disorder.

While in both insulating phases the mass coefficient
diverges on large scales, rendering SF correlations short
ranged, the relative variance of the induced random mass
distribution renormalizes to zero in the MI and diverges in the
BG. This allowed us to demonstrate that the relative variance
serves as the order parameter for the MI-BG transition. We
further extracted the diverging correlation length of the MI-BG

transition from the scale where the relative variance diverges
under the RG. Since the finite relative variance of an extensive
quantity signals a breakdown of the central-limit theorem,25

the correlation length corresponds to the separation between
rare regions in the BG, causing a breakdown of self-averaging
in the system. We point out that the correlation length defined
here has nothing to do with the SF correlation length, which
remains finite over the MI-BG transition.

The reformulation of the RG equations in terms of new vari-
ables, in particular the relative variance, allows us to identify
fixed points and to subsequently analyze the universality of
the MI-BG transition. That new variables, not apparent in the
UV-complete theory, are necessary to access the fixed point
is typical of strong-coupling problems. At incommensurate
fillings, we find a separatrix which connects the MI-SF fixed
point in the clean system with the critical MI-BG fixed point
in the weakly disordered system. The correlation-length and
compressibility exponents characterizing the MI-BG transition
are determined as ν = 1/D and γ = 4/D − 1, respectively. In
principle, the power-law divergence of the inverse compress-
ibility could be verified either experimentally or numerically
provided that the critical region can be accessed sufficiently.
The violation of the strict lower bound ν � 2/D known as the
quantum Harris criterium24 has been argued some time ago23,25

to be a key signature for the breakdown of self-averaging.
Interestingly, our correlation-length exponent ν = 1/D is
identical to the exponent estimated by a scaling analysis in
the atomic limit for a box distribution of site energies.23

Our analysis shows that the MI-BG transition at commen-
surate fillings is controlled by a different fixed point which
is not accessible within the present RG approach. The two
distinct transitions found here, in retrospect, are not out of
the ordinary, since in the clean system, the MI-SF transitions
are in the universality class of the (D + 1)-dimensional XY
model27,28 and of mean-field type1 for commensurate and
incommensurate fillings, respectively. This dichotomy persists
in the disordered system as well.

This analysis indicates that within a replica theory, insta-
bilities driven by local rare regions, indicative of Griffiths
singularities, are completely accessible if one focuses on
the scaling dependence of the relative variance of the mass
distribution. Since the relative variance of any extensive
quantity acquires a nonzero value25 once self-averaging breaks
down, the method presented here can in principle be applied
to any transition driven by local rare-region physics.
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