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We investigate the nature of the topological phase transition of the antiferromagnetic Kitaev
model on the honeycomb lattice in the presence of a magnetic field along the [111] direction. The
field opens a topological gap in the Majorana fermion spectrum and leads to a sequence of topo-
logical phase transitions before the field polarised state is reached. At mean field level the gap first
closes at the three M points in the Brillouin zone, where the Majorana fermions form Dirac cones,
resulting in a change of Chern number by three. An odd number of Dirac fermions in the infrared is
unusual and requires Berry curvature compensation in the UV, which occurs via topological, ring-
like hybridisation gaps with higher-energy bands. We perform a renormalisation-group analysis of
the topological phase transition at the three M points within the Yukawa theory, allowing for intra-
and inter-valley fluctuations of the spin-liquid bond operators. We find that the latter lead to a
breaking of Lorentz invariance and hence a different universality compared to the standard Ising

Gross-Neveu-Yukawa class.
I. INTRODUCTION

The celebrated Kitaev honeycomb model, a bond-
dependent Ising model, has an exactly solvable quantum
spin liquid (QSL) ground state after the spin-1/2 opera-
tors are fractionalised into Majorana fermions [1]. Many
efforts to realise this model in materials have utilised
spin—orbit coupling, as proposed by Jackeli and Khali-
ullin [2], for which honeycomb iridates [3-5] and a-RuCls
[6-8] are promising candidates. However, these materials
display long-range zigzag antiferromagnetic (AFM) order
at low temperatures [9-11], which can be suppressed in
o-RuCl3 by applying a magnetic field [12, 13].

These observations have motivated various theoretical
and numerical investigations of the AFM Kitaev honey-
comb model with an applied field. As already demon-
strated in the seminal work by Kitaev [1], in third order
perturbation theory a small field & along [111] leads to the
opening of a topological gap A ~ h3 at the Dirac points
with Chern numbers C = £1 of the dispersive Majorana
bands. Numerical investigations using exact diagonali-
sation (ED) and density matrix renormalisation group
(DMRG) reported a U(1) gapless intermediate phase [14—
16] sandwiched between the gapped non-Abelian QSL at
small fields and the topologically trivial fully polarised
phase at large fields. On the other hand, mean-field in-
vestigations [17, 18] and a variational approach [19] found
this intermediate phase to be gapped. It exhibits ring-
like low-energy excitations that might be mistaken for a
spinor Fermi-surface in numerical studies due to finite-
size effects [19]. While DMRG could in principle detect
gapless modes through the scaling behaviour of the en-
tanglement entropy, no convergence was found in the in-
termediate phase up to the largest system sizes currently
accessible [20].

Here we focus on the first topological transition, be-
tween the two gapped QSL phases. At this transition
the total Chern number of the positive bands was found
to change from Ciot = —1 in the QSL at small field to
Ctot = 2 in the intermediate phase [17-19]. Such a change
in Chern number by AC = 3 is consistent with a gap clos-
ing at the three M points in the Brillouin zone, as indeed
observed in previous mean-field studies [17, 18].

The presence of an odd number of Dirac cones at
the topological phase transition is unusual and sug-
gests the absence of fermion-doubling as described by
the Nielson-Ninomiya theorem [21-24]. In order to cir-
cumvent fermion-doubling it is generically necessary to
break at least one of the properties of the Hamiltonian
among locality, hermiticity, periodicity, bi-linearity and
chiral symmetry. One way is to construct SLAC fermions
[25] by introducing long-range hopping terms, which re-
sults in a single Dirac cone with singularities at the
Brillouin zone boundary [26-29]. Alternatively, one can
break the chiral symmetry explicitly [30-33]. For exam-
ple, in the Bernevig-Hughes-Zhang model [34] and Qi-
Wu-Zhang model [35], a Wilson term [30] acting like a
momentum-dependent mass is applied to obtain a single
Dirac cone at zero energy. The other Dirac cone is gapped
out and pushed into the UV regime. As we will show, the
gap closing at the three M points at the field-driven topo-
logical phase transition of the Kitaev model is possible
because of a UV compensation of Berry curvature due to
ring-like hybridisation gaps between the low-energy band
and higher-energy Majorana fermion modes.

In order to understand the nature of the topological
phase transition we first briefly revisit the Majorana-
fermion parton mean-field theory. Our results are in
quantitative agreement with those of earlier mean-field
studies [17, 18]. In addition, we carefully analyse the
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role of hybridisation gaps and the redistribution of Berry
curvature from the UV to the infrared, thereby provid-
ing an understanding of why a gap closing at three M
points is possible. We further compute the edge states
from an armchair ribbon on the two sides of the topo-
logical phase transition. For h < h., one chiral mode
exists on each edge, with chiral central charge of —1/2,
indicative of non-Abelian anyons and consistent with the
total Chern number Ci,; = —1 for the positive energy
bands For h > h., Ciot = 2 corresponds to two chiral
Majorana modes per edge, with central charge +1. Ac-
cording to Kitaev’s 16-fold way [1] the topological order
can be described by a chiral U(1) theory with Abelian
semion excitations. Therefore the ground state changes
from a gapped Z5 spin liquid to an Abelian U(1) chiral
spin liquid across h..

We then use our mean-field results to identify the ef-
fective field theory at the topological phase transition
around the three M points and perform a RG calcula-
tion within the Gross-Neveu-Yukawa (GNY) approach
that is controlled by the number of fermion flavours N.
We account for fluctuations of the QSL bond-operators
for both intra-valley and inter-valley channels and derive
the quantum critical exponents to order 1/N. We show
that inter-valley fluctuations explicitly break Lorentz in-
variance, resulting in a dynamical exponent that departs
from z = 1. This suggests that the intermediate topo-
logical phase transition of the Kitaev QSL at high field
is not in the standard Ising GNY universality class.

The paper is organised in the following way: in Sec. 11
we describe the AFM Kitaev model on the honeycomb
lattice in a magnetic field along [111]. In Sec. IIT we per-
form a non-perturbative mean-field calculation at finite
magnetic field and explicitly calculate the Chern num-
bers of individual bands, the distribution of Berry cur-
vature in the Brillouin zone, and the edge-state spectra
in a strip geometry. In Sec. IV we derive the effective
field theory of the topological phase transition and carry
out the RG analysis of the transition in the presence of
fluctuation fields. We derive the critical exponents and
characterise the universality class of the transition. In
Sec. V we summarise our results.

II. MODEL

We consider the AFM Kitaev model on the honeycomb
lattice, which is illustrated in Fig. 1(a). The key fea-
ture of this model is the bond-directional Ising exchange
where along each of the three different bonds of the hon-
eycomb lattice, labelled by v = z,y, z, only the v compo-
nents of the spin-1/2 operators are coupled. In addition,
the spins are subject to a magnetic field along the [111]
direction. The corresponding Hamiltonian can be writ-
ten as
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FIG. 1. (a) Illustration of the Kitaev model on the honeycomb
lattice. The different bonds are labelled by v = z,y,z and
shown in different colours. Along a bond of type « only the ~
components of the spins are coupled. The unit cell is spanned
by the lattice vectors a; and as and contains two sites of the
honeycomb lattice, labelled A and B. (b) High symmetry
points in the hexagonal Brillouin zone. For small [111] field
h a topological gap A ~ h® opens at the two K points. At
larger field h = h. we observe a topological phase transition
with gap closing at the three M points. The unit vectors n;
parametrise the local coordinate frames at M,;.

where 67 (r) are spin-1/2 operators on the sites s = a,b
in the unit cell r of the triangular lattice spanned by
aj o = (+£1/3/2,3/2). Using these conventions, the lattice
vectors for the three different bonds are given by d,, = a,
0, = ap, and 4, = 0. Measuring the spins in units of
h/2, the spin commutator relations read [6%(r), &f, ()] =
20r 105,57 €apy02 (T).

In the absence of field, h = 0, the Kitaev model is
exactly solvable by expressing the spin operators in terms
of a set of four Majorana fermion operators 7*(r) (u =
Ov Z,Y, Z)7

61 (r) = i (r)i (r). (2)
The Majorana fermions satisfy the Clifford algebra

He(r), 7% (r)} = 26,405 9, , and are subject to the
{74 (x), 73 /05,570y, J
local constraints

W)+ Jeasr WAL =0, ()

in order to correctly represent the spin Hilbert space.

Although the Kitaev model is quartic in terms of the
Majorana fermions, an exact solution can be obtained
because the bond operators A, (r) = i) (r)7, (r + 85),
which have eigenvalues +1, are local and commute with
the Hamiltonian. As a consequence, it is sufficient to
diagonalise the quadratic Hamiltonian for the #° Majo-
rana fermion for a given realisation of fluxes, which are
obtained by multiplying the corresponding bond opera-
tor eigenvalues around each plaquette. In the zero-flux
ground-state sector this results in the energy dispersion
+K|1+ea 4 eikaz| for 30 with Dirac points at the cor-
ners K1 of the hexagonal Brillouin zone [see Fig. 1(b)],
and three degenerate flat bands of the local 7%, ¥, and
7* Majorana fermions, shown in Fig. 2(a).
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FIG. 2. Evolution of the Majorana fermion mean-field spectrum along a high-symmetry path as a function of magnetic field h
along [111]. (a) Spectrum of the Kitaev model at h = 0, showing a dispersive Majorana band with Dirac cones at the K points
and three degenerate flat bands. (b) For small h a small gap A ~ h® open at the K points and the dispersive band hybridizes
with the flat ones. All bands acquire non-zero Chern numbers, where C = —3 for the low-energy band. (c¢) At h =1 a softening
at the M points becomes visible. The Chern numbers remain unchanged. (d) At the critical point h = h. ~ 1.43 the gap closes
at the three M points. (e) Bands at h = 1.6. The Chern number of the low-energy band changes to C = 0 at h > h. &~ 1.43,

indicating the presence of a topological phase transition.

III. MEAN-FIELD THEORY

A magnetic field along the [111] direction represents
the simplest way to break the exact solvability of the Ki-
taev model. For h > 0 the different Majorana fermions
hybridise and the plaquette operators no longer com-
mute with the Hamiltonian. As a first step we use self-
consistent mean-field theory to decouple the quartic Ma-
jorana fermion Hamiltonian, introducing the bond expec-
tation values

A = (i (r)iy (v + 6y)),

B = (ifg(r)i(r + 3,)), (4)
which by symmetry take the same values on all nearest-
neighbour bonds. To account for effects of internal mag-

netic fields we also decouple in the local magnetisation
channel,

my = —= = (if);(r)7](r)). (5)

We treat the three local constraints (3) on average
through Lagrange multipliers A, = \/ V/3, with the addi-
tional contribution to the Hamiltonian,

o = i e 57 {002 5) + e (i 6) | (O

r,s,y

In momentum space the mean-field Hamiltonian has
an 8-by-8 matrix structure (x = 0,2,y,z and s = a,b).
In the following, we measure all energies in units of
the Kitaev coupling K. For given mean-field parame-
ters A, B,m and Lagrange parameter A we can numeri-
cally diagonalise this matrix for each momentum k in the
Brillouin zone, resulting in 4 pairs of energy eigenvalues
+e;(k, A, B,m,\) with ¢, > 0 and a zero-temperature
mean-field energy per unit cell

d’k
Z ——ei(k, A, B,m,\) + 3AB +m?, (7)
Bz VBZ

where Vgy stands for the area of the Brillouin zone. The
three equations OF/0x = 0 with x = A, B, m can be con-
veniently solved using the standard iterative procedure.
However, at each iteration step we need to determine the
Lagrange multiplier A by solving the integral equation
OE/OX = 0 with bisection.

A. Mean-field results

For h = 0 the mean-field equations can be solved ana-
lytically and reproduce the exact solution of the Kitaev
model, shown in Fig. 2a. For small h a very small gap
opens at the K points, which is still barely visible at
h = 0.2 (see Fig. 2(b)). In addition, the hybridisation
between t he #° and 77 Majorana fermions results in a
ring like gap feature around the K points. All bands
are topologically non-trivial and carry non-zero Chern
numbers. Previously, it was demonstrated that the [111]
field leads to a topological gap opening of the 7° Dirac
mode in third order perturbation theory [1]. Ignoring
hybridisation effects this then results in Chern numbers
C = +1 of the gapped low energy 7° mode. While the
Chern numbers of all four positive bands still add up
to Ciot = —1, the formation of hybridisation gaps is re-
sponsible for a redistribution of Chern numbers between
bands, resulting in C = —3 for the low energy band.

Increasing the field further to h = 1 the gap at the
K points increases and a softening of the dispersion at
the M points is observed (see Fig. 2(c)). At the critical
field h. =~ 1.43, the gap closes at the three M points as
shown in Fig. 2(d), which have massless Dirac low energy
quasiparticles. As pointed out earlier, an odd number
of Dirac points is unusual and only possible if additional
Berry curvature is located elsewhere in the Brillouin zone.
We address in detail the evolution of the distribution of
Berry curvature in the low energy band in Appendix A.

Beyond the critical field, h > h. ~ 1.43, the gap re-
opens and the Chern number of the low energy band



04 02 00 02
k (rlu.)

FIG. 3. Edge states calculated from an armchair ribbon at (a) h = 1.3 and (b) A = 1.5. Bands in blue (red) correspond to the
edge states at the left (right) edge. There is one chiral mode per edge for h < h., and two chiral modes per edge for h > h.,
corresponding to the change of total Chern number from —1 to +2.

changes to C = 0 (see Fig. 2(e)), indicating the presence
of a topological phase transition of the low energy band
at h = h.. This results in a total Chern number for the
positive energy bands Ciot = +2. This critical field value
and the total Chern numbers around the phase transi-
tion are consistent with values reported in the literature
[17, 18], noting that since we measure spins in units of
h/2 our field values are rescaled by a factor of two.

The change in total Chern number reflects a change
in the number of chiral Majorana edge states due to the
bulk-boundary correspondence. The edge modes of an
armchair ribbon at h = 1.3 and h = 1.5 are shown
in Fig. 3. The converged mean-field parameters of the
Hamiltonian are used in the calculation. For h < h,
one chiral mode exists on each edge, with chiral central
charge of —1/2, indicative of non-Abelian anyons with
topological spin —x/8. For h > h,, the total Chern num-
ber Ciot = +2 corresponds to two chiral Majorana modes
per edge, with central charge +1. According to Kitaev’s
16-fold way [1], the topological order can be described
by a chiral U(1) theory with Abelian semion excitations.
Therefore the ground state changes from a gapped Zs
spin liquid to an Abelian U(1) chiral spin liquid across
he.

IV. FIELD THEORETICAL ANALYSIS OF
TOPOLOGICAL PHASE TRANSITION

A. Effective Field Theory

At the topological phase transition the gap closes at
the three M points in the Brillouin zone, which we will
label by M; (i = 1,2,3) in the following, as illustrated
in Fig. 1(b). In a small momentum region around these
points and for fields h close to h. the low energy Hamilto-
nian around M; will have the conventional 2-by-2 spinor
matrix structure of a gapped Dirac point, where the gap
A ~ (h — h.) is the same at all M points. By symmetry,

one would further expect that the Hamiltonians H; at
each M; are identical when expressed in the local coordi-
nate frame relative to the edge of the Brillouin zone with
normal vector n; (Fig. 1). The Hamiltonian matrices
should therefore take the form

Hz(k) = [(flz X éz) -k]Tm + ’UJ_(ﬁi . k)Ty + ATZ, (8)

where 7, are Pauli matrices in pseudo-spin space. We
confirmed this expected form numerically by projecting
the full mean-field Hamiltonian onto the low-energy sec-
tor at each M; and treating (h — h.) and the momentum
shifts k;, k, away from M; as small perturbations.

Our numerical results show a small anisotropy of Fermi
velocities, (v —wvy)/vy =~ 0.05. In the following we will
neglect this anisotropy and absorb the velocity v = v =
v, in a re-definition of k. Our RG analysis will indeed
confirm that v = v at the critical fixed point.

The three Dirac Hamiltonians shown in Eq. (8) have
the topological charge sgn(A)/2. The additional topo-
logical charge of —3/2 associated with the nodal line gap
around I' is located at top of the low-energy band and re-
mains unchanged across the transition. This feature has
no direct effect on the nature of the topological phase
transition, other than permitting the emergence of an
odd number of Dirac cones in the IR via UV compensa-
tion. In the following we focus on the bulk properties in
the thermodynamic limit, in the absence of zero energy
edge modes.

Writing the partition function as a Grassmann path-
integral over Majorana fermion fields, the low-energy free
fermion action at the critical point (A = 0) is given by

— 3 N - -
Sl = 3N [ GuB{ -k
(B x &) - K], + (s - K7y b () 9)

where we have introduced the frequency momentum 3-
vector k = (ko, k), ¢ = 1,2,3 labels the three M-point



Dirac valleys, and we have generalised to v = 1,..., N
replicas of the theory, enabling a systematic expansion in

1/(3N). The resulting fermion Green function at M; is
given by
L ko + (A x &) - K, + (B k
Gz(k)zl 0+[(n ><e)H ]T +(n )Ty (10)

k2

To understand the critical behaviour we need to in-
clude fluctuations beyond mean-field theory. The start-
ing point would be a Hubbard-Stratonovich decoupling of
the interaction terms in the initial lattice model, which,
at saddle-point level, reproduces the mean-field theory.
While the initial fluctuation fields couple to bond opera-
tors in7 (r)n,) (r + 8,) and ind(r)ny (r + &,), which lead
to a Yukawa coupling in the sublattice channel 7, as
discussed in [36], here the Majorana fermions of differ-
ent flavours and on different sub-lattices mix under the
unitary transformation that diagonalises the mean-field
Hamiltonian. We will therefore obtain fluctuations in all
channels 7, of the new low-energy pseudo-spin space. In
general, most fluctuations will be gapped and can be ne-
glected. One exception is when the system is close to
a symmetry-breaking instability, in which case he cor-
responding fluctuations can become soft. Here we won’t
study such multi-criticality and only focus on the dynam-
ical fluctuations of the mass gap A in the 7, channel,
since it is the tuning parameter of the topological phase
transition at the quantum critical point (A = 0).

Since the interactions are short ranged, both inter- and
intra-valley fluctuations will be important. On the full
two-dimensional Brillouin zone the fluctuations in the
mass channel are of the form ®(Q)¥(K)T.%(K + Q),
where we have dropped the dependence on frequencies,
for brevity. In the low-energy theory we only consider
momentum patches close to the M points, K = M, + k,
and define 9(K) = (M, + k) = 1;(k). For the momen-
tum transfer we write Q = Q;; +q where Q;; = M; —M;
and q is small. Defining the intra-valley fluctuation fields
(i=j) as ®(Qi; +q) = ®(q) = ¢(q) and the inter-valley
fluctuation fields (i # j) as ®(Qs;; + q) = ¥ij(q), the
Yukawa couplings can be written as

Sy = F Z Z/ d) (T)d)w Tzd’w(k + (T) (11)

~ 1#]

ZZ/ Pij (T)’l,[)w )Tz¢jv(k + q_)

where g and g are the strengths of the intra- and
inter-valley Yukawa couplings, respectively. Note that
©7;(@) = ¢ji(—¢). Finally, the quadratic actions for the
fluctuation fields are given by

Sl = 3 [ 7 @l (12)

1<j

&@]szQ/ {Dles@P. (13)
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FIG. 4. Self-energy diagrams of the GNY model.

Top row:
Bosonic self-energy diagrams. Fermionic polarisation bubble
diagrams give non-analytic IR corrections to boson propaga-
tors of (a) intra-valley and (b) inter-valley fluctuation fields
(i # 7). Bottom row: fermionic self energy corrections, lead-
ing to a renormalisation of the free fermion action. (c) shows

the contribution dZ( k) from intra-valley fluctuations, (d) the
contribution d%(k ) from fluctuations between different val-
leys, i # j.

where the inverse boson propagators are given by the
usual quadratic gradient and mass terms and a self energy
correction, D~1(q) = ¢ +c*q*+m2+11(¢) and D~1(7) =
@ + 3q? +m? + 1(]).

B. Self-energy corrections and IR boson
propagators

The self-energy corrections to the boson propagators
correspond to the diagrams shown in Figs. 4 (a) and (b)

and are given by I(q) = ¢*[fii(@) — f:(0)] and 1I(7) =
[fw(‘f) fi;(0 )] for i # j, where

fo@ = [mefe

The polarisation diagrams can be computed analyti-
cally, see Appendix B, resulting in

G (E+ar. ). (1)

2(1 + cos Bij)q3 + (1 + 3 cos B;;)q?
320 ’
(15)
where (;; is the angle between the unit vectors n; and
n; at valleys M; and M;, cos 3;; = n; - n;. Using that
cosf;; = 1 for the intra-valley (i = j) and cosfB;; =
cos(+m/3) = 1/2 for the inter-valley terms (i # j), we
obtain the boson self-energy corrections

fi3(@) = fi;(0) =

@ = Lia. (16)
i) = ¢ |w( q), an

6 g°
for intra and inter-valley fluctuation channels, respec-
tively. The intra-valley correction (16) is the standard
result as shown in [37].



The self-energy corrections of both channels scale as
~ |7l = v/43 + q? and hence dominate over the conven-
tional quadratic gradient terms in the IR limit. In or-
der to understand the universality of the transition it is
sufficient to keep the leading frequency and momentum
dependence and use D~1(7) = 11(¢) and D~(q) = 11(q)
as inverse IR propagators.

C. Renormalisation-group analysis

We proceed to analyse the GNY action Sp[tp, )] +
So[p] + Solp] + Sy [, v, ¢, @] using a renormalisation
group approach. We integrate out UV modes from the in-
finitesimal three dimensional frequency-momentum shell,

Ae=¥ < |E| < A, (18)

where A denotes the original cut-off of the theory. The
diagrams that renormalise the free fermion action and the
Yukawa couplings are shown in the bottom row of Fig. 4
and in Fig. 5, respectively. Note that the IR boson prop-
agators are non-analytic and do not renormalise under
the perturbative shell RG scheme. The shell integration
is followed by a rescaling of frequency and momentum,

ko — koe *%, k — ke™ ¥, (19)
and fields

B s ape~Bw/2d 4y pe=Be/2dl o o=Dp/2dE
(20)
We start by analysing the shell corrections to the free

fermion action, corresponding to the diagrams in Figs. 4
(c) and (d), and given by

4S9 = 3 [ )[4 )+ B ),

(21)
with
- 92 > -
isi(F) = ~L / DT-GiF+ D (22)
3N s
~ N 92 > N .
is(F) = -9 / D) Gy (F + s, (23)
N e/
J 1

for the infinitesimal intra- and inter-valley fermion self-
energy corrections. In the above and the following, “>”
denotes integration over the infinitesimal shell (18), “<”
over modes up to the reduced cut-off, |k| < Ae=%.

Expanding Egs. (22) and (23) to linear order in outer

frequency k¢ and momenta k,
d%i(F) + dS(k) = —iko (20 +20) de
(i x &.) K7, (To 4+ 54 ) de

(k)7 (zy + zy) e, (24)

FIG. 5. Panels (a) and (b) show the diagrams that renor-
malise the intra-valley Yukawa coupling g, (c) and (d) the
diagrams that renormalise the Yukawa coupling § between
different valleys ¢ # j.

and carrying out the resulting shell integrals over ¢ for
the coefficients X,,d¢ and X,d¢ (n = 0,x,y), we obtain

1 4
Yo=2=%,= —— 25
0 Y 3N 3n2 (25)
for the intra-valley contributions and
~ 1 96(11k —2) - 1 48(1 — 5k)
S =/ oy = —————2 (26
07 3N 2 ’ Y 3N 2 (26)

for the inter-valley terms, where we have defined k =
(1/V/5) arctan (1/v/5). Details of the calculation can be
found in Appendix C. Combining the loop corrections
with the rescaling contributions and demanding that the
inverse fermion propagator remains invariant under RG
we obtain the conditions

222 Ay +%0+% = 0, (27)
“B3—z—Ay+%,,+%., =0, (28)
from the scale invariance of the frequency and spatial mo-
mentum coefficients, respectively. These equations allow
us to determine the dynamical exponent
z =1+ io — i)%y

L 48275 —5) |, 0.379

= 14+ — ~ 2
+ 3N 2 3N’ (29)
and the fermion anomalous dimension
Thy = 20 — io + 221’,3/
1 4(217 — 1152 0.047
- LA ®) (30)

3N 32 3N

which measures the deviation of Ay from tree-level scal-
ing, Ay = —4+1ny.

Finally, we compute the renormalisation of the Yukawa
couplings g and g. The corresponding one-loop dia-
grams involve contractions of three Yukawa vertices and
are shown in Fig. 5. Note that since g?D(§) ~ ¢° and



3?D(§) ~ §° the RG equations for g and § decouple and
take the simple linear form

dg Ay ~
dg A, ~\ .

where we have included the rescaling contributions. The
one-loop corrections dQ); = Q4d¢ and dQ), = Q,dl that
contribute to the renormalisation of the intra-valley cou-
pling g are given by the shell integrals

Qdl = 92/>D(7G‘(7 Gi(9) -2 (33)
g _3N,j DT )T = 3N 72’
~9 >
~ q ~ dl 96k
{Yydt 3N/(; D@GD7Ci@)m = —35 7 (3)

which correspond to the diagrams in Fig. 5(a) and (b). In
the same way, the diagrammatic contributions that con-
tribute to the renormalisation of the inter-valley Yukawa
coupling g are given by

a.d - 2 [ paa G _ 48 o
ot = 3 | @G @6, @ =~ 55)
N §2 >
Qpdt = 67\[/ DG DTG (D)
q
0 24(1 — 4r)
- _37N 7'('2 ) (36)

and correspond to the diagrams in Fig. 5(c) and (d). De-
tail on the calculation of the above one-loop diagrams
can be found in Appendix D.

Since it is possible to scale g and g out of the large-N
IR theory by a simple rescaling of the fluctuation fields,
g¢ — ¢ and gp;; — @i, we need to postulate that both
Yukawa couplings are scale invariant, % = % = 0. From
Egs. (31) and (32) and using our results for z and A,, we
obtain the scaling dimensions Ay, = —4 + 14 and A, =
—4 + n, of the fluctuation fields where their resulting
anomalous dimensions are

Ny = 2(99+Qg*20*20)

1 32(216k — 35) 6.077
- 3N 32 ~ 3N (37)
ma:?(Qg-‘ng—Zo—io)
1 8(240k — 41) 3.353
=TI e Sy B8

To summarise, we have obtained the dynamical criti-
cal exponent z (29), the fermion anomalous dimension 7,
(30) and the anomalous dimensions 7, (37) and 7, (38)
of the intra- and inter-valley fluctuation fields at one-loop
order, which systematically accounts for contributions of
order 1/(3N). At the topological phase transition the

mass gap of the 3NV Dirac fermions closes and we consid-
ered a GNY theory where both the dynamical intra- and
inter-valley mass fluctuations are critical.

Let us compare with the case where the inter-valley
fluctuations are absent, g = 0. This would simply mean
that the inter-valley fluctuations are gapped and short-
ranged. One would therefore expect to see a crossover
from the universal behaviour with the set of critical ex-
ponents computed above to the universality of a GNY
theory with g = 0. We can obtain the critical exponents
without inter-valley coupling by setting Xy = ¥, , =
Q5 = Qg = Qg = 0, resulting in

_ 14
= 3N 372’

1 32

=1 =
¥ ’ 3N 372’

Ny = (39)
which are the known critical exponents of the Ising-GNY
theory in 241 dimensions in the limit of a large number
of decoupled 3NN copies of 2-component Dirac fermion
fields [38-41].

The comparison shows that the presence of critical or
at least very soft inter-valley fluctuations has important
consequences for the universal critical behaviour. Most
importantly, it leads to a breaking of Lorentz invariance
(z > 1). While the changes of the fermion anomalous
dimension are small, the anomalous dimensions of the
bosonic fluctuation fields are significantly larger than
that of the conventional GNY theory.

V. DISCUSSION

In conclusion we have addressed the nature of the field
driven topological phase transition of the Kitaev QSL.
Our mean-field results clarify the closing of the low en-
ergy band gap of the intermediate phase at the three
M points in the Brillouin zone, and the necessity to in-
corporate the hybridization with the high energy bands
to account for the absence of fermion doubling in the IR,
which is manifested through the presence of an odd num-
ber of Dirac cones. The hybridization makes the high en-
ergy bands topological, while permitting a redistribution
of Berry curvature from the UV to the IR.

We then performed a Wilson momentum shell renor-
malization group calculation in the GNY model to de-
scribe the nature of the quantum phase transition be-
yond mean-field. We showed that the inter-valley fluctu-
ation channel among different M points breaks Lorentz
invariance and produces a dynamical exponent z > 1.
Inter-valley fluctuations produce small corrections to the
mean-field critical exponents, with the exception of the
anomalous dimension of the bosonic fields, where the ef-
fect is significant. The conclusion is that the interme-
diate topological phase transition of the Kitaev QSL at
finite [111] field belongs to a different universality class
compared to the standard Ising GNY one.

We acknowledge Arnaud Ralko for helpful discussions.
BU acknowledges NSF grant DMR-2529526 for support.



Appendix A: Low energy band Berry curvature

In Fig. 6 we analyse the evolution of the low-energy
band Berry curvature Q(k) for different field values. At
very small field, h = 0.006 [see Fig. 6(a)], we find neg-
ative spikes with topological charge of —1/2 at the K
points, as expected. In addition, there is a ring-like fea-
ture in the UV with Q(k) < 0 around each K point.
This feature coincides with the hybridisation gap form-
ing at the intersection line between the Dirac mode and
the flat bands, see Fig. 2. Each ring constitutes a topo-
logical charge of —1, resulting in a Chern number of
C=2x(-1/2)+2x (—1) = —3 of the low-energy band.

Figs. 6(b) and (c) show the Berry curvature Q(k) at
fields slightly below (h = 1.38) and above (h = 1.45)
the critical value h, ~ 1.43, where there is a topological
phase transition. As anticipated, the topological charge
changes from —1/2 to +1/2 at each M point, resulting
in a Chern number change AC = 3 across the transition.
The missing Berry curvature of —3/2 is centred around a
nodal line gap around I" between the low-energy and first
exited bands. This nodal line gap remains intact across
the transition and is clearly visible in the spectrum at
he, shown in Fig. 2(d). Increasing the field to h = 1.6
[see Fig. 6(d)], the topological charge from the M points
seems to delocalise along the I'-M high-symmetry lines,
along which the low-energy dispersion is practically flat
[see Fig. 2(e)]. Moreover, the nodal line gap around T’
seems to contract and move to lower energies.

Since the ground state remains topological at h = 1.6,
there needs to be at least one additional topological phase
transition before the topologically trivial field polarised
state is obtained at large h. Unfortunately, the numerics
becomes unstable in this field range, which might be in
part due to the confinement of Majorana fermions, which
is not captured in the mean-field treatment.

Appendix B: Bosonic self-energy corrections

We will evaluate the regularised polarisation bubble
diagram f;;(7) — f:;(0) defined in Eq. (14). Inserting
the expressions for the fermion Green function (10), us-
ing that 7'3 =1, T,7uT. = —T,, and T.7yT. = —Ty
and taking the trace over pseudo-spin space, using that
Tr (T473) = 2043, We obtain

fij (@) = —2/ﬁ£ﬂ, (B1)
Ek2(k+q)?
where
Fij(k,@) = ko(ko + qo) + cos Bik(k + q)
—sin Bij(kIQy - ksz) (B?)

Here 3;; denotes the angle between the unit vectors n;

and n;. Subtracting

_ k2 + cos B; k> 2 [ 1+2cospf
(@) = o [ FotcosBuk® 7/7”
Fa® =2 [ 3.

;A 02
(B3)
results in
e iy = [ PR D
Fol@) = 1@ — f,0) =2 /;;EZ(EM’)?’ (B4)
with Fyj (K, @) = $(1+2cos Bi)(k + @) — Fy(k ). The

IR behaviour of fzj((j) is dominated by the small k¥ con-
tributions to the integral. We can therefore send the UV
cut-off to infinity, what enables us to use the standard
Feynman parametrisation trick.

We first introduce a dummy integration variable using
the formula 1/(ab) = fol dt/[ta + (1 — t)b)? with a =
(k+ @2 and b = k2, followed by a shift of the frequency-
momentum vector, p = k+ tq, to obtain

f”(j)_2/ dt/ [p? +t1t(115(j)]

The denominator is now rotationally symmetric in  and,
as a result, the terms in sz( —tq, q) that are linear in p’
vanish under integration. Moreover, the terms that are
quadratic in the components of p’ cancel each other under
integration, leaving the remaining integral

(B5)

1+2cos B 5
— 5 4

ot = 2 [ -2

+t(1 —t)(g3 + cos Bijq2)} [ [p? + t(ll— QU

(B6)

After carrying out the radially symmetric, three dimen-
sional p’ integral we obtain

1+ 2cosf;;
o )2 3 Jq—Q

Ful@) = 47r|¢ﬂ/ m

(1 = £)(g} + cos ;a%) }. (B7)

The integrals over t are elementary,

1 2 1

1-—t¢ t(l—t

dt( ) —37T and ( ) _T
t(1—1) 8

\/ ta—t) 8
(B8)
resulting in Eq. (15).

Appendix C: Fermion self energy corrections

Let us first evaluate the fermion self energy correction
d%; (k) (22) from the intra-valley fluctuations. After Tay-
lor expansion in external frequencies and momenta to lin-
ear order, the coefficients %,,d¢ in Eq. (24) are obtained
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FIG. 6. Berry curvature Q(k) of the low-energy band for different values of magnetic field.
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(a) At small field (h = 0.006)

negative Berry curvature is concentrated at each K point as well as around the nodal line gap around K from hybridisation
with the flat bands. (b) and (c) show the change of topological charge at the M points from —1/2 to 1/2 across the topological

phase transition. The missing Berry curvature of —3/2 is concentrated at a nodal line gap around T'.

(d) At h = 1.6 Berry

curvature is delocalised along the I'-M high-symmetry directions and the nodal-line gap around I' starts to contract.

as the following shell integrals,

Sodf = 39;[/; D;j’ (1 - 2Z_§) (1)
S,dl = :ag;r/; Z@ (1 _2[(ﬁi><;z)"ﬂ2> (C2)
Nyl = ?ii[/§>li;j)<1—2(f‘i(]’4f)2>. (C3)

Since D(q) is rotationally symmetric it follows that

Yo =%, =2, and
18/>1
3N3 J; lq®

1 4 /A dg _ 1 4 ,
3N 372 Jpe-ar q 3N37r2

Ypdl =

(C4)

In the case of the inter-valley contributions an addi-
tional complication arises from the fact that d3;(k) (23)
involves a sum over Green functions G; from neighbour-
ing valleys. However, using that }°; n; = f; we ob-

tain
- Z .G k + 4T (C5)
J(#1)
~ —2i(ko +qo) + (0; x &;) - (k+q)7 + 1y - (k+q)7,

(k + )2
Proceeding with the Taylor expansion as in the intra-
valley case, this results in

Sodl = ;VL Dq_@ <12Z_§) (C6)
S,dl = g[/; q@ (1 _2[(fli><§;)'q]z> ()
Sydl = 69;/; Dqﬁ;f (1 - 2(f”q;f>2> (C8)

Inserting D(q) and using spherical coordinates we obtain

SN

32 > 1 1-2%

Sodl = — [ T
3N Jz 1dP1-4%
- 3?\7 82d£/ dt‘)sinﬁl_z(;(:lzg
- 3%% [\/5 arctan (\}5> — 2] de (C9)
_ SLNW(M (C10)

for the frequency coefficient, where we have defined

1 1
K= —=arctan | —= | .
Likewise, for the coefficients of the spatial momentum
terms we obtain

- 32 [
by = =
eyt 6N /(7

(C11)

2
1 1-%

[FEREYH
%1 - 1%

. 2

- ! 4d€/ dosing L0
3INT2 1— §sin“6

1 48(1-5k)

= . (C12)

Appendix D: Corrections to Yukawa couplings

The loop corrections to the Yukawa couplings can be
written as dili = ﬁgiidﬁ, Qgdl = ﬁgiidﬁ, Qzdl =
3w iz A0, and Qzdl = 5 Giz;dl, where

g”df =

7 / DG Gy(@)r. (D)

Giyde = g / DG Gy(@)r.. (D)



Using that

GGy (. = —q% [1—(1—005@”22} (D3)

+terms that vanish under int.,

where cos 8;; = n;-n;, we can use the spherical symmetry
of D(q) to compute g;;d/,

> 1 2
_8/5 —mg [1—3(1—0056”-)]
42 2
- [1 — g(l — cos Bij)] de.

gijdl =

(D4)
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Using that cos 8;; = 1 and cos B;%; = 1/2, this results
in the expressions (33) and (35) for Q,d¢ and Qgdl. For

the integrals involving f)(cj’) we obtain

[N

> 1 1-(1—cosBiy) g
Q2
a2

7 14 1—%(1
(

™ _ _ ) a2
—%dﬂ/ 06 sin g2~ (L7058 Pyg) s
s 0 — 5sin”0

1
8 126 (i = J)
= }2“{6(1 T (£9)

which reproduces Eqs. (34) and (36) for Q,d¢ and Q;de.

(D5)

[1] A. Kitaev, Annals of Physics 321, 2-111 (2006).

[2] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102,
017205 (2009).

[3] T. Takayama, A. Kato, R. Dinnebier, J. Nuss, H. Kono,
L. S. I. Veiga, G. Fabbris, D. Haskel, and H. Takagi, Phys.
Rev. Lett. 114, 077202 (2015).

[4] S. K. Choi, R. Coldea, A. N. Kolmogorov, T. Lancaster,
I. I. Mazin, S. J. Blundell, P. G. Radaelli, Y. Singh,
P. Gegenwart, K. R. Choi, S.-W. Cheong, P. J. Baker,
C. Stock, and J. Taylor, Phys. Rev. Lett. 108, 127204
(2012).

[5] S. Hwan Chun, J.-W. Kim, J. Kim, H. Zheng, C. C.
Stoumpos, C. D. Malliakas, J. F. Mitchell, K. Mehlawat,
Y. Singh, Y. Choi, T. Gog, A. Al-Zein, M. M. Sala,
M. Krisch, J. Chaloupka, G. Jackeli, G. Khaliullin, and
B. J. Kim, Nature Physics 11, 462 (2015).

[6] P. Warzanowski, N. Borgwardt, K. Hopfer, J. Attig, T. C.
Koethe, P. Becker, V. Tsurkan, A. Loidl, M. Hermanns,
P. H. M. van Loosdrecht, and M. Griininger, Phys. Rev.
Res. 2, 042007 (2020).

[7] K. W. Plumb, J. P. Clancy, L. J. Sandilands, V. V.
Shankar, Y. F. Hu, K. S. Burch, H.-Y. Kee, and Y.-J.
Kim, Phys. Rev. B 90, 041112 (2014).

[8] X.-G. Zhou, H. Li, Y. H. Matsuda, A. Matsuo, W. Li,
N. Kurita, G. Su, K. Kindo, and H. Tanaka, Nature Com-
munications 14, 5613 (2023).

[9] H. Suzuki, H. Liu, J. Bertinshaw, K. Ueda, H. Kim,
S. Laha, D. Weber, Z. Yang, L. Wang, H. Takahashi,
K. Fuersich, M. Minola, B. Lotsch, B. Kim, H. Yavag,
M. Daghofer, J. Chaloupka, G. Khaliullin, H. Gretars-
son, and B. Keimer, Nature Communications 12 (2021).

[10] X. Liu, T. Berlijn, W.-G. Yin, W. Ku, A. Tsvelik, Y.-J.
Kim, H. Gretarsson, Y. Singh, P. Gegenwart, and J. P.
Hill, Phys. Rev. B 83, 220403 (2011).

[11] F. Ye, S. Chi, H. Cao, B. C. Chakoumakos, J. A.
Fernandez-Baca, R. Custelcean, T. F. Qi, O. B. Korneta,
and G. Cao, Phys. Rev. B 85, 180403 (2012).

[12] J. A. Sears, Y. Zhao, Z. Xu, J. W. Lynn, and Y.-J. Kim,
Phys. Rev. B 95, 180411 (2017).

[13] A. U. B. Wolter, L. T. Corredor, L. Janssen, K. Nenkov,
S. Schonecker, S.-H. Do, K.-Y. Choi, R. Albrecht,
J. Hunger, T. Doert, M. Vojta, and B. Biichner, Phys.
Rev. B 96, 041405 (2017).

[14] Y.-F. Jiang, T. P. Devereaux, and H.-C. Jiang, Phys.

Rev. B 100, 165123 (2019).

[15] S. Pradhan, N. D. Patel, and N. Trivedi, Phys. Rev. B
101, 180401 (2020).

[16] C. Hickey and S. Trebst, Nature Communications 10, 530
(2019).

[17] F. Y ilmaz, A. P. Kampf, and S. K. Yip, Phys. Rev. Res.
4, 043024 (2022).

[18] A. Ralko and J. Merino, Phys. Rev. Lett. 124, 217203
(2020).

[19] S.-S. Zhang, G. B. Haldsz, and C. D. Batista, Nature
Communications 13, 399 (2022).

[20] M. Gohlke, R. Moessner, and F. Pollmann, Phys. Rev. B
98, 014418 (2018).

[21] H. Nielsen and M. Ninomiya, Nuclear Physics B 185, 20
(1981).

[22] H. Nielsen and M. Ninomiya, Nuclear Physics B 193, 173
(1981).

[23] H. Nielsen and M. Ninomiya, Physics Letters B 105, 219
(1981).

[24] H. Suzuki, Progress of Theoretical Physics 112, 855
(2004).

[25] S. D. Drell, M. Weinstein, and S. Yankielowicz, Phys.
Rev. D 14, 1627 (1976).

[26] T. C. Lang and A. M. Liuchli, Phys. Rev. Lett. 123,
137602 (2019).

[27] Y. Da Liao, X. Y. Xu, Z. Y. Meng, and Y. Qi, Phys. Rev.
B 108, 195112 (2023).

[28] B. H. Wellegehausen, D. Schmidt, and A. Wipf, Phys.
Rev. D 96, 094504 (2017).

[29] Z. Wang, F. Assaad, and M. Ulybyshev, Phys. Rev. B
108, 045105 (2023).

[30] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).

[31] P. H. Ginsparg and K. G. Wilson, Phys. Rev. D 25, 2649
(1982).

[32] D. B. Kaplan, Physics Letters B 288, 342 (1992).

[33] R. Narayanan and H. Neuberger, Nuclear Physics B 443,
305 (1995).

[34] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science
314, 1757 (2006).

[35] X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, Phys. Rev. B 74,
085308 (2006).

[36] H. Hu and F. Kriiger, Phys. Rev. Lett. 133, 146603
(2024).

[37] M. D. Uryszek, F. Kriiger, and E. Christou, Phys. Rev.


https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevLett.102.017205
https://doi.org/10.1103/PhysRevLett.102.017205
https://doi.org/10.1103/PhysRevLett.114.077202
https://doi.org/10.1103/PhysRevLett.114.077202
https://doi.org/10.1103/PhysRevLett.108.127204
https://doi.org/10.1103/PhysRevLett.108.127204
https://doi.org/10.1038/nphys3322
https://doi.org/10.1103/PhysRevResearch.2.042007
https://doi.org/10.1103/PhysRevResearch.2.042007
https://doi.org/10.1103/PhysRevB.90.041112
https://doi.org/10.1038/s41467-023-41232-7
https://doi.org/10.1038/s41467-023-41232-7
https://doi.org/10.1038/s41467-021-24722-4
https://doi.org/10.1103/PhysRevB.83.220403
https://doi.org/10.1103/PhysRevB.85.180403
https://doi.org/10.1103/PhysRevB.95.180411
https://doi.org/10.1103/PhysRevB.96.041405
https://doi.org/10.1103/PhysRevB.96.041405
https://doi.org/10.1103/PhysRevB.100.165123
https://doi.org/10.1103/PhysRevB.100.165123
https://doi.org/10.1103/PhysRevB.101.180401
https://doi.org/10.1103/PhysRevB.101.180401
https://doi.org/10.1038/s41467-019-08459-9
https://doi.org/10.1038/s41467-019-08459-9
https://doi.org/10.1103/PhysRevResearch.4.043024
https://doi.org/10.1103/PhysRevResearch.4.043024
https://doi.org/10.1103/PhysRevLett.124.217203
https://doi.org/10.1103/PhysRevLett.124.217203
https://doi.org/10.1038/s41467-022-28014-3
https://doi.org/10.1038/s41467-022-28014-3
https://doi.org/10.1103/PhysRevB.98.014418
https://doi.org/10.1103/PhysRevB.98.014418
https://doi.org/https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/https://doi.org/10.1016/0550-3213(81)90524-1
https://doi.org/https://doi.org/10.1016/0550-3213(81)90524-1
https://doi.org/https://doi.org/10.1016/0370-2693(81)91026-1
https://doi.org/https://doi.org/10.1016/0370-2693(81)91026-1
https://doi.org/10.1143/PTP.112.855
https://doi.org/10.1143/PTP.112.855
https://doi.org/10.1103/PhysRevD.14.1627
https://doi.org/10.1103/PhysRevD.14.1627
https://doi.org/10.1103/PhysRevLett.123.137602
https://doi.org/10.1103/PhysRevLett.123.137602
https://doi.org/10.1103/PhysRevB.108.195112
https://doi.org/10.1103/PhysRevB.108.195112
https://doi.org/10.1103/PhysRevD.96.094504
https://doi.org/10.1103/PhysRevD.96.094504
https://doi.org/10.1103/PhysRevB.108.045105
https://doi.org/10.1103/PhysRevB.108.045105
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRevD.25.2649
https://doi.org/10.1103/PhysRevD.25.2649
https://doi.org/https://doi.org/10.1016/0370-2693(92)91112-M
https://doi.org/https://doi.org/10.1016/0550-3213(95)00111-5
https://doi.org/https://doi.org/10.1016/0550-3213(95)00111-5
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1103/PhysRevB.74.085308
https://doi.org/10.1103/PhysRevB.74.085308
https://doi.org/10.1103/PhysRevLett.133.146603
https://doi.org/10.1103/PhysRevLett.133.146603
https://doi.org/10.1103/PhysRevResearch.2.043265

Res. 2, 043265 (2020).

[38] A. N. Vasil’ev, S. E. Derkachev, N. A. Kivel’, and A. S.
Stepanenko, Theoretical and Mathematical Physics 94,
127 (1993).

[39] J. Gracey, International Journal of Modern Physics A 06,
395 (1991).

[40] J. Gracey, Physics Letters B 297, 293 (1992).

[41] J. Gracey, International Journal of Modern Physics A 09,
727 (1994).

11


https://doi.org/10.1103/PhysRevResearch.2.043265
https://doi.org/10.1007/BF01019324
https://doi.org/10.1007/BF01019324
https://doi.org/10.1142/S0217751X91000241
https://doi.org/10.1142/S0217751X91000241
https://doi.org/https://doi.org/10.1016/0370-2693(92)91265-B
https://doi.org/10.1142/S0217751X94000340
https://doi.org/10.1142/S0217751X94000340

	Nature of the Topological Transition of the Kitaev Model in [111] Magnetic Field
	Abstract
	Introduction
	Model
	Mean-field theory
	Mean-field results

	Field Theoretical Analysis of Topological Phase Transition
	Effective Field Theory
	Self-energy corrections and IR boson propagators
	Renormalisation-group analysis

	Discussion
	Low energy band Berry curvature
	Bosonic self-energy corrections
	Fermion self energy corrections
	Corrections to Yukawa couplings
	References


