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7Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble, France

8Department of Physics and Astronomy, University College London, London, WC1E 6BT, United Kingdom

The layered-ruthenate family of materials possess an intricate interplay of structural, electronic
and magnetic degrees of freedom that yields a plethora of delicately balanced ground states. This is
exemplified by Ca3Ru2O7, which hosts a coupled transition in which the lattice parameters jump, the
Fermi surface partially gaps and the spins undergo a 90� in-plane reorientation. Here, we show how
the transition is driven by a lattice strain that tunes the electronic bandwidth. We apply uniaxial
stress to single crystals of Ca3Ru2O7, using neutron and resonant x-ray scattering to simultaneously
probe the structural and magnetic responses. These measurements demonstrate that the transition
can be driven by externally induced strain, stimulating the development of a theoretical model in
which an internal strain is generated self-consistently to lower the electronic energy. We understand
the strain to act by modifying tilts and rotations of the RuO6 octahedra, which directly influences
the nearest-neighbour hopping. Our results o↵er a blueprint for uncovering the driving force behind
coupled phase transitions, as well as a route to controlling them.

INTRODUCTION

The coupling between structural and electronic degrees
of freedom in quantum materials generates a variety of
ground states and drives transitions between them. Text-
book examples include the Peierls transition in 1D ma-
terials, in which a periodic lattice deformation leads to a
metal-insulator transition and the formation of a charge-
density wave [1, 2]. Similarly, the cooperative Jahn-Teller
e↵ect describes the spontaneous distortion of a crystalline
lattice to lower the electronic degeneracy and give rise
to orbital ordering [3]. Recently, there has been consid-
erable interest in twisted bilayer materials, which host
a spectrum of electronic phases – from Mott insulators
[4] to unconventional superconductors [5] – as the band-
width is tuned by the twist angle. The key role of the
lattice in many quantum materials o↵ers a powerful set
of control parameters with which to tune their phases,
but also presents a considerable challenge in developing
a comprehensive understanding of the interactions that
give rise to them.

In this context, the application of stress has arisen
as a powerful method to tune the electronic properties
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of quantum materials, including superconducting [7, 8],
charge/spin density wave [9–13], nematic [14–17] and
topological [18, 19] phases. Here, we use uniaxial stress
to drive a coupled spin reorientation and Fermi surface
reconstruction in Ca3Ru2O7, uncovering the central role
of the lattice and enabling a microscopic understanding
of the transition.

Ca3Ru2O7 is a bilayer member of the Ruddlesden-
Popper ruthenates, An+1RunO3n+1, across which vary-
ing distortions lead to a diversity of ground states. In
the monolayer compounds these range from supercon-
ductivity in Sr2RuO4 [7, 20] to a Mott insulating state
in Ca2RuO4 [21, 22], while bilayer Sr3Ru2O7 displays
an electronic nematic phase with spin-density wave order
[23–26]. Ca3Ru2O7 crystallises in the Bb21m space group
(a ⇡ 5.3 Å, b ⇡ 5.5 Å, c ⇡ 19.5 Å), in which a combina-
tion of octahedral tilts around b (X�

3
, a�a�c0 in Glazer

notation) and rotations around c (X+

2
, a0a0c+) combine

to unlock polar lattice displacements [27]. It undergoes
a coupled structural, electronic and magnetic transition,
where the lack of inversion symmetry causes a magnetic
cycloid to form and mediate a spin-reorientation transi-
tion (SRT). Below TN ⇡ 60K, the spins align along a,
coupled ferromagnetically within the bilayers and anti-
ferromangetically between them, in the AFMa phase (see
Fig. 1b) [6]. On cooling through 49K, an incommensu-
rate cycloid (ICC) develops with q = (�, 0, 1) (� ⇡ 0.023)
and the spins rotating in the a–b plane [28, 29]. The
envelope of the cycloid evolves from elongated along a,
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Fig. 1. Neutron scattering under stress. a Schematic of the strain setup used in the neutron scattering experiment. The
bridges of the cell and sample plates are shown in grey, and the sample is shown with a blue-to-yellow colourmap to indicate
the strain gradient induced along its length. Neutrons are scattered in transmission through the central strained region of the
sample. b Magnetic structure of Ca3Ru2O7 in the AFMa phase [6]. c Integrated intensity of the commensurate (0, 0, 1) and
incommensurate (�, 0, 1) peaks as a function of applied strain, �L/L. The background signal comes from scattering from the
strain cell. The insets show detector images at zero and maximum compressive/tensile applied strain. d Magnetic structure of
Ca3Ru2O7 in the AFMb phase [6].

to circular, to elongated along b. The SRT concludes at
46K with the cycloid collapsing into the collinear AFMb

phase, where the spins are globally rotated by 90� from
AFMa (Fig. 1d). The SRT is accompanied by a rapid
change in the lattice parameters [30] and a partial gap-
ping of the Fermi surface [31–34].

Although various mechanisms have been proposed to
explain the SRT, including recent work that attributes it
to the energy gain associated with a Rashba-based hy-
bridisation of bands at the Fermi level [34], these pro-
posals have generally neglected the structural degrees of
freedom. We use piezoelectric cells to apply continuous
and reversible uniaxial stress to Ca3Ru2O7 single crys-
tals. A combination of neutron and resonant x-ray scat-
tering enables us to directly probe the magnetic structure
and o↵er insight into the response of the lattice to ap-
plied stress. Our measurements reveal that the transition
can be fully driven by strain at fixed temperature, and
allow the construction of temperature-strain phase dia-
grams for orthogonal in-plane stresses. This motivates
the development of a minimal theoretical model in which
strain tunes the electronic hopping. As well as repro-
ducing our strain data, a self-consistent solution of the
model (with realistic values of the electronic parameters)
reveals that the transition with temperature is driven
by an internal strain that arises to lower the electronic
energy. We interpret this strain as acting via the tilts
and rotations of the RuO6 octahedra, as corroborated by
temperature-dependent di↵raction measurements. Our
results therefore o↵er a promising mechanism to drive
electronic and magnetic phase transitions in correlated
perovskite materials.

RESULTS

Driving the spin reorientation with strain

As a well-established bulk probe of magnetic order,
neutron scattering is a natural choice for our experi-
ments. The large sample size generally needed is, how-
ever, at odds with the inverse scaling of achievable strain
on sample length – an issue that is compounded by the
increased background scattering from the strain cell. To
overcome these issues, we used the latest generation of
piezoelectric strain cells from Razorbill Instruments [35],
which can apply large strains to samples measured in
a transmission scattering geometry with minimal back-
ground from the cell. Combined with the high count-rate
of the WISH instrument at the ISIS Neutron and Muon
Source [36], this enabled us to achieve su�cient signal at
strains of up to 0.5%. A schematic of the strain setup is
shown in Fig. 1a, with a Ca3Ru2O7 sample spanning a
distance L between the sample plates. Applying a volt-
age across the piezoelectric stacks changes the distance
between the plates by �L, producing an applied strain
�L/L along the a-axis of the sample. Further experi-
mental details can be found in the Methods section.

Figure 1c shows the result of a strain sweep at a
fixed temperature in the centre of the ICC phase. We
tracked the intensities of the commensurate (0, 0, 1) mag-
netic peak, which arises from both the AFMa and AFMb

structures, and satellite (�, 0, 1) peaks that arise from
the mediating cycloidal phase. At �L/L = 0, we see
intense satellite peaks and a small remnant commensu-
rate peak due to temperature and strain gradients in the
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sample. Under both tensile (�L/L > 0) and compressive
(�L/L < 0) strain the satellite peaks are suppressed, and
the commensurate peak is simultaneously enhanced. The
commensurate intensity is lower under compression, con-
sistent with entering the AFMa phase, while the higher
commensurate intensity under tension is consistent with
the AFMb phase [28]. This assignment is confirmed by
strain dependences at temperatures just above and be-
low the SRT (see the Supplementary Information). The
slight change in incommensurate intensity at low strains
is consistent with the variation of moment size through
the ICC phase. Our neutron data provide strong evidence
that we can continuously drive the cycloid-mediated SRT
with strain at fixed temperature.

Despite this, our neutron setup has a number of draw-
backs. The transitions between the magnetic phases can
be seen to occur over a finite width of ⇠ 0.3%, due
to the neutron beam illuminating a large region of the
sample across which there is a significant strain gradient
(see Fig. 1a). Further, despite the large displacements
that can be generated by the cell, the maximum strains
of |�L/L| ⇡ 0.5% are not large enough to fully enter
the collinear phases. Finally, and most significantly, the
scattering geometry necessitated by the strain cell blocks
access to any nuclear Bragg peaks with a finite compo-
nent along the stress direction. This precludes a determi-
nation of the lattice parameters, and therefore the true
strain generated in the sample, and forces us to rely on
the displacement of the sample plates as a measure of
the applied strain. As we will see in the following sec-
tion, the fact that the epoxy is significantly softer than
the sample leads to only a fraction of the applied strain
being transmitted to the sample.

Response of the lattice to applied stress

A full characterisation of the response of the lattice
to applied stress is crucial to understanding the mag-
netic response, as highlighted by previous contradictory
reports of the electronic and magnetic changes under uni-
axial pressure in Ca3Ru2O7 [37, 38]. To achieve this, we
turned to synchrotron x-ray scattering at beamline I16
of the Diamond Light Source. Size limitations of the
closed-cycle cryostat required use of a smaller strain cell
than the neutron measurements. The lower stresses are
mitigated, however, by the high flux and small focus of
the x-ray beam, allowing the use of smaller samples to
achieve applied strains up to �L/L ⇡ 2%. To maximise
beam access we mounted the samples on top of raised
sample plates, as shown in Fig. 2a (further details can
be found in the Methods section). Two samples were
measured, one with stress applied along a and the other
along b.

We tracked the positions of multiple structural Bragg
peaks while applying compressive stresses. Figure 2b
shows representative 2✓ scans of the (1, 0, 7) peak for
stress applied along b. The shifting of the peak arises

Fig. 2. X-ray scattering under stress. a Schematic of
the strain setup used for x-ray scattering. The principles of
operation are the same as the neutron setup, except that sam-
ple is mounted on top of raised sample plates to give a large
sphere of access for the incident and scattered beams. b 2✓
scans of the structural (1, 0, 7) Bragg peak as a function of
applied strain. c True strain, �b/b, as a function of applied
strain, �L/L, at a range of temperatures through the SRT.
d Temperature dependences of the Poisson ratios determined
from the relative strains along orthogonal axes.

from the changing lattice parameters, from which we
can determine the true strain, �b/b. This is shown in
Fig. 2c, where we see a linear, temperature-insensitive
dependence on �L/L, with around 40% of the applied
strain transmitted to the sample. We were unable to ap-
ply tensile strains due to the asymmetric sample mount-
ing, which also induced a slight bending of the sample
under compression (see the Supplementary Information).
The bending did not induce significant strain gradients
through the probed region, however, as evidenced by the
minimal broadening of the peaks in Fig. 2b.
Our x-ray measurements also enable us to quantify

the strains along the other crystalline axes, "x = �x/x,
that arise from the uniaxial stresses applied by the cells,
and thereby calculate the Poisson ratios ⌫xy = �"y/"x.
The results are plotted as a function of temperature in
Fig. 2d. The anisotropy of the in-plane (⌫ab ⇡ ⌫ba ⇡ 0.5)
and out-of-plane (⌫ac ⇡ ⌫bc ⇡ 0.2) Poisson ratios is as
expected for a layered material like Ca3Ru2O7.
We can also use x-ray scattering to probe the mag-

netic phases by exploiting the resonant scattering en-
hancement on tuning the incident x-ray energy to the Ru
L2 edge (2.967 keV). Alongside the positions of the struc-
tural peaks, we monitored the intensities of the (�, 0, 5)
and (0, 0, 5) magnetic peaks at each strain value, the lat-
ter at two orthogonal azimuthal angles to di↵erentiate
between the AFMa and AFMb phases [28]. Repeating
these strain sweeps at a range of temperatures enabled
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Fig. 3. Temperature-strain phase diagrams. a–b Experimental phase diagrams for stress applied along a and b
respectively. The points with error bars are transition temperatures extracted from the strain measurements, and the squares
indicate the zero-strain transition temperatures from Ref. [28]. The dashed lines are guides to the eye. The insets indicate
the tensile strains induced along the orthogonal directions according to the Poisson ratios. c Theoretical phase diagram under
applied strain "app, calculated by self-consistently minimising the free energy in Eq. (2) using the parameter values U = 8,
� = 0.5, ✓ = 15�, µ = 8.5,  = 400, ⌫ = 12, t0 = 1.12 and "0 = 0.066.

us to construct the phase diagrams shown in Fig. 3a–b
for stress applied along a and b (further details of how
the phase diagrams were constructed can be found in the
Supplementary Information).

The phase diagrams show the transition temperatures
varying linearly with compressive strain along both a and
b. The data quality is worse for the sample with stress
applied along a, most likely due to the poorer crystalline
quality of the sample causing a heterogeneous distribu-
tion of strain (see the Supplementary Information). De-
spite this, we can still determine a rate of change of the
transition temperatures of approximately 20K per per-
cent strain along a. The transition temperatures change
at a slower rate of around 7K per percent strain along
b. Although we could not access the tensile sides of the
phase diagrams in our x-ray experiments, our neutron re-
sults suggest that the trends should continue unchanged.
It is interesting to note that the phase boundaries move
in the same direction in both phase diagrams, despite the
opposite in-plane deformations of the lattice (as depicted
in the insets of Fig. 3a–b).

A strain-coupled electronic model

To understand the role of strain in the SRT, we de-
veloped a phenomenological model in which strain tunes
the electronic hopping between nearest-neighbour Ru or-
bitals. In the spirit of developing a minimal model
that captures the physics under study, we included only
the Ru dxz and dyz orbitals in a perovskite monolayer.
Such a two-band model is consistent with ARPES stud-
ies that show that the dxy orbital does not contribute
to the Fermi surface [33]. We consider a Hamiltonian

Ĥ = Ĥt + ĤU + Ĥ� � µN̂ . Ĥt is a tight-binding
Hamiltonian fitted to ARPES data [33] (see Methods).
ĤU = U

P
i⌧↵ n̂i⌧↵"n̂i⌧↵# is the on-site intra-orbital Hub-

bard interaction, where the lattice site is labelled i, the
orbital is labelled ↵ 2 {xz, yz}, and ⌧ 2 {A,B} is
a sublattice index that is introduced to allow for the
staggered octahedral tilting. The interaction is treated
in the Hartree-Fock mean-field approximation, and all
other local electron-electron interactions are neglected for
simplicity. The Hamiltonian is then a function of site-
averaged charge, ⇢⌧↵, and magnetisation, M⌧↵, fields for
each orbital and sublattice. Ĥ� is the spin-orbit interac-
tion [39],

Ĥ� = � i�

2

X

i,⌧

⇣
c
†
i⌧,xz�

⌧
z ci⌧,yz + h.c.

⌘
, (1)

where c
†
i⌧↵ = (c†i⌧↵", c

†
i⌧↵#). This is an on-site term

that couples the two orbitals. Octahedral tilting af-
fects the SOC term by rotating the spin quantisation
axes on the sublattice sites by ±✓ about the b-axis, as

�
A(B)

z = cos(✓)�z ± sin(✓)(�x � �y)/
p
2. The octahedral

rotation (as well as the polar distortion that leads to
Rashba-like spin-orbit e↵ects) does not enter the Hamil-
tonian explicitly, although it does influence the hopping
as described in the next section.

Strain enters the model via a phenomenological field, ",
that couples to the nearest-neighbour hopping, t, of the
tight-binding model (see the Methods section for further
details). We take a minimal coupling of t = t0+⌫", where
t0 and ⌫ are parameters, which is valid when the strain
magnitude is small. The coupling of strain to further-
neighbour hopping is neglected. We also introduce a
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strain cost set by a parameter, , in the free energy

F (M , ⇢, ", "app) = �T

X

n,k

ln
⇣
1 + e

�(✏nk�µ)/T
⌘

+ U

X

⌧,↵

�
M2

⌧↵ � ⇢
2

⌧↵

�
+

1

2
 ("0 + "� "app)

2
, (2)

where ✏nk are the eigenvalues of the electronic Hamil-
tonian, µ is the chemical potential, and "0 and "app are
parameters. The last term is the contribution of the non-
electronic degrees of freedom to quadratic order. Within
this parameterisation, " is the strain measured relative to
the unstrained system which we define, via our choice of
value of "0 and without loss of generality, as the system
at the Néel temperature. This is a natural reference point
for studying the magnetic phase diagram. As well as the
internal strain ", we include an externally applied strain
"app that moves the minimum of the strain cost function
away from zero. The electronic state is determined at a
particular temperature and externally applied strain by
minimising the free energy with respect to the electronic
degrees of freedom, M⌧↵, and ⇢⌧↵, and the strain field,
", in a self-consistent manner.

In the absence of strain,  = ⌫ = 0, the solution of this
model exhibits easy a- and easy b-axis ferromagnetism
that corresponds to the AFMa and AFMb phases in the
full structure. This results from the interplay of the on-
site interaction and spin-orbit coupling, which generate
the magnetic anisotropy, and the octahedral tilting that
breaks its symmetry in the a–b plane. The anisotropy
is strongly dependent on the nearest-neighbour hopping,
and an a ! b reorientation of the ferromagnetic order
is achieved by increasing t and therefore the electronic
bandwidth. Although our minimal model cannot repro-
duce the cycloid that mediates the SRT, we would expect
this to appear naturally when the full bilayer is consid-
ered, due to a uniform Dzyaloshinskii-Moriya interaction
that becomes dominant close to the reorientation transi-
tion [28].

With a finite  and ⌫, we find an internal strain being
generated self-consistently even with zero applied strain,
"app = 0, as shown in Fig. 4. We see " increase as the
temperature is reduced through the AFMa phase, low-
ering the energy of the electronic system at the expense
of an elastic energy cost. When the hopping reaches a
threshold value the SRT is triggered. This transition is
first order and results in a small positive jump in the
strain (see zoomed region in Fig. 4) as well as a jump in
the magnetisation. We also capture some of the changes
in the Fermi surface that are seen in ARPES studies.
We find a continuous Fermi surface reconstruction (insets
in Fig. 4) that is not directly driven by the transition,
but instead by the increase in magnetisation (and Stoner
gap) as temperature is reduced. We emphasise that in
this self-consistent calculation, the SRT and Fermi sur-
face reconstruction are achieved as a function of temper-
ature without varying the band filling. The model does
not capture the partial gapping of the Fermi surface that

Fig. 4. Self-consistent internal strain. Strain field, ",
as a function of temperature, with the magnetic phase tran-
sitions indicated by vertical dashed lines. The corresponding
change in the e↵ective nearest-neighbour hopping parameter,
t, is measured on the right-hand axis. The zoomed region
shows a small discontinuity in " across the SRT of magnitude
|�"| ⇠ 0.005%. The insets show Fermi surfaces calculated in
the two magnetic phases. The parameter values are the same
as in Fig. 3c. The calculated value of the hopping parameter
at the transition corresponds to U/t ⇠ 6.6, which is consis-
tent with values of t [33] and U [40] previously fitted to the
observed electronic structure of Ca3Ru2O7.

is also seen by ARPES [31, 33].
To make contact with our strain experiments, we also

solve the model with a negative applied strain, "app < 0.
This reduces the self-consistent strain, ", and thus the
nearest-neighbour hopping, resulting in a reduction in
the critical temperature. As shown in Fig. 3c, the linear
suppression of the transition matches the experimental
phase diagrams for compressive stress applied along a
and b in Fig. 3a–b. As well as reproducing the main
sequence of magnetic phases with temperature, our min-
imal model is therefore able to capture the qualitative
features of our strain measurements.

Microscopic understanding of the transition

Our theoretical model is able to reproduce the phe-
nomenology of the SRT by introducing a strain field
that couples to the nearest-neighbour hopping. For a
full understanding of the mechanism behind the tran-
sition, however, we need to connect this strain field to
microscopic distortions of the Ca3Ru2O7 lattice. Given
their strong influence on the ground states across the
Ruddlesden-Popper series of ruthenates, the octahedral
tilt and rotation degrees of freedom (depicted in Fig. 5a–
b) are the most obvious candidates.
To be able to identify the tilt and rotation modes with

the strain field of the model, we must first show that they
directly influence the nearest-neighbour hopping. This
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Fig. 5. Octahedral tilt and rotation modes. a Schematic of the tilt mode, consisting of staggered tilts of the RuO6

octahedra around b. b Schematic of the rotation mode, consisting of staggered rotations of the octahedra around c. c
Temperature dependence of the lattice parameters of Ca3Ru2O7 from x-ray scattering, normalised to the values at 40.4K. d
Temperature dependence of the octahedral rotation and tilt amplitudes determined from a symmetry analysis of single-crystal
neutron di↵raction data, normalised to the values at 44K.

can be achieved with a heuristic model of the overlap
between neighbouring Ru d orbitals, assuming perfectly
rigid RuO6 octahedra. Considering the tilt and rotation
modes separately (valid for small distortions), we asso-
ciate them with angles ✓ and � respectively. In a similar
manner to the two-centre method of Slater and Koster
[41], the orbitals on a distorted Ru–O–Ru bond are ex-
panded in a basis of orbitals quantised with respect to
an undistorted bond axis (further details can be found
in the Methods). We find that the intra-orbital hopping
is equal along both nearest-neighbour bonds, with angle-
dependent hopping parameters

t(✓) =
1

4

h
cos(2

p
2✓) + 4 cos(

p
2✓)� 1

i
(dpd⇡)

+ cos3(
p
2✓) (dd⇡) +

3

4
sin2(

p
2✓) (dd�)

+
1

4
sin2(

p
2✓) cos(2

p
2✓) (dd�)

t(�) = (dpd⇡) + cos2(�) (dd⇡) + sin2(�) (dd�)

(3)

where (ll0m) are Slater-Koster integrals due to direct
hopping between the d orbitals, and (dpd⇡) is the ⇡-
bonding integral due to indirect hopping via an oxygen
p orbital on an undistorted bond. We see that increas-
ing the rotation reduces the contribution from the direct
⇡-bonding while allowing a weaker �-bond to develop,
therefore reducing the e↵ective hopping. The e↵ect of
tilt on the hopping depends on the precise hierarchy of
bonding integrals, but we expect from the behaviour of
the (Sr1�xCax)3Ru2O7 series that increasing tilt will also
reduce the hopping [42–44].

The importance of the octahedral tilts and rotations in

the transition is further supported by (zero-stress) mea-
surements of the Ca3Ru2O7 structure as a function of
temperature. Fig. 5c shows the lattice parameters de-
termined by resonant x-ray scattering. The in-plane lat-
tice parameters are seen to increase and c to decrease
on cooling through the SRT, all by around 0.05%. The
lack of significant changes either side of the SRT points
to the low phonon populations at these temperatures,
and therefore the importance of the electronic coupling in
the structural changes. We also directly determined the
symmetry-adapted tilt (X�

3
) and rotation (X+

2
) mode

amplitudes from neutron di↵raction measurements, the
results of which are shown in Fig. 5d. On cooling through
the SRT, the tilts increase by around 0.6% while the rota-
tions decrease by around 1%. These changes are an order
of magnitude larger than the changes in bond lengths
[30], supporting our earlier assumption that the octa-
hedra remain rigid. Based on our orbital-overlap argu-
ment above, we would expect the rotations to increase
the hopping on cooling, slightly o↵set by the increase in
tilt. This is in agreement with our model, in which the
self-consistent strain and thus the hopping increase with
decreasing temperature. We therefore have a clear pic-
ture of how the transition proceeds with temperature: an
internal strain, corresponding to changes in the octahe-
dral tilts and rotations, arises through feedback with the
electronic system to modulate the hopping and thereby
alter the magnetic anisotropy.
Finally, we can apply our understanding of the e↵ects

of the tilts and rotations to our strain experiments. While
the precise changes in tilt and rotation angle under ap-
plied stress are unknown, we can make some general de-
ductions from our knowledge of the Poisson ratios (ig-
noring strain along c which is likely to be mostly accom-
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modated within the CaO rock-salt layers). When com-
pressing along a, the dominant e↵ect is likely to be an
increase in the tilt angle to accomodate the increased or-
thorhombicity, together with a smaller reduction in the
rotation angle to account for the accompanying expan-
sion along b. This leads to a reduction in hopping (o↵set
by the reduced rotation) which suppresses the transition
temperature in agreement with Fig. 3a. By contrast, the
dominant e↵ect when compressing along b is likely to
be an increase in the rotation angle. This alone would
cause an equal contraction along a, such that a signifi-
cant decrease in the tilt is needed to allow an expansion
along a according to the Poisson ratio. This could ex-
plain the slope of the transition temperature in Fig. 3b
if the net e↵ect is still a reduction in the hopping due to
the increased rotation, but one that is largely o↵set by
the reduction in tilt.

DISCUSSION

In this work, we have demonstrated that the spin orien-
tation in Ca3Ru2O7 can be controlled with applied stress.
By isolating the lattice degrees of freedom, our measure-
ments have provided a unique window into the role of
strain in a coupled structural, electronic and magnetic
phase transition. Neutron scattering gave us access to
the bulk magnetic phases, while resonant x-ray scatter-
ing enabled us to probe in detail how strain is transmitted
to the lattice, and thereby construct temperature-strain
phase diagrams. These experiments motivated a theoret-
ical model in which a strain field couples to the electronic
hopping, and drives a spin reorientation when it reaches
a critical value.

Our combination of experiment and theory has there-
fore uncovered a mechanism whereby strain, either ex-
ternally induced or thermally generated through feed-
back with the electronic system, drives a global reori-
entation of the spins and concomitant reconstruction of
the Fermi surface in Ca3Ru2O7. Given the ubiquity of
the octahedral structural unit, we expect this mechanism
to be relevant to other transition-metal oxides. For the
Ruddlesden-Popper ruthenates in particular, octahedral
tilts and rotations have a profound e↵ect on the ground
state, whether that is a Mott insulator or unconventional
superconductor. Strain then o↵ers the possibility of con-
tinuously tuning between these phases without the disor-
der introduced by chemical doping, and possibly uncov-
ering phases not seen in the ambient structures.

METHODS

Samples

Single crystals of Ca3Ru2O7 were grown using the
floating zone method and characterised by wavelength-
dispersive x-ray spectrometry, resistivity and magnetiza-

tion measurements, and x-ray and neutron di↵raction, as
described elsewhere [28, 29]. The strain axis was aligned
with Laue di↵raction. A polarised-light microscope was
used to identify orthorhombic twin domains, and single-
domain pieces were then cut out using a wire saw. The
single-domain nature of the samples was checked during
the scattering measurements. The samples were found
to naturally cleave during cutting, producing long, thin
bars with clean (0, 0, 1) faces for scattering (and preclud-
ing measurements with stress applied along c). The di-
mensions of the sample used for neutron scattering were
L⇥ w ⇥ t ⇡ 1⇥ 0.3⇥ 0.05mm, for x-ray scattering with
stress along a were 0.3 ⇥ 0.1⇥ 0.04mm, and for x-ray
scattering with stress along b were 0.2⇥ 0.1⇥ 0.03mm.

Neutron scattering under stress

Neutron scattering measurements under stress were
performed at the WISH instrument of the ISIS Neutron
and Muon Source [36]. We used the CS200T strain cell
from Razorbill Instruments [35]. The cell incorporates
a 90� access cone allowing transmission measurements
with minimal background signal, and a capacitive dis-
placement sensor using which we can calculate the ap-
plied strain. The cell was mounted on a custom cryostat
stick with feedthroughs for the cables to power the cell
and measure the capacitance of the displacement sensor.
Voltage was applied to the cell with an RP100 power sup-
ply from Razorbill Instruments, and the capacitance was
measured with a Keysight E4980AL LCR meter, both of
which were integrated into the instrument control soft-
ware to enable automated control and data acquisition.
A temperature sensor was thermally contacted with the
body of the cell to give accurate readings of the sam-
ple temperature. Cadmium shielding was used to reduce
background scattering from the bridges of the cell and
from unstrained regions of the sample near the sample
plates, while still allowing full beam access in the hori-
zontal plane. The sample was sandwiched between two
pairs of sample plates and secured with Stycast 2850FT
epoxy, such that a lies along the stress direction and
vertical detector banks. The sample was cooled with-
out any applied stress, and held at fixed temperatures
during the strain sweeps. Data analysis was performed
with Mantid [45]. All data are normalised to the cu-
mulative current and a beam monitor. The intensities
were obtained by di↵raction focussing a small area on
the detector around the peak, and then integrating the
resulting time-of-flight spectra.

X-ray scattering under stress

X-ray scattering measurements were performed at
beamline I16 of the Diamond Light Source, with the in-
cident energy tuned to the Ru L2 edge (2.967 keV) by
performing 4 bounces on the monochromator and us-
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ing an extended in-vacuum beam pipe. Here, we used
the CS100 strain cell from Razorbill Instruments [35],
which is smaller than the CS200T and necessitates a re-
flection scattering geometry. A custom mount was de-
signed to hold the cell in the closed-cycle cryocooler, with
feedthroughs added for the power and capacitance cables.
As at WISH, the RP100 power supply and E4980AL LCR
meter were interfaced with the beamline software to en-
able remote control and scripting of the measurements.
A Cernox temperature sensor was thermally contacted
with the body of the cell. The sample was mounted to the
raised sample plates with Stycast 2850FT epoxy, with ei-
ther a or b along the stress direction. No top-plates were
used in order to maximise beam access, but the asymmet-
ric mounting resulted in stress being transmitted mostly
through the lower surface of the sample causing it to bend
(see the Supplementary Information). This, along with
the di↵erence in elastic moduli of the sample (⇠100GPa)
and epoxy (⇠4GPa), leads to the true strain being signif-
icantly lower than the applied strain. The di↵ractometer
was operated with a vertical scattering geometry in fixed-
azimuth mode, and the scattered intensity was measured
with an in-vacuum Pilatus 100K area detector in ultra-
high gain mode. All temperature changes were conducted
with zero applied stress, and the temperature was kept
constant during strain measurements. Data analysis was
carried out using the Py16 program [46], and reciprocal-
space maps were reconstructed from rocking scans us-
ing the MillerSpaceMapper software [47]. Intensities
were obtained by summing over a region-of-interest on
the area detector and fitting the resulting rocking curves
with pseudo-Voigt profiles plus a constant background.

Neutron di↵raction

The neutron di↵raction data shown in Fig. 5d were
taken on the four-circle di↵ractometer D9 at the Institut
Laue Langevin. A wavelength of 0.836 Å was obtained
from a Cu(220) monochromator giving access to 800 re-
flections (up to h = 10, k = 10, l = 15). The symme-
try mode analysis was performed using the Amplimodes
software [48] from the Bilbao Crystallographic Server
considering the high-symmetry parent phase I4/mmm

(139) and the low symmetry phase Bb21m (36). The
mode amplitudes were directly refined at each tempera-
ture by the least-squares method using Fullprof [49].

Strain-coupled electronic model

We apply the tight-binding model for Ca3Ru2O7 that
has been fitted to ARPES data [33]. The tight-binding

Hamiltonian in a crystal momentum basis is

Ĥt(k) =
X

⌧

h
✏x(k) c

†
xz,⌧ (k) �0 cxz,⌧̄ (k)

+ ✏y(k) c
†
yz,⌧ (k) �0 cyz,⌧̄ (k)

i

+
X

↵,⌧

h
✏ab(k) c

†
↵,⌧ (k) �0 c↵,⌧ (k)

+ ✏
0
ab(k) c

†
↵,⌧ (k) �0 c↵̄,⌧ (k)

i

(4)

where c†↵⌧ (k) = (c†↵⌧"(k), c
†
↵⌧#(k)), �0 is the 2⇥2 identity

matrix in spin space, ↵ 2 {xz, yz} and ⌧ 2 {A,B}. Bars
are used to denote flipped orbital and sublattice indices,
i.e. x̄z = yz, Ā = B, and vice versa. In the tetragonal
crystal momentum basis, k = (kx, ky), the dispersions
are

✏x(k) = �2t cos(kxa)

✏y(k) = �2t cos(kya)

✏ab(k) = �2ta cos ((kx � ky)a)� 2tb cos ((kx + ky)a)

✏
0
ab(k) = �2t0a cos ((kx � ky)a)� 2t0b cos ((kx + ky)a)

(5)

where kx,y 2 [�⇡
a ,

⇡
a ] with lattice constant a, ✏x(y) de-

scribes the nearest-neighbour hopping between xz(yz)
orbitals along the x(y) direction, and ✏ab and ✏0ab describe
the intra- and inter-orbital next-nearest-neighbour hop-
ping along the a and b orthorhombic directions. We use
ta = 0.04t̃, tb = 0.16t̃ and t

0
a = �t

0
b = 0.079t̃, with

t̃ = 1.20. The coe�cients were chosen by fitting the
Fermi surfaces in both magnetic phases to those mea-
sured using ARPES [33]. Only the intra-orbital nearest-
neighbour hopping parameter couples to the strain field,
as t = t0 + ⌫". Strictly, the octahedral tilting and rota-
tion also induce inter-orbital nearest-neighbour hopping
between the dxz and dyz orbitals [39]. This hopping mode
is neglected in Ref. [33], and we also neglect it as a sub-
leading e↵ect of the lattice distortions.
In our minimal model, we consider only the on-site

intra-orbital repulsion, ĤU = U
P

i⌧↵ n̂i⌧↵"n̂i⌧↵#, and
neglect the inter-orbital repulsion and Hund’s coupling
for simplicity. ĤU is treated in the Hartree-Fock mean-
field approximation by decoupling in the charge, ⇢̂i⌧↵ =
1

2
c
†
i⌧↵ �0 ci⌧↵, and spin, Ŝi⌧↵ = 1

2
c
†
i⌧↵ � ci⌧↵, chan-

nels, where � = (�x,�y,�z) is a vector of Pauli matrices.
Defining ⇢⌧↵ and M⌧↵ as the site-averaged charge and
spin densities, the interaction decouples to

Ĥ
MF

U = U

X

i,⌧,↵

c
†
i⌧↵ (⇢⌧↵�0 �M⌧↵ · �) ci⌧↵

+ U

X

⌧,↵

�
M2

⌧↵ � ⇢
2

⌧↵

�
.

(6)

The system is described in the mean-field and at fixed
chemical potential, µ, by the Hamiltonian, Ĥ

MF =
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Ĥt + Ĥ� + Ĥ
MF

U � µN̂ =
P

n,k (✏nk � µ) n̂nk +

U
P

⌧,↵

�
M2

⌧↵ � ⇢
2
⌧↵

�
. The free energy is evaluated via

the partition function to give Eq. (2) (in the absence of
coupling to strain, ⌫ =  = 0) in terms of the energy
eigenvalues, ✏nk, in a band and crystal momentum ba-
sis. The strain field is then introduced into the model as
described in the Results section.

The values of strain parameters (⌫, ) are chosen such
that the calculated strain is of the same order of magni-
tude as seen in experiment (see Figs. 4 and 5c), and the
magnitude of strain-hopping coupling, ⌫, is comparable
to a value calculated from first-principles for a related
material [50]. It is worth noting that the solution of this
model is invariant under the scaling of the strain parame-
ters as ⌫ ! x⌫, ! x

2
, "0 ! "0/x and "app ! "app/x.

This scales the self-consistent strain solution as "! "/x

but leaves the electronic solution unchanged.

E↵ective hopping on a distorted lattice

We calculate the e↵ective nearest-neighbour hopping
between ruthenium d orbitals in the presence of octahe-
dral tilting and rotational distortions (separately) while
considering the direct orbital overlap and the indirect
overlap via oxygen p orbitals.
The hopping is first defined in the absence of lattice

distortions, i.e. for a straight Ru–O–Ru bond. In the
case of hopping due to direct d orbital overlap, we apply
the Slater-Koster two-centre approximation,

t
Ru–Ru

lm,l0m0 = h Ru

lm (r)|ĤRu–Ru| Ru

l0m0(r +Rx̂)i (7)

where  Ru

lm is an atomic orbital centred on a ruthenium
ion whose angular momentum quantisation axis is dic-
tated by the crystal field, and Ĥ

Ru–Ru is the sum of the
kinetic energy operator and ionic potentials on the bond.
In the case of indirect hopping, the e↵ective hopping is
calculated as a second order process in which an electron
or hole hops between ruthenium d orbitals via an oxy-
gen p orbital. The hopping matrix element for a straight
Ru–O–Ru bond is

t
Ru–O–Ru

lm,l0m0 = �
X

l0,m0

h Ru

lm (r)|ĤRu–O| O

l0m0(r + R
2
x̂)ih O

l0m0(r + R
2
x̂)|ĤO–Ru| Ru

lm (r +Rx̂)i
Elm � E

0
l0m0

(8)

where Elm and E
0
l0m0 are the total energies of the sys-

tem when the electron/hole occupies a ruthenium orbital,
 
Ru

lm , or an oxygen orbital,  O

l0m0 , respectively. The nu-
merator is a product of matrix elements for Ru–O and
O–Ru hopping processes. We make a key assumption
that the lattice distortions are a weak perturbation on
the oxygen p orbitals, which remain degenerate. Every
indirect hopping process then has the same intermediate
energy, E0, and the e↵ect of lattice distortions is only to
modify the two-centre integrals in the numerator.

The lattice distortions are introduced by rotating all
orbitals in space accordingly. Since the orbital orienta-
tion is dictated most strongly by the local (octahedral)
crystal field, we assume that the ruthenium d orbitals
are rotated/tilted along with the octahedra. Note that
we decompose the (small) tilt about b into tilts of ✓/

p
2

about the x and y axes. We also assume that the change

in Ru–Ru distance due to the distortions has a sub-
leading e↵ect on the hopping and as such is neglected.
The rotated orbitals are then expanded in a basis of

atomic orbitals that are quantised with respect an ap-
propriate bond axis. In the direct case this is the Ru–Ru
bond. The e↵ective hopping can then be written in terms
of matrix elements for the hopping of an electron between
the basis orbitals, which are the Slater-Koster integrals

(ll0m)�mm0 = h�Ru

lm(r)|ĤRu–Ru|�Ru

l0m0(r +Rx̂)i (9)
where �lm is an orbital that is quantised with respect
to the bond axis. As is convention, we use the labels
l, l

0 2 {s, p, d} and m 2 {�,⇡, �} on the left-hand side. In
the indirect case we expand in bases of orbitals that are
quantised with respect to the Ru–O and O–Ru bonds.
We find that the e↵ective hopping can be written as a
function of the hopping along a straight bond,

(ll0lm)�mm0 = �h�Ru

lm(r)|ĤRu–O|�Ol0m0(r +Rx̂)ih�Ol0m0(r +Rx̂)|ĤO–Ru|�Ru

lm(r + 2Rx̂)i
Elm � E

0
l0m0

. (10)

On the LHS we have introduced a similar notation for the
indirect hopping matrix element to that of the Slater-

Koster integrals. The numerator is a product of two
Slater-Koster integrals.
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Fig. 6. Rotation and tilt dependence of hopping. a–b Dependence of the in-plane nearest-neighbour hopping, t,
between Ru dxz orbitals along x on the octahedral rotation angle, �, and octahedral tilt angle, ✓, respectively. The orbitals
on the distorted Ru–O–Ru bond are shown in blue on the left side of each equation. Direct hopping is expressed in terms of
Slater-Koster integrals, (ll0m), illustrated in red on the right side of each equation. The indirect hopping, due to ⇡-bonding
with oxygen p orbitals, is expressed in terms of (dpd⇡), the d–p–d ⇡-bonding integral on a straight Ru-O-Ru bond (also
shown in red). All oxygen p orbitals are considered but only the pz orbital is shown for clarity. The coe�cients in b are
A(✓) = 1

4

⇥
cos(2

p
2✓) + 4 cos(

p
2✓)� 1

⇤
, B(✓) = cos3(

p
2✓), C(✓) = 1

4 sin2(
p
2✓) cos(2

p
2✓) and D(✓) = 3

4 sin2(
p
2✓). Identical

results are obtained for the hopping between dyz orbitals along the y direction.

By summing the direct and indirect hoppings in each
case, we find the e↵ective nearest-neighbour hoppings,
Eq. (3). We find that increasing the rotation angle re-
duces the contribution from the direct ⇡-bonding while
allowing a weaker �-bond to develop, therefore reducing
the e↵ective hopping. Increasing the tilt angle reduces
the contribution from both ⇡-bonding modes, while al-
lowing �- and �-bonding modes to develop. Since the
indirect ⇡-bonding, (dpd⇡), likely dominates, we expect
tilting to cause a net reduction in the e↵ective hopping.

DATA AVAILABILITY

Raw data from the neutron scattering measurements
under stress are available at https://doi.org/10.
5286/ISIS.E.RB1920210. Raw data from the neutron
di↵raction measurements are available at https://doi.
org/10.5291/ILL-DATA.EASY-951. Source data used to
plot the figures are provided with this paper.
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