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Stability of the Néel quantum critical point in the presence of Dirac fermions
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We investigate the stability of the Néel quantum critical point of two-dimensional quantum antiferromagnets,
described by a nonlinear σ model, in the presence of a Kondo coupling to Nf flavors of two-component Dirac
fermion fields. The long-wavelength order parameter fluctuations are subject to Landau damping by electronic
particle-hole fluctuations. Using the momentum-shell renormalization group (RG), we demonstrate that the
Landau damping is weakly irrelevant at the Néel quantum critical point, despite the fact that the corresponding
self-energy correction dominates over the quadratic gradient terms in the IR limit. In the ordered phase, the
Landau damping increases under the RG, indicative of damped spin-wave excitations. Although the Kondo cou-
pling is weakly relevant, sufficiently strong Landau damping renders the Néel quantum critical point quasistable
for Nf � 4 and thermodynamically stable for Nf < 4. In the latter case, we identify a multicritical point which
describes the transition between the Néel critical and Kondo runaway regimes. The symmetry breaking at this
fixed point results in the opening of a gap in the Dirac fermion spectrum. Approaching the multicritical point
from the disordered phase, the fermionic quasiparticle residue vanishes, giving rise to non-Fermi-liquid behavior.
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I. INTRODUCTION

The discovery of topological insulators [1,2] has initiated
an explosion of research into Dirac or Weyl semimetals and
topological aspects of electronic band structures [3–6]. Dirac
fermions with relativistic dispersion around pointlike Fermi
surfaces can arise as low-energy excitations of weakly in-
teracting electron systems. The most prominent example is
graphene [7], which can be described by a tight-binding model
of electrons on the half-filled honeycomb lattice.

Because of their pointlike Fermi surfaces nodal semimet-
als provide the simplest setting to study fermionic quantum
criticality. While Dirac semimetals are stable against weak
repulsive interactions, a consequence of the vanishing density
of states at the Fermi level, sufficiently strong short-range
interactions can give rise to a range of competing instabilities.
For the extended Hubbard model on the half-filled honeycomb
lattice rich phase diagrams were established [8–17], showing
antiferromagnetic, charge ordered, Kekule, and topological
Haldane phases. Sufficiently strong on-site Hubbard repulsion
gives rise to a transition to an antiferromagnetic state with
a gap in the electron spectrum that is proportional to the
staggered magnetization.

Since the fermionic particle-hole excitations are gapless
at such quantum phase transitions, the critical behavior falls
outside the Landau-Ginzburg-Wilson paradigm of a pure or-
der parameter description [18]. Instead, the nature of the
transitions can be studied within a field theory that describes
the coupling of the bosonic order parameter field, which is
introduced through a Hubbard-Stratonovich decoupling of the
interaction vertex, to the gapless Dirac fermions [19–21]. In
the high-energy community, such field theories are known as

Gross-Neveu-Yukawa (GNY) theories [22,23]. For the anti-
ferromagnetic transition driven by local Hubbard repulsion
the staggered magnetization is described by an O(3) order
parameter field, and the field theory is usually referred to as
the Heisenberg-GNY model. At the fermion-induced GNY
fixed point, the fermions acquire an anomalous dimension,
resulting in the fermion spectral functions with branch cuts
rather than quasiparticle poles [20]. Such non-Fermi-liquid
behavior is the hallmark of fermionic quantum criticality.

Interesting criticality is also expected if Dirac fermions are
coupled to local magnetic moments. In the case of graphene,
local moments can be introduced by adatoms [24] or defects
[25], as evidenced by the experimental observation of a Kondo
effect [26]. Moreover, the high Kondo temperatures [26] re-
flect the strong coupling between the local moments and the
conduction electrons in Dirac materials [27]. In subsequent
work [28] the unusual Kondo quantum criticality of mag-
netic adatoms in graphene and the very fast power-law decay
of the Ruderman-Kittel-Kasuya-Yosida interaction between
them were established.

In this paper we consider two-dimensional quantum
antiferromagnets with Kondo coupling between the local mo-
ments and Dirac electrons. While two-dimensional Kondo
lattice models with Dirac points close to the Fermi level might
be rare, there is the prospect of engineering such models in
heterostructures of graphene and two-dimensional van der
Waals magnets [29], such as the honeycomb Heisenberg anti-
ferromagnets MnPS3 and NiPS3 [30–36].

The aim of this work is to investigate the stability of the
Néel quantum critical point of a local moment antiferromag-
net against the Kondo coupling to Dirac fermions. We will
demonstrate that the universal critical behavior of this model
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is different from that of the Heisenberg-GNY theory which
describes the antiferromagnetic ordering transition of a purely
electronic model with local Hubbard repulsion between Dirac
electrons.

The outline of this paper is as follows. In Sec. II we
introduce the nonlinear σ model (NLσM) describing the
long-wavelength behavior of the two-dimensional quantum
antiferromagnet with Kondo coupling to Nf Dirac fermion
pairs. We discuss the importance of Landau damping of the
Néel order parameter fluctuations by low-energy electronic
particle-hole fluctuations. In Sec. III we analyze the Landau
damped NLσM. Using the momentum-shell renormalization
group (RG), we demonstrate that Landau damping is weakly
irrelevant at the Néel quantum critical point but increases in
the ordered state, indicating that spin-wave excitations are
damped. The full set of RG equations, including the Kondo
coupling, are derived in Sec. IV and analyzed in Sec. V. We
show that while the Kondo coupling is weakly relevant at
the Néel quantum critical point, sufficiently strong Landau
damping renders the critical point quasistable for any realistic
system size for Nf � 4 and thermodynamically stable for
Nf < 4. In the latter case, a multicritical point captures the
transition between Néel critical and Kondo runaway regimes.
We analyze the universal critical behavior associated with this
fixed point. As demonstrated in Sec. VI, the behavior in D = 3
space-time dimensions is not accessible within an ε expansion
above the lower critical dimension, D = 2 + ε. Finally, in
Sec. VII we summarize and discuss our results.

II. MODEL

Our starting model is a NLσM which describes the Néel
transition of a two-dimensional quantum antiferromagnet
[37,38]. This model is coupled to Nf copies of two-component
Dirac electrons via the conventional Kondo coupling. On a mi-
croscopic level this model could be realized in the low-energy
limit of a quantum antiferromagnet on the honeycomb lattice
with Kondo coupling to noninteracting electrons that move on
either the same or adjacent honeycomb lattice at half filling.
For this realization we would have Nf = 4 due to twofold
spin and valley degeneracies. The effective continuum field
theory at zero temperature is given by the imaginary-time path
integral over the action S = S f + SN + SK , with contributions

S f =
∫

q,ω

ψ(q, ω)

(
−i

ω

vF
+ qxτx + qyτy

)
ψ(q, ω),

SN = 1

2g

∫
d2r

∫ ∞

0
dτ

{
(∇ �N )2 + 1

c2
(∂τ �N )2

}
,

SK = λ√
Nf

∫
d2r

∫ ∞

0
dτψ( �N · �σ ⊗ τz )ψ, (1)

where S f describes two-dimensional Dirac fermions with
Fermi velocity vF , written in terms of fermionic Grassmann
fields ψ. The term SN is the conventional NLσM in terms
of the staggered three-component Néel order parameter field
�N (r, τ ), which satisfies the constraint �N2(r, τ ) = 1. Here c
denotes the spin-wave velocity, and the coupling constant g is
inversely proportional to the spin stiffness. The last contribu-
tion, SK , is the Kondo coupling between the local moments

(a)

(b) (c) (d)

(e) (f)

ρ

FIG. 1. One-loop diagrams relevant to our RG calculation. Solid
lines represent fermionic degrees of freedom; wiggly lines represent
the Néel order parameter fields. (a) The fermionic bubble diagram
integrated over small momenta and frequencies gives rise to the
nonanalytic Landau damping of long-wavelength order parameter
fluctuations. The momentum-shell contribution of this diagram con-
tributes to the renormalization of the coupling constant g of the
NLσM. (b)–(d) Diagrams relevant for the RG of the Landau damped
NLσM. The diagram in (b) is identical to zero, and (c) renormalizes
the quadratic gradient terms and hence the coupling constant g. The
unphysical mass term generated by (c) is canceled by the contribution
in (d) from the functional integral measure. (e) The fermionic self-
energy diagram renormalizes the overall prefactor of the free fermion
action Sf . The scaling dimension of the fermion fields is determined
such that the prefactor remains constant. (f) Diagram contributing to
the renormalization of the Kondo coupling λ.

and Dirac electrons. Here �σ is the vector of spin Pauli ma-
trices, while the Pauli matrices τα act on sublattice space.
Note that since �N describes the staggered magnetization the
coupling has opposite signs on the two sublattices, resulting
in the additional τz. The low-energy continuum field theory is
subject to a UV momentum cutoff, |q| � 	.

As pointed out in the context of GNY theories [39,40], the
Landau damping of the bosonic order parameter fluctuations
by electronic particle-hole fluctuations gives rise to a self-
energy contribution


(q, ω) = γ

√
q2 + ω2/v2

F (2)

to the inverse boson propagator in two spatial dimensions.
This nonanalytic self-energy correction arises from the dia-
gram in Fig. 1(a) from the integration of fermion modes near
zero momenta and frequency. It is therefore not generated
within the momentum-shell RG but needs to be included
to correctly capture the universal critical behavior of GNY
theories [39,40]. The form of the Landau damping does not
depend on the number of order parameter components and is
not affected by the fixed-length constraint of the Néel order
parameter field. Note that although the bare Landau damping
parameter γ0 is determined by the square of the bare Kondo
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coupling, γ0 ∼ λ2
0, this relation is not preserved under the RG.

We therefore treat γ and λ as independent coupling constants.
Under the RG there will be a nontrivial flow of the ve-

locities c and vF . For simplicity, we will focus on the case
vF = c, which is preserved under the RG. For convenience,
we rescale to dimensionless momenta k = q/	 and frequen-
cies k0 = ω/(c	) and absorb the additional prefactors in a
redefinition of the coupling constants. Since both the order
parameter and fermion sectors are relativistic and frequency
and momenta enter the zero-temperature field theory in the
same way, the quantum critical behavior will be described by a
dynamical exponent, z = 1. We will therefore treat frequency
and momenta on equal footing and impose an isotropic cutoff
in 2+1 dimensions,

√
k2 + k2

0 � 1. Note that the universal
critical behavior is independent of the choice of the UV cutoff
scheme.

III. LANDAU DAMPED NLσM

We start by investigating the effects of Landau damping on
the Néel transition in the case of vanishing Kondo coupling,
λ = 0. Our starting point is the NLσM

SN = 1

2g

∫
k
�−1(k) �N (k) · �N (−k), (3)

where we have defined k = (k, k0) and
∫

k = ∫ dk0
2π

∫
d2k

(2π )2 ,
subject to the cutoff |k| � 1 for brevity, and include the Lan-
dau damping γ in the inverse propagator,

�−1(k) = k2 + γ |k| = k2 + k2
0 + γ

√
k2 + k2

0 . (4)

We follow the conventional treatment [37,38,41] and
decompose �N = ( �π, σ ) and use the constraint σ (r, τ ) =√

1 − �π2(r, τ ) to eliminate σ and derive an effective action
in terms of the transverse fields �π . In the presence of Lan-
dau damping, we need to apply the constraint in momentum
space, σ (k) = δ(k) − 1

2

∫
q �π (q)�π (k − q). This results in the

effective action

SN = 1

2g

∫
k
�−1(k)�π (k) · �π (−k) − ρ

2

∫
k

�π (k) · �π (−k)

+ 1

16g

∫
k1,...,k4

δ(k1 + k2 + k3 + k4)[�−1(k1 + k2)

+�−1(k3 + k4)][�π (k1) · �π (k2)][�π (k3) · �π (k4)], (5)

where ρ is the density and the corresponding term arises from
exponentiation and expansion of 1/[2

√
1 − �π2(r, τ )] from

the path-integral measure [41].
We integrate out modes with momenta and frequen-

cies from an infinitesimal shell near the cutoff, e−d� �√
k2 + k2

0 � 1, followed by a rescaling of momenta, k →
ked�, and frequencies, k0 → k0ezd�, with dynamical exponent
z = 1. In addition, we rescale the transverse spin-fluctuation
fields as �π (k) → �π (k)e−�π d�.

At one-loop order, the contraction of two order parameter
fields,

〈πα (k)πβ (k′)〉0 = gδαβδ(k + k′)�(k), (6)

gives rise to the renormalization of the quadratic action by
the quartic vertex. The diagram in Fig. 1(b) vanishes because

�−1(0) = 0. The diagram shown in Fig. 1(c) gives rise to
a term ∼k2 �π (k) · �π (−k) and hence a renormalization of the
coupling constant g. In addition, it produces a mass term
∼�π (k) · �π (−k) which cancels exactly with the trivial term
from the reduction of the density ρ by the shell contribution
[Fig. 1(d)]. Evaluating the momentum-shell and frequency
integrals and combining them with the rescaling contributions,
we obtain the RG equations

d

d�

(
1

2g

)
= (−5 + 2�π )

1

2g
+ 1

(2π )2

1 + γ /3

1 + γ
, (7)

d

d�

(
γ

2g

)
= (−4 + 2�π )

γ

2g
. (8)

The scaling dimension �π of the transverse spin-
fluctuation fields needs to be determined such that the
constraint of the NLσM is satisfied on all scales. This is the
case only if the coupling constant g in front of the quartic
vertex renormalizes in exactly the same way as the g in front
of the quadratic action. Instead of evaluating the second-order,
one-loop diagrams that renormalize the vertex, we employ
a trick invented by Nelson and Pelcovits [41] to include a
staggered magnetic field term, − h

2g

∫
r,τ σ (r, τ ), in the action.

Since the scaling of the magnetic field should not depend
on the field direction and since the staggered magnetic field
couples linearly to the Néel order parameter field, the scaling
dimension of the applied field is equal to that of the order
parameter field itself,

d

d�

(
h

2g

)
= �π

h

2g
. (9)

On the other hand, we can use the constraint to expand
σ (r, τ ) in terms of the �π fields and explicitly compute the
one-loop renormalization of the applied field,

d

d�

(
h

2g

)
= (−3 + 2�π )

h

2g
+ 1

(2π )2

h

1 + γ
. (10)

Equating Eqs. (9) and (10), we obtain

�π = 3 − 2

(2π )2

g

1 + γ
, (11)

which results in the coupled RG equations

dg̃

d�
= −g̃ + 1 − γ /3

1 + γ
g̃2, (12)

dγ

d�
= γ

[
1 − 1 + γ /3

1 + γ
g̃

]
(13)

for g̃ = 2
(2π )2 g and the Landau damping γ .

For γ = 0 we recover the RG equation of the conventional
NLσM in 2+1 space-time dimensions. This RG equation ex-
hibits two fixed points: The attractive, Néel ordered fixed
point at g̃ = 0 and the critical fixed point at g̃ = g̃c = 1. For
g̃(0) < 1 the RG flow is towards g̃ = 0, corresponding to a
freezing of transverse spin fluctuations on larger and larger
scales. On the other hand, for g̃(0) > 1, g̃(�) → ∞, corre-
sponding to a vanishing of the spin stiffness and indicative
of the destruction of long-range order by spatial and temporal
fluctuations.

The coupled RG equations (12) and (13) do not exhibit
any additional fixed points at finite γ . The RG flow in the
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FIG. 2. RG flow of the Landau damped NLσM as a function of
the rescaled inverse spin stiffness g̃ = g/gc and Landau damping γ .
The red line separates the Néel antiferromagnet from the paramagnet.
Along this separatrix, γ renormalizes to zero, demonstrating that the
Néel quantum critical point Pc is stable against Landau damping.
The increase of γ in the ordered phase indicates that spin-wave
excitations are damped.

g̃-γ plane is shown in Fig. 2. In the antiferromagnetically or-
dered phase, γ (�) increases, indicative of damped spin-wave
excitations. At the critical fixed point of the Néel transition
the Landau damping γ is weakly irrelevant. The separatrix
between the Néel antiferromagnet and the quantum disordered
phase is given by g̃ ≈ 1 + 4

3γ − 4
9γ 2. Along the separatrix

and for an initial value γ0 = γ (0) � 1, the Landau damping
vanishes as γ (�) = γ0/(1 + 2

3γ0�).

IV. INCLUDING THE KONDO COUPLING
TO DIRAC FERMIONS

We now include the Kondo coupling SK between the or-
der parameter field and Nf copies of two-component Dirac
fermion fields, as given in Eq. (1). The momentum-shell
contribution of the diagram in Fig. 1(a) will give rise to an
additional correction to the NLσM,

δSN = −1

2

λ2

Nf

∫ <

q

�N (q) · �N (−q)

×
∫ >

k
Tr{τzGψ (k)τzGψ (k + q)}, (14)

where
∫ <

q and
∫ >

k denote frequency-momentum integrals over

|q| � e−d� and e−d� � |k| � 1, respectively. The fermionic
Green’s function in each of the Nf copies is given by

Gψ (k) = ik0 + kxτx + kyτy

k2
0 + k2

. (15)

Note that the trace in Eq. (14) results in an additional factor
of Nf . Expanding external momenta/frequencies q = (q, q0)

to quadratic order, we obtain

δSN = −1

3
λ2 2

(2π )2
d�

∫ <

q
q2 �N (q) · �N (−q), (16)

resulting in an additional contribution, d ( 1
2g ) = − 1

3λ2 2
(2π )2 d�,

to the renormalization of the coupling constant. This changes
the RG equations for g̃ and γ to

dg̃

d�
= −g̃ +

[
1 − γ /3

1 + γ
+ 2

3
λ2

]
g̃2, (17)

dγ

d�
= γ

[
1 − 1 + γ /3

1 + γ
g̃ + 1

3
λ2g̃

]
. (18)

In order to determine the renormalization of the Kondo
coupling constant λ, we first need to determine the scaling
dimension �ψ of the fermion fields. The diagram in Fig. 1(e)
results in the correction

δS f = −2λ2g

Nf

∫ <

k
ψ (k)

(∫ >

q
D(q)τzGψ (k + q)τz

)
ψ (k)

= 2

3Nf

1

1 + γ
λ2g̃ d�

∫ <

k
ψ (k)G−1

ψ (k)ψ (k), (19)

where the factor of 2 arises from the number of components
of the transverse spin-fluctuation field �π , Nπ = 2.

After rescaling frequency and momenta as before and
fermion fields as ψ (k) → ψ (k)e−�ψ d�, we demand that the
prefactor of S f remain scale invariant, which results in

�ψ = 2 − 1

3Nf

1

1 + γ
λ2g̃. (20)

The diagram that contributes to the renormalization of the
Kondo vertex is shown in Fig. 1(f) and equals

δSK = gλ3

√
Nf

3

∑
i

∫ <

k1,k2

πi(k1 − k2)ψ (k1)�iψ (k2), (21)

with coupling matrices

�i =
∑

j

∫ >

q
D(q)(σ j ⊗ τz )Gψ (q)(σi ⊗ τz )

×Gψ (q)(σ j ⊗ τz ). (22)

Since Gψ is independent of spin, we can evaluate the
products of spin Pauli matrices and carry out the sum over
j,

∑
j σ jσiσ j = (2 − Nπ )σi. The momentum-shell integral is

trivial, and we indeed find that �i is proportional to the origi-
nal Kondo coupling matrix σi ⊗ τz,

�i = 2

(2π )2
(Nπ − 2)

1

1 + γ
d�(σi ⊗ τz ). (23)

However, the result crucially depends upon the number Nπ

of order parameter components, as discussed in the literature
[42,43]. While the results for Nπ = 1 and Nπ = 3 are equal
but of opposite sign, the diagram vanishes in the relevant case
of Nπ = 2 components, δSY = 0.
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FIG. 3. RG flow as a function of inverse spin stiffness g̃ = g/gc

and Kondo coupling λ to Dirac fermions with Nf = 4 flavors. At the
Néel quantum critical point Pc, the Kondo coupling is a weakly rele-
vant perturbation, indicated by the increase of λ along the separatrix
shown in red.

The rescaling of momenta, frequencies, and fields gives
rise to the RG equation

dλ

d�
= (−6 + �π + 2�ψ )λ

= λ

[
1 − g̃

1 + γ
− 2

3Nf

λ2g̃

1 + γ

]
(24)

for the Kondo coupling λ.

V. ANALYSIS OF RG FLOW

We will now discuss the coupled RG equations for the in-
verse spin stiffness g̃ (17), the Landau damping γ of the Néel
order parameter (18), and the Kondo coupling λ to the Dirac
fermions (24). In Sec. III we found that in the absence of
Kondo coupling (λ = 0), the Landau damping γ is weakly
irrelevant at the Néel quantum critical point Pc.

Let us first investigate the stability of Pc against Kondo
coupling in the absence of Landau damping (γ = 0). In
this case the RG equations reduce to dg̃/d� = −g̃ + (1 +
2
3λ2)g̃2 and dλ/d� = λ(1 − g̃ − 2

3Nf
λ2g̃). In this case we

find a separatrix g̃ = 1 − 2
3λ2, along which the flow of

the Kondo coupling increases according to dλ/d� = 2
3 (1 −

1/Nf )λ3, resulting in λ(�) = λ0/
√

1 − 4
3λ2

0(1 − 1/Nf )�. The
Néel quantum critical point is therefore very weakly unstable
against the Kondo coupling to Dirac fermions. The RG flow
in the g̃-λ plane is shown in Fig. 3.

To determine the critical surface in the three-dimensional
parameter space of g̃, γ , and λ, we insert a polynomial ansatz
g̃ = f (γ , λ) into the RG equations (17), (18), and (24). To
second order we obtain

g̃ = 1 + 4
3γ − 4

9γ 2 − 2
3λ2. (25)

FIG. 4. RG flow within the critical surface for Nf = 4, relevant to
Dirac electrons on the honeycomb lattice. The Néel quantum critical
point Pc is stable against Landau damping γ but unstable against
Kondo coupling λ. For sufficiently strong Landau damping, the RG
flow is towards Pc until the trajectories turn to hit the magenta lines,
which are given by γ ′(�) = 0 and λ′(�) = 0 and closely track each
other. At this point the RG flow becomes extremely slow, and the
parameters acquire small metastable values.

The critical surface is shown in Fig. 4. As expected, the
critical surface contains the separatrices in the λ = 0 and
γ = 0 planes. For initial values of the coupling constants
slightly outside the surface, the RG flow is away from the
surface: The inverse spin stiffness g̃ renormalizes to zero on
one side, indicative of a freezing of spin-wave fluctuations,
and to infinity on the other side, corresponding to a quantum
disordered state. The Landau damping γ has a stabilizing
effect on the Néel order, while the Kondo coupling λ has a
destabilizing effect.

To analyze the competition between γ and λ within the
critical surface we replace g̃ in the corresponding RG equa-
tions, using Eq. (25),

dγ

d�
= −2

3
γ 2 + 2

3
γ 3 + γ λ2, (26)

dλ

d�
= −1

3
γ λ + 7

9
γ 2λ + 2

3
(1 − 1/Nf )λ3, (27)

where we have expanded up to cubic order in the coupling
constants. For Nf � 4, the RG equations exhibit only a single
fixed point at λ = 0 and γ = 0, corresponding to the Néel
quantum critical point Pc. The RG flow in the critical surface
and several trajectories obtained from numerical integration
of the RG equations (26) and (27) are shown in Fig. 4 for the
case with Nf = 4.
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The RG flow is best understood in terms of the lines
along which (i) γ ′(�) = 0 and (ii) λ′(�) = 0, shown in ma-
genta in Fig. 4 and given by (i) λ2 = 2

3 (γ − γ 2) and (ii)
λ2 = 1

2(1−1/Nf ) (γ − 7
3γ 2), respectively. These lines merge at

Pc, and because they exhibit the same asymptotic functional
form, λ ∼ √

γ , they closely track each other. As a result, the
RG flow becomes very slow in the vicinity of this pair of lines,
and it is not possible for trajectories to cross them on scales
relevant to any realistic system size.

The case with Nf = 4, relevant to Dirac electrons on the
honeycomb lattice, is the most extreme since in this case the
coefficients of the leading

√
γ terms are identical. For weak

Landau damping, λ2 > 2
3γ , corresponding to points above

the magenta lines, the flow is towards the regime of strong
Kondo coupling. This indicates that the Néel quantum critical
Pc point becomes unstable toward Kondo physics, which falls
outside the validity of our analysis.

On the other hand, if the Landau damping is sufficiently
strong, λ2 < 2

3γ , both λ(�) and γ (�) decrease under the
RG. The corresponding trajectories approach Pc until they
eventually turn to hit the magenta lines. Here the RG flow
practically comes to a standstill, and λ(�) and γ (�) reach
metastable plateau values γ∗ and λ2

∗ ≈ 2
3γ∗. The nonzero

Kondo coupling leads to the opening of a small electronic
gap � ∼ λ∗|〈 �N (r, τ )〉| in the Néel ordered phase where the
spin-rotational symmetry is broken. On the critical surface the
finite values γ∗ and λ∗ result in an anomalous contribution to
the scaling dimension �ψ of the fermion fields, giving rise
to non-Fermi-liquid behavior. However, the corresponding
critical exponents are nonuniversal since the behavior is not
associated with a true fixed point.

For Nf < 4 the RG equations (26) and (27) exhibit an
additional fixed point P̃c at

γ̃c = 4 − Nf

4 + 3Nf
, λ̃2

c = 8

3

Nf (4 − Nf )

(4 + 3Nf )2
, (28)

which merges with the Néel quantum critical point Pc as
Nf → 4, showing again that the case with Nf = 4 is marginal.

In Fig. 5 the RG flow of γ and λ within the critical sur-
face is shown for the representative case with Nf = 2. In the
blue region the RG flow is towards Pc, demonstrating that
the Néel fixed point is thermodynamically stable rather than
metastable. In the regime of small Kondo coupling λ, this
stability is achieved by finite, but very small, Landau damping
γ . In the purple region the RG flow is towards large values
of γ and λ, beyond the validity of our RG equations. The
transition between this Kondo runaway regime and the Néel
critical region is described by the multicritical fixed point P̃c.

We proceed to analyze the universal critical behavior of
the multicritical point P̃c for general Nf < 4. The correlation
length exponent ν̃ can be obtained from linearizing the RG
equation for the inverse spin stiffness (17) around the critical
value g̃c ≈ 1 + 4

3 γ̃c − 2
3 λ̃2

c . The resulting RG equation is of
the general form d (g̃ − g̃c)/d� = ν̃−1(g̃ − g̃c). A short calcu-
lation gives ν̃ = 1, which is identical to the correlation length
exponent ν = 1 at the Néel quantum critical point Pc.

From the scaling dimension �π (11) of the transverse spin
fluctuations fields �π we obtain the anomalous dimension ηπ =

!"!! !"!# !"$! !"$# !"%! !"%#
!"!

!"$

!"%

!"&

!"'0.4

0.2

0.0

λ

Pc

0.20.0 0.1
γ

P̃c

Kondo run-away

FIG. 5. RG flow of the Landau damping γ and the Kondo cou-
pling λ within the critical surface for Nf = 2. The Néel quantum
critical point Pc is thermodynamically stable in the blue region. In the
purple region the flow is towards increasing λ, indicative of strong-
coupling Kondo physics. The transition between the two regimes is
controlled by a new multicritical point P̃c.

1 at the Néel critical point Pc and

η̃π = g̃c

1 + γ̃c
≈ 1 + 1

9

(4 − Nf )(12 − 7Nf )

(4 + 3Nf )2
(29)

at the multicritical point P̃c. The additional contribution to η̃π

results in a slightly different exponent of the algebraic order
parameter correlations at criticality, 〈 �π (r)�π (0)〉 ∼ r−D+2−η̃π ,
and corrections to other critical exponents, which can be
obtained from the conventional scaling and hyperscaling re-
lations.

Due to the finite value λ̃c (28) of the Kondo coupling at P̃c,
the symmetry breaking transition will be accompanied by the
opening of a gap [20],

� ∼ (g̃c − g̃)zν̃ = (g̃c − g̃), (30)

in the Dirac fermion spectrum for g̃ < g̃c in the Néel ordered
phase. Moreover, at P̃c the fermions acquire a small anoma-
lous dimension [see Eq. (20)],

η̃ψ = 1

3Nf

λ̃2
c g̃c

1 + γ̃c
≈ 8

9

4 − Nf

(4 + 3Nf )2
, (31)

which implies that the fermion Green’s function has branch
cuts rather than quasiparticle poles. The multicritical point P̃c

is therefore associated with non-Fermi-liquid behavior. From
a scaling analysis of the fermionic spectral function [20] we
find that the quasiparticle pole strength vanishes as

Z ∼ (g̃ − g̃c)(z−1+η̃ψ )ν̃ = (g̃ − g̃c)η̃ψ (32)

as the critical point is approached from the semimetallic,
nonmagnetic phase (g̃ > g̃c).

VI. COMPARISON WITH THE ε EXPANSION

We now address the question of whether the same qualita-
tive behavior can be found within an ε expansion above the
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lower critical dimension, D = 2 + ε. Although such an ex-
pansion gives analytic control of the criticality of the NLσM
[41,44], the Padé-Borel extrapolation to ε = 1 may be prob-
lematic due to a lack of sign oscillations in the coefficients of
the ε expansion of 1/ν [45].

An additional problem arises when the NLσM is coupled
to Dirac fermions since the form of the resulting Landau
damping of the Néel order parameter field explicitly depends
on the dimension D, 
(k) = γ |k|D−2 [40]. At one-loop order
the RG equations for the inverse spin stiffness g̃ = g/(2π ) and
the Landau damping γ in D = 2 + ε are given by

dg̃

d�
= −εg̃ + 1 − γ ε2/4

1 + γ
g̃2, (33)

dγ

d�
= γ

[
2 − ε − 1 + γ ε2/4

1 + γ
g̃

]
, (34)

where we have determined the scaling dimension of the order
parameter field �π = 2 + ε − g̃/(1 + γ ) from the renormal-
ization of an auxiliary magnetic field, as before.

Without Landau damping, γ = 0, we obtain the Néel quan-
tum critical point at g̃c = ε. At the critical spin stiffness the
linearized RG equation for γ is equal to dγ /d� = 2(1 − ε)γ ,
showing that near the lower critical dimension the Landau
damping is a relevant perturbation.

Interestingly, the shell contribution of the diagram in
Fig. 1(a) is equal to zero in D = 2 due to a vanishing angular
integral. As a result, the Kondo coupling λ does not contribute
to the renormalization of g̃ and γ , unlike in D = 3.

For similar reasons, the angular integration over the (D =
2)-dimensional shell causes the fermionic self-energy di-
agram, shown in Fig. 1(e), to vanish. The fermion field
therefore does not acquire an anomalous dimension, and the
scaling dimension is trivial, �ψ = (3 + ε)/2. From the scal-
ing dimensions �π and �ψ we obtain the renormalization of
the Kondo coupling,

dλ

d�
= λ

[
1 − g̃

1 + γ

]
. (35)

At g̃c = ε and γ = 0 the RG equation reduces to dλ/d� =
(1 − ε)λ, demonstrating that the Kondo coupling is a relevant
perturbation at the Néel quantum critical point for ε < 1. Note
that for ε = 1 both the Landau damping γ and the Kondo
coupling λ become marginal, consistent with our calculation
in D = 3.

VII. DISCUSSION

We have investigated the stability of the Néel quantum
critical point of a two-dimensional quantum antiferromagnet
with a Kondo coupling to Nf flavors of two-component Dirac
fermion fields. For Nf = 4 this would describe Dirac electrons
on the honeycomb lattice with twofold spin and valley degen-
eracies.

The resulting long-wavelength field theory is given by
a NLσM coupled to the Dirac fermion fields. It is crucial
to account for the Landau damping of the Néel order pa-
rameter field. From simple scaling arguments, the resulting
self-energy correction to the order parameter propagator is
expected to dominate the IR physics.

At first glance the field theory seems very similar to the
Heisenberg-GNY theory, which describes the criticality in a
purely electronic model with strong local repulsions between
the Dirac electrons. There are crucial differences, however.
While in the GNY theory the quantum phase transition is
tuned by the mass of the order parameter field, the NLσM
contains only gradient terms, and the criticality occurs as a
function of the inverse spin stiffness. It is therefore essen-
tial to follow the scale dependence of the order parameter
propagator with both the quadratic gradient terms and the
nonanalytic self-energy correction from Landau damping. In
the Heisenberg-GNY theory, on the other hand, the quadratic
gradient terms can be discarded.

Another important difference is that the scaling dimension
of the transverse spin-fluctuation field of the NLσM is fixed
by the requirement that the constraint �N2 = 1 is satisfied on all
length scales. As a result, the boson scaling dimension cannot
be used to enforce scale invariance of the Kondo coupling, in
contrast to the large-Nf Heisenberg-GNY theory.

We have employed momentum-shell RG to analyze the
scale dependence of the inverse spin stiffness g, the Landau
damping γ , and the Kondo coupling λ. Although γ and λ are
initially linked to each other via the fermionic polarization
diagram, the two parameters flow independently under the
RG. At the Néel quantum critical point the scaling dimensions
of both γ and λ vanish, and a bifurcation analysis is required.
We have investigated the coupled RG flow of the two pertur-
bations within the critical surface g = f (γ , λ), which contains
the unperturbed Néel quantum critical point and separates the
regions where transverse spin fluctuations freeze or diverge.

The flow within the critical surface shows that while the
Landau damping γ is weakly irrelevant at the Néel critical
point, the Kondo coupling λ is a weakly relevant perturba-
tion. Interestingly, the interplay between the two parameters
crucially depends on the number Nf of Dirac fermion flavors.
For Nf � 4, sufficiently strong Landau damping renders the
Néel quantum critical point metastable. This is evident from
an RG flow towards the Néel critical point up to scales larger
than those relevant to experiments. This behavior is most
pronounced for the marginal case Nf = 4, representing Dirac
electrons on the honeycomb lattice.

For Nf < 4 the Néel critical point becomes thermody-
namically stable over a region where the Landau damping
dominates over the Kondo coupling. We have established
a multicritical point on the critical surface which controls
the transition between the Néel critical and Kondo runaway
regimes. The finite values of γ and λ lead to distinct critical
exponents and an anomalous dimension of the fermion fields,
resulting in non-Fermi-liquid behavior. It would be interesting
to investigate whether our results are robust at higher-loop or-
der and whether the change in behavior still occurs at Nf = 4
or at a different number of Dirac fermion flavors.

Finally, we have investigated the problem in D = 2 +
ε space-time dimensions where the RG calculation of the
NLσM is controlled. We found that near the lower critical
dimension both the Landau damping and the Kondo coupling
are relevant perturbations at the Néel quantum critical point,
resulting in a runaway flow. Unfortunately, the rich behavior
in 2+1 dimensions is not accessible within an ε expansion
above the lower critical dimension, and the large-Nf limit does
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not provide analytic control as in the Heisenberg-GNY the-
ory. Nevertheless, our results point towards interesting novel

critical behavior that could potentially be further investigated
using quantum Monte Carlo.
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