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Majorana-fermion mean field theories of Kitaev quantum spin liquids
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We determine the phase diagrams of anisotropic Kitaev-Heisenberg models on the honeycomb lattice using
parton mean-field theories based on different Majorana fermion representations of the S = 1/2 spin operators.
First, we use a two-dimensional Jordan-Wigner transformation (JWT) involving a semi-infinite snake string
operator. To ensure that the fermionized Hamiltonian remains local, we consider the limit of extreme Ising
exchange anisotropy in the Heisenberg sector. Second, we use the conventional Kitaev representation in terms of
four Majorana fermions subject to local constraints, which we enforce through Lagrange multipliers. For both
representations, we self-consistently decouple the interaction terms in the bond and magnetization channels and
determine the phase diagrams as a function of the anisotropy of the Kitaev couplings and the relative strength of
the Ising exchange. While both mean-field theories produce identical phase boundaries for the topological phase
transition between the gapless and gapped Kitaev quantum spin liquids, the JWT fails to correctly describe the
magnetic instability and finite-temperature behavior. Our results show that the magnetic phase transition is first
order at low temperatures but becomes continuous above a certain temperature. At this energy scale, we also
observe a finite-temperature crossover on the quantum-spin-liquid side, from a fractionalized paramagnet at low
temperatures, in which gapped flux excitations are frozen out, to a conventional paramagnet at high temperatures.
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I. INTRODUCTION

Quantum spin liquids (QSLs) [1–3] are a novel class of
materials in which geometric and/or exchange frustration
suppresses magnetic order down to absolute zero temperature.
Because of the topological character of the ground-state wave
function with a special type of long-range quantum entangle-
ment, QSLs exhibit exotic fractional excitations [4], which
are believed to hold great potential for quantum communica-
tion and computation [5]. These concepts were put on a firm
footing in the seminal work by Kitaev [6], who constructed
an exactly solvable QSL model on the honeycomb lattice and
demonstrated that the spins break up (fractionalize) into a
set of Majorana fermions. The emergent fermions essentially
behave as the electrons in graphene with a relativistic Dirac
dispersion, although they don’t carry electric charge and are
coupled to gauge fields.

Although the bond-directional dependence of the Ising
exchange anisotropy in the Kitaev model might seem arti-
ficial, it was later realized that, as a result of spin-orbital
entanglement [7], the Kitaev couplings can play a dominant
role in honeycomb iridates and ruthenates, such as Na2IrO3

[8–12], α-Li2IrO3 [10], β-Li2IrO3 [13], γ -Li2IrO3 [14], and
α-RuCl3 [15–17]. However, small additional magnetic inter-
actions such as Heisenberg terms drive these systems into a
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magnetically ordered state that forms at low temperatures.
Nevertheless, at higher temperatures or in applied magnetic
field, signatures of the nearby Kitaev QSL state are seen [18].

While the theoretical interest in the novel fundamental
physics of QSLs is considerable, the experimental identi-
fication of QSLs has proven difficult. While the emergent
fermions have manifestations in specific heat and thermal
transport properties [18–20], rather indirect evidence comes
from the lack of magnetic ordering seen in NMR, μSR, and
neutron diffraction, as well as from the absence of sharp
quasiparticle excitations in neutron scattering. Unlike in the
case of Heisenberg spin-1/2 chain systems where the mea-
sured intensity variation is quantitatively understood from the
continuum of fractionalized spinon excitations [21,22], in the
case of two-dimensional QSLs theoretical techniques are yet
to be developed to quantitatively understand finite temperature
excitation spectra.

A possible way to distinguish signatures of fractional-
ization from diffuse scattering originating from disorder or
short-ranged and -lived quasiparticle excitations is through
entanglement witnesses such as quantum Fisher information
[23], which can be directly computed from the dynamic
susceptibilities measured in inelastic neutron scattering exper-
iments [24]. In the case of the idealized Kitaev model, it was
demonstrated theoretically [25,26] that the magnetic structure
factor shows signatures of fractionalized Majorana fermions
and fluxes of Z2 gauge fields that are in qualitative agreement
with the finite-temperature excitation spectrum of α-RuCl3

[16,17]. More recently, the theoretical approach was extended
beyond the integrable point of the pure Kitaev model, us-
ing an augmented parton mean-field theory based on the

2469-9950/2024/109(1)/014407(13) 014407-1 Published by the American Physical Society

https://orcid.org/0009-0008-1840-0914
https://orcid.org/0000-0002-2608-7971
https://orcid.org/0000-0002-1009-6785
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.014407&domain=pdf&date_stamp=2024-01-09
https://doi.org/10.1103/PhysRevB.109.014407
https://creativecommons.org/licenses/by/4.0/


SAHELI, LIN, HU, AND KRÜGER PHYSICAL REVIEW B 109, 014407 (2024)

Kitaev Majorana representation [27]. Finally, by combining
the density-matrix renormalization ground-state method and a
matrix-product state based dynamical algorithm [28], it was
demonstrated that the spectra of the Kitaev-Heisenberg model
close to the QSL phase show proximate spin-liquid features.

Although the physics of the Kitaev model is naturally
captured in terms of Majorana fermions, phase diagrams of
the Kitaev-Heisenberg model and extensions thereof were
calculated in terms of complex spin-1/2 fermionic spinons,
either on the level of SU(2) slave fermion mean-field theory
[29,30] or numerically by means of pseudofermion functional
renormalization group [10,31,32].

In this paper, we compute zero and finite-temperature
mean-field phase diagrams in terms of fractionalized Majo-
rana fermion degrees of freedom. There exist different types
of representations of the spin-1/2 operators in terms of Ma-
jorana fermions which are equivalent for the description of
the ground-state properties of the pure isotropic or anisotropic
Kitaev model [33,34], but not necessarily if finite-temperature
excitations are considered or additional interactions are taken
into account. We focus on two representations, the one orig-
inally introduced by Kitaev [6] and the two-dimensional
Jordan-Wigner transformation (JWT) [33,35–37].

In addition to Kitaev and Heisenberg exchange, we will
consider magnetic exchange anisotropy, which as a result of
the directional dependence of the Kitaev coupling induces
spatial anisotropy. For the pure Kitaev model, anisotropy is
known to result in a topological phase transition [6] from a
QSL hosting gapless Majorana and gapped flux excitations to
a gapped Z2 one with Abelian excitations [28].

The outline of the paper is as follows. In Sec. II, we
define and motivate the Hamiltonian of the anisotropic S =
1/2 Kitaev-Heisenberg model on the honeycomb lattice. The
two-dimensional JWT and consecutive mean-field decoupling
scheme are introduced in Sec. III, where the underlying string
operator is defined such that the fermionized Hamiltonian
remains local in the extreme Ising limit of the Heisenberg ex-
change interaction. In Sec. IV, we map the spin Hamiltonian
to a set of four Majorana fermions, following the original con-
struction by Kitaev, and enforce the Hilbert space constraint
through a Lagrange multiplier. We discuss the mean-field
decoupling of the interaction terms in bond and magnetization
channels and determine the Lagrange multiplier as a function
of the mean-field parameters.

Our results are presented in Sec. V. We first demonstrate
that the two mean-field theories result in identical phase
boundaries for the topological transition between the gapless
and gapped Kitaev QSLs. Interestingly, the anisotropy of the
Kitaev coupling and the Ising exchange cooperate in driving
the transition. We then determine the antiferromagnetic insta-
bility driven by the Ising exchange. This transition is strongly
first order and not correctly described by the JWT mean-field
theory. We finally determine the finite-temperature phase di-
agram and show that the magnetic phase transition becomes
continuous above a certain temperature. At this temperature
scale, the specific heat above the Kitaev QSL shows a peak,
indicating a crossover between a fractionalized paramagnet
with frozen Z2 flux excitations to a conventional paramagnetic
state at higher temperatures. In Sec. VI, we summarize and
discuss our results.
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FIG. 1. (a) Illustration of the Kitaev model on the honeycomb
lattice. The three inequivalent nearest-neighbor bonds are labeled
by γ = x, y, z and shown in different colors. Along a bond in the
γ direction, only the spin components Sγ between the neighboring
sites are coupled. We allow the Kitaev couplings to be anisotropic
and include an additional Ising exchange between spin-z components
on all nearest-neighbor bonds. The unit cell of the honeycomb lattice,
shaded in grey, contains two lattice sites labeled by A and B. (b) The
pure Kitaev model is exactly solvable in terms of Majorana fermions.
In the isotropic limit, one band is gapless with Dirac points at the
corners K+ and K− of the hexagonal Brillouin zone (BZ). With
increasing anisotropy δ and Ising exchange α, the Dirac points move
along the edges of the BZ and eventually merge, corresponding to
a topological phase transition to a gapped Kitaev QSL. Sufficiently
strong α results in a first-order transition to an antiferromagnet with
fully gapped Majorana fermion spectrum.

II. MODEL

Our starting model is the anisotropic S = 1/2 Kitaev-
Heisenberg model on the honeycomb lattice in the limit of
an extreme Ising anisotropy in the Heisenberg sector. The
Hamiltonian of the model is given by

Ĥ =
∑

γ=x,y,z

∑
〈i, j〉γ

Kγ σ̂
γ
i σ̂

γ
j + J

∑
〈i, j〉

σ̂ z
i σ̂ z

j , (1)

where σ̂ γ are the spin-1/2 operators in units of h̄/2, Ŝγ =
h̄
2 σ̂ γ , satisfying the spin commutator relations [σ̂ α

i , σ̂
β
j ] =

2δi jεαβγ σ̂
γ
i .

The Kitaev couplings Kγ are illustrated in Fig. 1(a). Along
each of the three inequivalent nearest-neighbor bonds, labeled
by γ = x, y, z, different spin components are coupled, e.g.,
along the x bonds the Kitaev coupling is Kxσ̂

x
i σ̂ x

j . In this paper,
we consider antiferromagnetic Kitaev couplings and allow the
coupling between spin-z components to be stronger than those
between the x and y components, Kz � Kx = Ky = K > 0.
Because of the bond-directional nature of the Kitaev coupling,
this spin-exchange anisotropy is linked to a strong spatial
anisotropy.

By symmetry, one should also expect spin-exchange
anisotropy in the Heisenberg interactions. For reasons that we
will explain later, we focus on the case of very strong Ising
anisotropy, J = Jz > 0 and Jx = Jy = 0.

The zero-temperature phase diagram of the model is con-
trolled by the two dimensionless parameters

α = J

K
and δ = Kz − K

K
. (2)
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For α = 0, the model reduces to an anisotropic Ki-
taev model which is exactly solvable in terms of Majorana
fermions, either by using the original Kitaev construction
[6] or a two-dimensional JWT [33]. In both cases, one ob-
tains flat bands, corresponding to local flux excitations, and
a gapless dispersive band with Dirac points at the Fermi
level. In the isotropic Kitaev model (δ = 0), the Dirac points
are located at the corners K± = 2π (±1/(3

√
3, 1/3) of the

hexagonal Brillouin zone (BZ) [see Fig. 1(b)]. Anisotropy in
the Kitaev couplings is known to drive a topological phase
transition from a gapless to a gapped QSL [6]. With increasing
anisotropy δ, the Dirac points move along the edges of the
BZ and merge when δc = 1, corresponding to Kz/K = 2. At
this point, the dispersive Majorana band exhibits a semi-Dirac
point at 2π (0, 1/3), which is a quadratic band-touching point
along the edge but relativistic in the transverse direction. For
values δ > 1, the excitations become gapped. This behavior
is very similar to the topological phase transition proposed
to occur for electrons moving in strained honeycomb lattices
[38–42] and observed experimentally in black phosphorus
[43,44].

We will see that α = J/K has a similar effect on the
Dirac band and cooperates with the anisotropy in driving the
topological phase transition. In addition, the flux excitations
become weakly dispersive for α > 0. As one might expect,
sufficiently strong α leads to a first-order transition between
a Kitaev QSL and an Ising antiferromagnet with a gapped
Majorana fermion spectrum of strongly hybridized bands.

III. JORDAN-WIGNER TRANSFORMATION

The JWT is usually used to express one-dimensional S =
1/2 spin Hamiltonians in terms of spinless fermions with
creation and annihilation operators d̂†

n , d̂n, where n labels
the site along the one-dimensional lattice. It is natural to
identify the no-fermion state |0〉 with the eigenstate | ↑〉 of
the σ̂ z spin operator and the singly occupied state |1〉 with
| ↓〉. However, since spin operators on different sites commute
while fermionic operators anticommute, it is not possible to
define a local transformation. Instead one needs to include a
semi-infinite string operator,

D̂n =
∏
	<n

(1 − 2d̂†
	 d̂	), (3)

to match the quantum statistics of spins and fermions and
define the one-dimensional JWT as

σ̂ z
n = 1 − 2d̂†

n d̂n = (d̂†
n + d̂n)(d̂†

n − d̂n), (4)

σ̂ x
n = D̂n(d̂†

n + d̂n), (5)

σ̂ y
n = iD̂n(d̂†

n − d̂n). (6)

It is easy to check that the string operator is Hermitian,
D̂†

n = D̂n, and satisfies D̂2
n = 1, D̂nD̂n+1 = 1 − 2d̂†

n d̂n, and
[d̂†

n , D̂n] = [d̂n, D̂n] = 0.
These properties of the string operator ensure that one-

dimensional spin Hamiltonians with short-ranged spin inter-
actions remain short-ranged after JWT. The generalization
of the JWT to two dimensions is problematic for several
reasons. First, the string operator connecting a given lattice

D̂n

n

n − 1

n − 2

FIG. 2. Illustration of the snake string operators used in the two-
dimensional Jordan-Wigner transformation (JWT) of the Kitaev-
Ising model.

site to infinity is not uniquely defined and, in principle, gauge
transformations corresponding to deformations of the string
need to be taken into account [45]. Second, nearest-neighbor
sites in the two-dimensional lattice are not necessarily nearest
neighbors along the string. As a result, the fermionized Hamil-
tonian will contain nonlocal interactions involving segments
of string operators.

The Kitaev model on the honeycomb lattice is an example
where the second problem of nonlocality can be circumvented
by defining the snake string operators [33,35,36] shown in
Fig. 2. In this case, the x and y bonds, which involve the string
operators, couple nearest neighbors along the string. Using
that D̂nD̂n+1 = 1 − 2d̂†

n d̂n, we obtain

σ̂ x
n σ̂ x

n+1 = (d̂†
n − d̂n)(d̂†

n+1 + d̂n+1), (7)

σ̂ y
n σ̂

y
n+1 = (d̂†

n+1 − d̂n+1)(d̂†
n + d̂n). (8)

Note that the z bonds connect spins that are not nearest neigh-
bors along the snake string. As a result, any Hamiltonian that
involves couplings between the x or y spin components along
the z bonds, e.g., the Kitaev-Heisenberg model, would be non-
local in terms of the Jordan-Wigner fermions. This, however,
is not the case for the pure Kitaev model or for our model
with additional Ising couplings σ̂ z

i σ̂ z
j on all nearest-neighbor

bonds.
The resulting Hamiltonian of the Kitaev-Ising model is

given by

Ĥ/K =
∑

r

∑
i=1,2

(d̂†
A,r − d̂A,r )(d̂†

B,r+ai
+ d̂B,r+ai )

+α
∑

r

∑
i=1,2

(d̂†
A,r + d̂A,r )(d̂†

A,r − d̂A,r )

× (d̂†
B,r+ai

+ d̂B,r+ai )(d̂
†
B,r+ai

− d̂B,r+ai )

+ (1 + δ + α)
∑

r

(d̂†
A,r + d̂A,r )(d̂†

A,r − d̂A,r )

× (d̂†
B,r + d̂B,r )(d̂†

B,r − d̂B,r ), (9)

where (α, r) denote the sites of the two-dimensional honey-
comb lattice, with r the unit cell spanned by a1 and a2 and
α = A, B the atom in the unit cell, as illustrated in Fig. 1(a).
The dimensionless coupling constants α and δ are defined
in Eq. (2). The interaction terms, which arise from the σ̂ z

i σ̂ z
j
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terms in the spin Hamiltonian, are of strength J along the x
and y bonds and of strength Kz + J along the z bonds.

The Hamiltonian is naturally expressed in terms of Majo-
rana fermions,

ĉA(r) = i[d̂†
A(r) − d̂A(r)],

η̂z
A(r) = d̂†

A(r) + d̂A(r) (10)

on sublattice A and

ĉB(r) = d̂†
B(r) + d̂B(r),

η̂z
B(r) = i[d̂†

B(r) − d̂B(r)] (11)

on sublattice B. The meaning of the superscript z on the Majo-
rana fermion η will become clear when we compare with the
mean-field theory based on the Kitaev representation of the
spin operators in terms of Majorana fermions. The resulting
Hamiltonian is given by

Ĥ/K = −i
∑

r

∑
i=1,2

ĉA(r)ĉB(r + ai )

+α
∑

r

∑
i=1,2

ĉA(r)η̂z
A(r)ĉB(r + ai )η̂

z
B(r + ai )

+ (1 + δ + α)
∑

r

ĉA(r)η̂z
A(r)ĉB(r)η̂z

B(r). (12)

The Majorana operators satisfy ĉ†
σ (r) = ĉσ (r). (η̂z

σ (r))† =
η̂z

σ (r) and the anticommutator relations {ĉσ (r), ĉσ ′ (r′)} =
{η̂z

σ (r), η̂z
σ ′ (r′)} = 2δσ,σ ′δr,r′ and {ĉσ (r), η̂z

σ ′ (r′)} = 0.

Mean-field theory

We perform a self-consistent mean-field decoupling of the
interactions in both the bond and density channels. The former
is required to recover the physics of the Kitaev model. We
define the averages

ar,r′ = −i〈η̂z
A(r)η̂z

B(r′)〉, (13)

br,r′ = −i〈ĉA(r)ĉB(r′)〉, (14)

where a⊥ = ar,r+ai and b⊥ = br,r+ai for the x and y bonds and
az = ar,r and bz = br,r for the z bonds. The local staggered
magnetization of the antiferromagnetic state is given by

m = i
〈
ĉσ (r)η̂z

σ (r)
〉
. (15)

Note that this is indeed the staggered magnetization since the
roles of η̂z and ĉ are switched between the two sub-lattices.
All mean-field parameters, a⊥, az, b⊥, bz, and m are real since
the corresponding operators are Hermitian. After Fourier
transform,

ĉσ (r) = 1√
2N

∑
k

{eikrĉ†
σ (k) + e−ikrĉσ (k)}, (16)

η̂z
σ (r) = 1√

2N

∑
k

{
eikr(η̂z

σ

)†
(k) + e−ikrη̂z

σ (k)
}
, (17)

where N denotes the number of unit cells and the momenta k
are from the hexagonal BZ shown in Fig. 2(a), the resulting

mean-field Hamiltonian in momentum space is given by

Ĥmf

NK
= i

N

∑
k

�̂
†
k

⎛
⎜⎜⎝

0 −γ ∗
c −M 0

γc 0 0 −M
M 0 0 −γ ∗

z
0 M γz 0

⎞
⎟⎟⎠�̂k

− (1 + δ + α)azbz − 2αa⊥b⊥ + (1 + δ + 3α)m2.

(18)

Here �̂k = (ĉA(k), ĉB(k), η̂z
A(k), η̂z

B(k))T and M = (1 + δ +
3α)m for brevity, and we have defined the complex valued
functions

γc(k) = (1 + δ + α)az + (1 + αa⊥)
(
eika1 + eika2

)
, (19)

γz(k) = (1 + δ + α)bz + αb⊥
(
eika1 + eika2

)
. (20)

The energy eigenvalues of the mean-field Hamiltonian are
given by (in units of the Kitaev coupling K)

ε2
1,2(k) = |γc|2 + |γz|2

2
+ M2

±
√( |γc|2 − |γz|2

2

)2

+ |γc + γz|2M2, (21)

resulting in the free-energy density

f = −t
∑

n=1,2

∑
σ=±1

∫
k

ln(e−σ |εn(k)|/t + 1) − (1 + δ + α)azbz

− 2αa⊥b⊥ + (1 + δ + 3α)m2, (22)

with t = T/K the dimensionless temperature and∫
k
. . . = 1

VBZ

∫
BZ

d2k . . . (23)

for brevity, where VBZ denotes the volume of the hexagonal
BZ.

Minimizing the free-energy density f with respect to the
mean-field parameters ξ ∈ {az, bz, a⊥, b⊥, m}, ∂ξ f = 0, we
obtain the self-consistency equations

az = − 1

1 + δ + α

∫
k

Fbz (ξ, k), (24)

bz = − 1

1 + δ + α

∫
k

Faz (ξ, k), (25)

a⊥ = − 1

2α

∫
k

Fb⊥ (ξ, k), (26)

b⊥ = − 1

2α

∫
k

Fa⊥ (ξ, k), (27)

m = 1

2

1

1 + δ + 3α

∫
k

Fm(ξ, k), (28)

where we have defined

Fξ (ξ, k) =
∑

n=1,2

tanh

( |εn(ξ, k)|
2t

)
∂ξ |εn(ξ, k)|. (29)
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FIG. 3. Using the Kitaev construction, each S = 1/2 spin opera-
tor is represented in terms of a set of four Majorana fermions, subject
to a local constraint.

IV. KITAEV MAJORANA FERMIONS

We will now discuss the mean-field scheme based on the
local mapping of the spin-1/2 operators σ̂

γ

i (γ = x, y, z) to
a set of four Majorana fermion operators η̂

μ
i , (μ = 0, x, y, z)

on each lattice site i, as discussed in the seminal paper by
Kitaev [6], and illustrated schematically for the Kitaev honey-
comb model in Fig. 3. The Majorana fermion operators satisfy
(η̂μ

i )† = η̂
μ
i and the Clifford algebra:{

η̂
μ
i , η̂ν

j

} = 2δi jδμν. (30)

In terms of the Majorana fermions, the spin operators are
expressed as

σ̂
γ

i = iη̂0
i η̂

γ

i . (31)

This Majorana representation of spins is overcomplete and
the physical Hilbert space is obtained by imposing the local
constraint η̂0

i η̂
x
i η̂

y
i η̂

z
i = 1. It is indeed straightforward to check

that the constraint ensures that the spin commutator relations
are preserved. Using the properties of the Majorana fermion
operators, Eq. (30), it is possible to rewrite the constraint as
[46]

η̂0
i η̂

γ
i + 1

2εαβγ η̂α
i η̂

β
i = 0, (32)

which is quadratic in the Majorana operators. Since the an-
tiferromagnetism will develop along the z direction in spin

space, it is sufficient to use the constraint η̂0
i η̂

z
i + η̂x

i η̂
y
i = 0.

We follow Ref. [46] and impose the constraint through a
Lagrange multiplier field λi:

δĤλ = iK
∑

i

λi
(
η̂0

i η̂
z
i + η̂x

i η̂
y
i

)
. (33)

While λi is not expected to enlarge the two-site unit cell of
the honeycomb lattice, it could take different values on the A
and B sites within the unit cell. We found that λA = λB = 0 in
the gapless and gapped QSL phases and λA = −λB �= 0 in the
antiferromagnetic phase. From now on, we will therefore only
include a single Lagrange multiplier:

λ = λA = −λB. (34)
In the following, we will define ĉi = η̂0

i to aid compari-
son with the mean-field theory based on the two-dimensional
JWT. Expressing the spin operators in terms of Majorana
fermions, using Eq. (31), the Hamiltonian Eq. (1) contains
only quartic interaction terms:

Ĥ/K =
∑

r

{ĉA(r)ĉB(r + a1)η̂x
A(r)η̂x

B(r + a1)

+ ĉA(r)ĉB(r + a2)η̂y
A(r)η̂y

B(r + a2)

+ (1 + δ + α)ĉA(r)ĉB(r)η̂z
A(r)η̂z

B(r)}
+α

∑
r

∑
i=1,2

ĉA(r)ĉB(r + ai )η̂
z
A(r)η̂z

B(r + ai ). (35)

A. Mean-field theory

As for the case of the two-dimensional JWT, we will
perform a simultaneous mean-field decoupling in the bond
and site-diagonal magnetic channels. We introduce the bond
mean-field parameters

Aγ

r,r′ = i
〈
η̂

γ

A (r)η̂γ

B (r′)
〉
, (36)

Br,r′ = i〈ĉA(r)ĉB(r′)〉, (37)

and define A⊥ = Ax
r,r+a1

= Ay
r,r+a2

, A′
⊥ = Az

r,r+ai
, Az = Az

r,r,
B⊥ = Br,r+ai , Bz = Br,r for the relevant nearest-neighbor
bonds. The staggered magnetization is given by the expecta-
tion values

m = i〈ĉA(r)η̂z
A(r)〉 = −i〈ĉB(r)η̂z

B(r)〉. (38)

After mean-field decoupling and Fourier transformation, as
defined in Eqs. (16) and (17), the mean-field Hamiltonian is

Ĥmf + δHλ

KN
= i

N

∑
k

⎧⎪⎪⎨
⎪⎪⎩�̂

†
k

⎛
⎜⎜⎝

0 −γ ∗
c −(M − λ) 0

γc 0 0 (M − λ)
(M − λ) 0 0 −γ ∗

z
0 −(M − λ) γz 0

⎞
⎟⎟⎠�̂k + �̂

†
k

⎛
⎜⎜⎝

0 −γ ∗
x λ 0

γx 0 0 −λ

−λ 0 0 −γ ∗
y

0 λ γy 0

⎞
⎟⎟⎠�̂k

⎫⎪⎪⎬
⎪⎪⎭

+ (1 + δ + α)AzBz + 2Ã⊥B⊥ + (1 + δ + 3α)m2, (39)

where �k = (ĉA(k), ĉB(k), η̂z
A(k), η̂z

B(k))T , �k = (η̂x
A(k), η̂x

B(k), η̂y
A(k), η̂y

B(k))T , M = (1 + δ + 3α)m, Ã⊥ = A⊥ + αA′
⊥,

γc(k) = (1 + δ + α)Az + Ã⊥(eika1 + eika2 ), (40)

γz(k) = (1 + δ + α)Bz + αB⊥(eika1 + eika2 ), (41)

014407-5



SAHELI, LIN, HU, AND KRÜGER PHYSICAL REVIEW B 109, 014407 (2024)

γx(k) = B⊥eika1 and γy(k) = B⊥eika2 . The resulting energy eigenvalues ±|ε1,2(k)| and ±|ε3,4(k)| are given by

ε2
1,2(k) = |γc|2 + |γz|2

2
+ (M − λ)2 ±

√( |γc|2 − |γz|2
2

)2

+ |γc − γz|2(M − λ)2, (42)

ε2
3,4(k) = B2

⊥ + λ2 ± λ|γx − γy|

= B2
⊥ + λ2 ± 2B⊥λ sin

(√
3

2
kx

)
. (43)

Minimizing the free-energy density,

f = −t
4∑

n=1

∑
σ=±1

∫
k

ln(e−σ |εn(k)|/t + 1)

+ (1 + δ + α)AzBz + 2Ã⊥B⊥ + (1 + δ + 3α)m2,

(44)

with respect to ξ ∈ {Az, Bz, Ã⊥, B⊥, m}, ∂ξ f = 0, we obtain
the self-consistency equations

Az = 1

1 + δ + α

∫
k

FBz (ξ, k), (45)

Bz = 1

1 + δ + α

∫
k

FAz (ξ, k), (46)

Ã⊥ = 1

2

∫
k

FB⊥ (ξ, k), (47)

B⊥ = 1

2

∫
k

FÃ⊥ (ξ, k), (48)

m = 1

2

1

1 + δ + 3α

∫
k

Fm(ξ, k), (49)

where the functions Fξ (ξ, k) are defined as in Eq. (29) but
with the sum running over the four bands n = 1, . . . , 4 given
in Eqs. (42) and (43).

B. Determination of the Lagrange multiplier

The Lagrange multiplier λ is closely linked to the staggered
magnetization m, which satisfies the self-consistency equation

m = 1

2

∑
n=1,2

∫
k

tanh

( |εn(k)|
2t

)
∂M |εn(k)|, (50)

where M = (1 + δ + 3α)m. Note that the bands n = 3, 4 do
not depend on M. From ∂λ f = 0 and using that ∂λ{|ε1(k)| +
|ε2(k)|} = −∂M{|ε1(k)| + |ε2(k)|}, we obtain

m = 1

2

∑
n=3,4

∫
k

tanh

( |εn(k)|
2t

)
∂λ|εn(k)|

= �

(
λ

B⊥
,

t

B⊥

)
, (51)

where the function � is independent of m and given by the
momentum integral

�(x, y) = 1

2

∑
κ=±1

∫
k
∂x

√
1 + x2 + 2κx sin(

√
3/2 kx )

× tanh

⎛
⎜⎝

√
1 + x2 + 2κx sin(

√
3/2 kx )

2y

⎞
⎟⎠. (52)

It is straightforward to compute the function �(x, y) nu-
merically. The resulting relation between m, λ/B⊥ and t/B⊥
is shown in Fig. 4 for positive values of the staggered magneti-
zation. The domain of negative magnetizations is obtained for
negative Lagrange multipliers, �(−x, y) = −�(x, y). This
result shows that the Lagrange multiplier is zero in the non-
magnetic phases and nonzero if the staggered magnetization
is finite.

In the following, we will minimize the free-energy den-
sity f Eq. (44) at given temperature t with respect to the
mean-field parameters Az, Bz, Ã⊥, B⊥, and m by solving the
corresponding self-consistency integral equations iteratively.
At each step of the iteration, we determine the Lagrange
multiplier λ from the values of B⊥ and m, using the equation
m = �(λ/B⊥, t/B⊥).

V. RESULTS

A. Topological phase transition

We start by discussing the zero-temperature topological
phase transition between the gapless and gapped Kitaev QSL
states as a function of the anisotropy δ = (Kz − K )/K of the

m

λ/B⊥
t/B⊥

m

λ/B⊥
t/B⊥

FIG. 4. The function m = �(λ/B⊥, t/B⊥) relating the Lagrange
multiplier λ to the staggered magnetization m, the bond mean-field
parameter B⊥ and the dimensionless temperature t = T/K .
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Kitaev couplings and the relative strength α = J/K of the
Ising coupling.

For α = 0, the Kitaev model is exactly solvable and the
topological phase transition is known to occur at δc = 1, as
derived in the triangle inequalities in Kitaev’s original paper
[6]. At this point, the Dirac points of the dispersive low-
energy band merge, forming a semi-Dirac point. We expect
that the anisotropy induced by the Ising coupling α has a
similar effect. However, sufficiently strong α will induce an
antiferromagnetic state, which we will consider later.

In the absence of magnetization, m = 0, the dispersion
of the low-energy band is simply given by ±|γc(k)|, where
γc(k) = u + v(eika1 + eika2 ). The coefficients u and v are
functions of δ, α, and of the mean-field parameters, as de-
fined in Eq. (19) for the JWT and in Eq. (40) for the Kitaev
representation.

Rather than computing the momentum separation of the
Dirac points in the gapless QSL or the the size of the energy
gap on the other side of the transition, it is more convenient to
compute the ratio r = |u/v|. While for r < 2 the band exhibits
gapless Dirac points at zero energy, for r > 2 the Majorana
fermion spectrum becomes gapped. We can therefore simply
determine the topological phase transition at rc = 2 by using
a bisection method.

Let us first determine the topological phase boundary using
the mean-field theory based on the JWT. In this case, the
parameter r = |u/v| is given by

r := (1 + δ + α)|az|
1 + αa⊥

. (53)

For α = 0, the Kitaev model is exactly solvable in terms
of Jordan-Wigner fermions since the local operator (ĉ†

A,r +
ĉA,r )(ĉ†

B,r − ĉB,r ) = −iη̂z
A(r)η̂z

B(r) commutes with the Hamil-
tonian. Although we don’t require a mean-field treatment in
this case, it is interesting to understand how the correct value
of the topological phase transition, δc = 1 (Kz/K = 2), is re-
covered within our mean-field theory. In fact, the mean-field
theory becomes trivial for the pure anisotropic Kitaev model
since the local flux excitations are dispersionless, with corre-
sponding bands at energies ±|γz(k)| = ±(1 + δ)|bz|. The free
energy is independent of the mean-field parameters a⊥ and
b⊥ and at zero temperature, t = 0, we obtain the mean-field
parameters az and bz from minimizing the energy

ε(az, bz ) = − 1

VBZ

∫
BZ

d2k|(1 + δ)az + eika1 + eika2 |
− (1 + δ)(|bz| + azbz ). (54)

From ∂ε/∂bz = 0 we obtain az = 1 if bz < 0 and az = −1
if bz > 0, regardless of the value of the anisotropy δ. Let us
focus on the first case. Inserting az = 1 into ∂ε/∂az = 0, we
obtain

bz = − 1

VBZ

∫
BZ

d2k
cos(ka1) + cos(ka2)

|1 + δ + eika1 + eika2 | , (55)

which is indeed negative. Note that for az = −1, we obtain the
same value for bz but with positive sign. This solution is equiv-
alent to the first solution but with a momentum shift of the
entire excitation spectrum. We obtain r = 1 + δ, and hence a
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FIG. 5. Evaluation of the Majorana fermion mean-field spectra
across the topological phase transition between a gapless and gapped
Kitaev QSL as a function of (a) the anisotropy Kz/K in the pure
Kitaev model and (b) the Ising coupling J/K in the case Kz = K .
Note that the two mean-field schemes give identical results. At the
topological phase transition, the Dirac points merge along the edge
of the Brillouin zone, as schematically shown in Fig. 1(b).

topological phase transition at δc = 1, which is equivalent to
Kz/K = 2.

The resulting mean-field spectra are shown in Fig. 5(a)
for different values of δ. With increasing δ, the Dirac points
approach each other along one of the edges of the hexagonal
BZ, as illustrated in Fig. 1(b), and merge at δc = 1, forming a
semi-Dirac point. For δ > 1, the spectrum becomes gapped.
The other bands remain gapped and dispersionless across
the topological phase transitions and only slightly change in
energy.

As a next step, we investigate the effect of the Ising cou-
pling α = J/K on the isotropic Kitaev model, δ = 0 (Kz =
K). From Eqs. (19) and (20), it is clear that the gapped bands
of flux excitations become weakly dispersive and that the Ising
coupling induces anisotropy in the gapless Majorana bands.
For α > 0, the mean-field theory is no longer trivial and the
free energy becomes a function of the four mean-field param-
eters az, bz, a⊥, and b⊥. As shown in Fig. 5(b), the effect of
the Ising coupling on the gapless Dirac band is very similar to
that of the anisotropy in the Kitaev couplings, and the system
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FIG. 6. Topological phase boundary between a gapless and
gapped Kitaev QSL as a function of the Ising coupling α = J/K
and the anisotropy δ = (Kz − K )/K of the Kitaev couplings. Note
that the mean-field schemes based on the two-dimensional JWT
and on the Kitaev Majorana representation give identical results.
Potential magnetic instabilities are not considered here.

undergoes a topological phase transition at αc ≈ 1.3. How-
ever, we expect that this transition will be preempted by an
antiferromagnetic instability. The topological phase boundary
as a function of both δ and α is shown in Fig. 6.

We briefly discuss the mean-field theory for the topological
phase transition base on the Kitaev Majorana representation.
This treatment involves a larger number of degrees of freedom
with one gapless Dirac band and three gapped bands of flux
excitations. In addition, we have to incorporate a Lagrange
multiplier λ to enforce the local constraints on the Majorana
fermions. However, as we have seen in Sec. IV B, λ is iden-
tical to zero in the nonmagnetic QSL states. This leads to
a drastic simplification of the spectrum since for λ = 0 the
ηx and ηy bands don’t hybridize and remain flat across the
topological transition with degenerate energies ±|γx(k)| =
±|γy(k)| = ±B⊥, even if the Ising coupling α is included.
For all values of the anisotropy δ and the Ising coupling α,
the mean-field dispersions ±|γc(k)| and ±|γz(k)| of the other
two Majorana bands are identical to those of the two Majorana
bands in the JWT treatment. It is therefore not surprising
that the two mean-field treatments result in identical phase
boundaries for the topological phase transition between the
gapless and gapped Kitaev QSLs, as shown in Fig. 6.

B. Antiferromagnetism

In the previous section, we have not included the possibility
of the formation of an antiferromagnetic state with finite stag-
gered magnetization m. For m �= 0, the Lagrange multiplier
λ in the Kitaev Majorana mean-field theory is no longer zero
and acquires a value of the order of the magnetization (see

FIG. 7. Zero-temperature phase diagram of the anisotropic
Kitaev-Ising model as a function of the relative strength α = J/K of
the Ising coupling and the anisotropy δ = (Kz − K )/K of the Kitaev
couplings. While the two mean-field theories give identical phase
boundaries for the topological phase transition between the gapless
and gapped Kitaev QSLs, the treatment based on the JWT fails to
correctly describe the first-order transition to the antiferromagneti-
cally ordered state.

Fig. 4). As a result, the ηx and ηy Majorana fermions hybridize
and form dispersive bands with energies ±ε3,4(k) [Eq. (43)].
This shows that the ηx, ηy fermions are not simply spectators
as in the case of the topological phase transition but play a
crucial role in the energetics of the antiferromagnetic transi-
tion. Since these degrees of freedom are neglected in the JWT
with fixed string orientation, we expect that the corresponding
mean-field theory does not correctly describe the magnetic
instability.

As shown in Fig. 7, there is indeed a significant discrep-
ancy between the zero-temperature magnetic phase bound-
aries calculated within the two mean-field theories. We find
that the magnetic phase transition is strongly first order with a
jump in magnetization close to the fully polarized value. This
is not surprising. The antiferromagnetic ordering is driven by
an Ising exchange and as a result quantum fluctuations are
frozen out at low temperatures, resulting in a large ordered
moment. Moreover, transverse spin fluctuations are active
only along the one-dimensional zigzag chains formed by the
x and y bonds.

C. Finite temperature phase diagram

In the previous section, we have identified problems with
the mean-field theory based on the JWT for states with finite
magnetization. Neglecting the flux excitations of the η̂x and η̂y

Majorana fermions by using a particular gauge choice of the
string operator in the two-dimensional JWT, we also induce
pathologies at finite temperatures. To illustrate this, we focus
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on the pure isotropic Kitaev model. In this case, we obtain the
mean-field dispersions ε1(k) = |γc(k)| = |az + eika1 + eika2 |
for the dispersive Dirac band and ε2(k) = |γz(k)| = |bz| for
the flat band. As discussed in Sec. V A, at zero temperature the
minimization of the energy density ε(az, bz ) with respect to
az and bz results in two equivalent mean-field solutions, e.g.,
one with a negative value of bz and az = 1. This reproduces
the correct excitation spectrum of the isotropic Kitaev model
with Dirac points at the corners of the hexagonal BZ. Let us
now investigate the mean-field solution at finite temperature
t = T/K . Minimizing the free-energy density f (az, bz ) with
respect to bz, we obtain the simple relation

az = − tanh

(
bz

2t

)
. (56)

While for bz < 0 we recover az = 1 as t → 0, at any finite
temperature az < 1. This corresponds to a mean-field disper-
sion with Dirac points displaced along the edges of the BZ,
in the same way as for an anisotropic Kitaev model with
Kz < K . This is clearly unphysical and caused by an artificial
symmetry breaking due to the fixed orientation of the string
operator.

The different finite-temperature response of the JWT and
Kitaev-Majorana mean-field treatments can also be under-
stood in terms of thermal excitations of the gapped flux
excitations. As pointed out by Kitaev [6], expressing the spin-
1/2 operators as σ̂

γ

i = iη̂0
i η̂

γ

i (γ = x, y, z), the Z2 flux through
a hexagon is given by the product Ŵp of the nearest-neighbor
bond operators Âγ

〈i, j〉γ = iη̂γ

i η̂
γ

j around the plaquette. The bond
operators square up to the identity operator and hence have
eigenvalues plus or minus one. The plaquette carries a flux
if an odd number of bonds around it are excited (Ŵp = −1).
In the case of the pure (anisotropic) Kitaev model, the bond
operators are local and Ŵp commutes with the Hamiltonian.
As a result, the Hamiltonian can be diagonalized for each flux
configuration and the ground state corresponds to the zero
flux sector, resulting in a noninteracting Hamiltonian for the
dispersive η̂0 Majorana fermion.

Both the two-dimensional JWT and Kitaev Majorana ap-
proaches correctly describe the zero flux sector and hence the
ground-state properties of the anisotropic Kitaev model. At
first glance, it might seem that the two approaches enumerate
flux excitations differently since the JWT only includes bond
excitations on the z links. However, the choice of the string
operator in the JWT is a gauge degree of freedom and the
Kitaev Majorana fermions are subject to local constraints. In
the end, both mappings are exact and therefore equivalent.
The problems arise when the finite-temperature mean-field
average over bond operators is taken for a fixed orientation of
the string. In Fig. 8, the bond excitations and resulting fluxes
are sketched for the two approaches.

It is also worth mentioning that for the particular Kitaev-
Ising model, only the bond excitations on the z links acquire
dynamics, resulting in the same mean-field dispersion of the
η̂z Majorana fermion as in the mean-field treatment based on
the JWT. This is the reason why both approaches result in
the same zero-temperature phase boundary for the topological
phase transition between the gapless and gapped QSL states.
Note that this is a special feature of the Ising exchange J . For a

(a) 2d Jordan-Wigner (b) Kitaev Majorana(a) (b)

FIG. 8. Illustration of the flux excitations in terms of the (a) two-
dimensional JWT and (b) the Kitaev Majorana representation.
Excited bonds are shown as thick lines and plaquettes with nonzero
flux are shaded grey.

Heisenberg coupling, the η̂x and η̂y fermions acquire dynamics
as well.

Because of the problems with the finite-temperature mean-
field theory based on the two-dimensional JWT, we will
use the Kitaev Majorana fermion representation to determine
finite temperature phase diagrams, following the procedure
outlined in Sec. IV. In Fig. 8, a representative phase diagram
is shown as a function of the Ising coupling α = J/K and the
dimensionless temperature t = T/K for a fixed value δ = 0.2
of the anisotropy of the Kitaev couplings. For this value of
δ, we find a zero-temperature phase transition from a gapless
Kitaev QSL to an antiferromagnetic state at αc ≈ 0.2. This
transition is strongly first order. At small temperatures, the
antiferromagnetic transition remains first order and is very
steep. As one might expect, the magnetic transition becomes
continuous above a certain temperature.

Let us now investigate the finite-temperature behavior in
the regime of small values of J/K where the zero-temperature
ground state is a gapless Kitaev QSL. An important energy
scale is the gap � of the flux excitations which is equal
to �/K ≈ 0.26 for the isotropic Kitaev model [6]. While
for T � � the typical separation between fluxes is expo-
nentially large and the thermal average of the flux operator
〈Ŵp〉 close to +1, at temperatures T > �, the flux excitations
proliferate with high probability on all plaquettes, resulting
in 〈Ŵp〉 = 0 of the flux operator. One might therefore expect
a finite-temperature confinement transition from a QSL with
deconfined Majorana fermions to a paramagnet where the
Majorana fermions are confined via the flux excitations of
the emergent Z2 gauge field [3]. However, it is known that in
two dimensions gauge theories are confining at any nonzero
temperature. Hence the Kitaev QSL exists only at zero tem-
perature and even an exponentially small density of thermally
excited fluxes is sufficient to destroy the QSL state. Nev-
ertheless, interesting finite temperature crossovers are seen
in quantum Monte Carlo simulations of the two-dimensional
Kitaev model, using Majorana fermion representations
[47–49].

To identify finite-temperature crossovers, we compute the
specific heat per unit cell,

C = −t
∂2 f

∂t2
, (57)

where f (t ) denotes the mean-field free energy density f =
F/(NK ) [Eq. (44)] as a function of the dimensionless
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FIG. 9. Finite-temperature mean-field phase diagram of the
anisotropic Kitaev-Ising model as a function of the relative strength
of the Ising coupling α = J/K and the dimensionless temperature
t = T/K for a value of δ = 0.2 of the anisotropy of the Kitaev
couplings.

temperature t = T/K . In Fig. 10, the temperature evolution of
the specific heat is shown for systems with an anisotropy δ =
0.2 of the Kitaev couplings and increasing values α = J/K of
the Ising coupling, up to the value α = 0.2, which is slightly
below the critical value of the t = 0 first-order transition be-
tween the Kitaev QSL and the Ising antiferromagnet. Unlike
in previous work using quantum Monte Carlo simulations of
finite systems [47–49], where two separate specific-heat peaks
are found, our mean-field results only show a single peak
at a temperature T ≈ �, where � is the energy gap of flux
excitations. Note that for the pure Kitaev model (α = 0), the
anisotropy δ = 0.2 gives rise to a small splitting of the flux
gaps, �z/K ≈ 0.29 and �⊥/K ≈ 0.24, resulting in a slight
broadening of the crossover peak in the specific heat. With
increasing Ising coupling α, the splitting further increases up
to values �z/K ≈ 0.32 and �⊥/K ≈ 0.22 for α = 0.2. Note
that α also gives dynamics to the bond excitations along the
z links, adding to the broadening of the crossover. At high
temperatures, T > �, we recover a conventional paramagnet,
and the Curie-Weiss dependence C ∼ 1/T is clearly observed
above temperatures of the order of the bandwidth of the Ma-
jorana fermions. At temperature T < �, flux excitations are
exponentially suppressed and signatures of fractionalization
become visible. The crossover to a fractionalized paramagnet
at low temperatures is indicated by a color gradient in the
phase diagram, Fig. 9. The energy scale of the crossover co-
incides with the point at which the magnetic phase transition
becomes continuous.

The inset of Fig. 10 shows the specific heat contribution
from the gapless Majorana fermion band at lowest temper-
atures. As expected, we observe the C0 ∼ T 2 dependence
expected for Dirac fermions in two spatial dimensions.

FIG. 10. Specific heat C per unit cell as a function of the dimen-
sionless temperature T/K , for an anisotropy δ = 0.2 of the Kitaev
couplings and different values of α = J/K , corresponding to a gap-
less Kitaev QSL ground state. The peak is located at the energy scale
of the gapped flux excitations and indicates a crossover from a frac-
tionalized paramagnet with frozen flux excitations to a conventional
paramagnet at high temperatures. In the latter, the expected Curie de-
pendence C ∼ 1/T is observed. The inset shows the low-temperature
specific heat contribution C0 of the gapless Majorana fermion band,
showing the T 2 dependence expected for Dirac fermions in d = 2.

VI. DISCUSSION AND CONCLUSION

In this paper, we have determined zero- and finite-
temperature phase diagrams of the anisotropic, antiferromag-
netic Kitaev-Heisenberg model on the honeycomb lattice,
using parton mean-field theories based on two different Majo-
rana fermion representations of the S = 1/2 spin operators:
the one used by Kitaev [6] and a two-dimensional JWT
[33,35–37]. Both mappings have been used to obtain the exact
solution of the anisotropic Kitaev model [6,36].

To ensure that the Hamiltonian remains local after JWT, we
studied a particular limit of the model, keeping the anisotropy
in the Kitaev couplings finite while taking the extreme limit of
an infinitely strong Ising anisotropy in the Heisenberg sector.
For this model, it is possible to use the same snake-string
operators in the JWT as for the pure anisotropic Kitaev model
[33,35–37], resulting in two Majorana modes. For sufficiently
weak anisotropy and Ising coupling, the low-energy band
is gapless with Dirac points on the edges of the hexagonal
BZ. The other band of gapped flux excitations is flat for the
anisotropic Kitaev model but becomes weakly dispersive in
the presence of the additional Ising coupling.

On the other hand, following Kitaev’s approach [6], the
spin-1/2 operators are mapped to a set of four Majorana
fermions with three modes corresponding to gapped flux ex-
citations. The Majorana fermion operators are subject to local
constraints which we reformulated in a quadratic form and
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enforced through a Lagrange multiplier, following a previous
study [46] of the magnetic field dependence of the pure Kitaev
model.

Perhaps surprisingly, the two mean-field theories result in
identical zero-temperature phase boundaries for the topolog-
ical phase transition between the gapless and gapped Kitaev
QSL states. The reason is that for an Ising exchange α =
J/K , only the bond excitations along the z links, which are
accounted for in both approaches, acquire dynamics. The
two additional gapped modes in the Kitaev mean-field the-
ory remain flat across the transition and don’t contribute
to the physics. The mean-field dispersion of the remain-
ing two bands is identical to the mean-field spectrum based
on the JWT. The mean-field treatments give the correct
value Kz/K = 2 for the topological phase transition of the
anisotropic Kitaev model. The Ising coupling J/K is an addi-
tional source of anisotropy and cooperates with the anisotropy
in the Kitaev couplings in driving the topological phase
transition.

We demonstrated that all three bands of flux excitations
play a crucial role for the antiferromagnetic instability and the
finite-temperature behavior. The mean-field theory based on
the two-dimensional JWT therefore fails to correctly describe
the finite temperature phase diagrams. Even for an isotropic
Kitaev model, we found an anisotropic response at finite
temperatures. We believe that this unphysical behavior is not
an intrinsic problem of the two-dimensional JWT since the
choice of the string operator is a gauge degree of freedom.
However, taking a finite-temperature mean-field average over
the bond operators leads to artificial anisotropy that depends
upon the choice of the string. Recent progress has been made
in formulating a JWT in two and three dimensions that keeps
locality and all relevant symmetries manifest [45,50]. This is
achieved through operators that create local deformations of
the JW string operator. A mean-field theory based on such
a gauge invariant formulation of the JWT would not suffer
from artificial symmetry breaking. Given the increased com-
plexity it remains unclear, however, if this approach if useful
for practical calculations when dealing with realistic spin
Hamiltonians.

We instead used the parton mean-field theory formulated
in terms of the Kitaev Majorana fermions to obtain the finite-
temperature phase diagram of the anisotropic Kitaev-Ising
model. As expected, sufficiently strong Ising exchange results
in a first-order transition from the gapless and gapped QSLs
to an antiferromagnetic phase with fully gapped Majorana
fermion spectrum. Unfortunately, we are not aware of numer-
ical results in the literature for the magnetic instability of the
antiferromagnetic Kitaev-Ising model. The critical mean-field
value (J/K )c ≈ 0.2 for the first-order transition between the
Kitaev QSL and the Ising antiferromagnet is considerably
larger than the value (J/K )c ≈ 0.035 for the isotropic Kitaev-
Heisenberg model, computed with tensor-network algorithms
[51].

Although the QSL states only exist at zero temperature, the
magnetic phase transition remains first order at low tempera-
tures and becomes continuous above a certain temperature.
While we believe that this behavior is generic and similar
to other QSL systems, the first-order behavior is particularly
strong for the present model. This is due to the extreme Ising

anisotropy and the one-dimensionality of transverse spin fluc-
tuations in the magnetically ordered phase.

At the temperature where the magnetic phase transition be-
comes first order, we also observe a crossover on the QSL side
from a fractionalized paramagnet at low temperatures with
exponentially suppressed flux excitations to a conventional
paramagnet at high temperatures. As expected, the crossover
temperature scale, which we identify through a peak in the
specific heat, is set by the energy gap � of flux excitations,
which is equal to �/K ≈ 0.26 for the isotropic Kitaev model
[6] and slightly split into �z and �⊥ by small anisotropy and
the Ising exchange. This splitting leads to a broadening of the
crossover.

Interestingly, quantum Monte-Carlo (QMC) simulations of
(anisotropic) Kitaev models show a two-step thermalization
of the QSL state, identified by two clearly separated specific
heat peaks at temperatures TL and TH [47–49]. This is in
contrast to the single crossover we found within our mean-
field treatment. For the isotropic Kitaev model, the peaks are
found at TL/K ≈ 0.012 and TH/K ≈ 0.37 [49]. Neither of the
crossover temperatures is close to the flux gap �/K ≈ 0.26
[6] of the isotropic Kitaev model. The authors identify the
lower temperature peak at TL with the flux gap and attribute TH

to a feature in the density of states of the itinerant Majorana
fermions. However, at TH the entropy per spin drops from
ln 2 to 1

2 ln 2 and the thermal average 〈Ŵp〉 of the plaquette
operator becomes nonzero, suggesting that flux excitations
start to freeze out at the temperature TH . The reason why
we don’t see a crossover at the much lower temperature TL

is likely because, at mean-field level, the local constraints on
the Majorana fermions are only treated on average and the
interaction vertex is not properly taken into account. Such
correlation effects could give rise to the formation of a bound
state at this new energy scale. The inclusion of diagrammatic
corrections beyond mean-field could potentially provide an
analytical confirmation of the QMC result.

The main purpose of our paper was to compare different
Majorana fermion mean-field theories for Kitaev QSLs. To
ensure locality of the Hamiltonian after JWT, we focused on
a very specific, fine-tuned spin model. A similar Kitaev-Ising
model, but with ferromagnetic exchange couplings, was stud-
ied in Ref. [52] for the same reasons, e.g., to ensure locality
after a two-dimensional JWT. Interestingly, in the regime of
strong anisotropy of the Kitaev couplings, this model exhibits
a spin-nematic phase in between the gapped Kitaev QSL and
the ferromagnetic phase.

It is important to stress that the parton mean-field the-
ory based on the Kitaev mapping to a set of four Majorana
fermions, subject to constraints enforced by Lagrange mul-
tipliers, is applicable to a much wider class of extended
Kitaev-Heisenberg models [27–32,53–57], including those
relevant to real materials [8–17].
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