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Chapter 4

Coordinates, Vector Spaces and Linear
Transformations

4.1 Introduction
A coordinate system is a choice of labels with which we can describe a physical system.
For example, in Cartesian coordinates we choose an origin, plus basis vectors (directions)
and scales for three perpendicular axes. The choice itself is arbitrary, and no physical
laws should depend upon the choice.

Because of this, it is often good to express physics in coordinate independent form. For
instance, an expression written as a relationship between vectors is independent of the
choice of coordinates. E.g.,

F = ma and L = r ⇥ p

are both true, whatever axes we choose for the components of the vectors involved. They
are also much more compact than writing down the equations component by component.

So one reason for paying attention to transformations between di↵erent coordinate sys-
tems is to check that physical laws do not depend upon an arbitrary choice of coor-
dinates. This is a very powerful principle, and generalisations of it lie behind special
relativity as well as advanced areas at the edge of new physics research such as super-
conductivity, quantum electrodynamics and the standard model of particle physics.

Another reason for paying attention to di↵erent coordinate systems and transformations
between them is that many physics problems can be made much simpler by an intelligent
choice of co-ordinate system (for example, the multi-dimensional integrals considered
in the previous section).

Finally, if we develop a general way of discussing coordinate systems, we generalise
the concept of a space to potentially include more than three dimensions (useful e.g. in
relatvity, or string theory) and allow complex vectors (useful in quantum mechanics).

In the next few lectures we will introduce a general way to discuss and manipulate
coordinate systems. We will introduce matrices which are a useful way of representing
linear transformations within and between coordinate systems.

First of all let us remind ourselves of the definition of real and complex vector space.
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A complex vector space S is a slight generalisation of a real vector space. It is defined
by the property that

8 v1,v2 2 S and 8 u1,u2 2 C : (u1v1 + u2v2) 2 S ,

which can be worded as: for all vectors v1 and v2 belonging to the vector space S and for
all complex numbers u1 and u2, the linear combination (u1v1 + u2v2) still belongs to S.

In other words, a vector space is defined by the property that by adding together
vectors and by multiplying them by scalars one stays within the vector space. The fact
that u1 and u2 belong to C qualifies the vector space S as “complex”. Had u1 and u2
belonged to , the vector space would have then been “real”.

We are now going to start by introducing three dimensional vectors in Euclidian
space before generalizing to n-dimensions.

4.2 Three dimensional vectors
Three-dimensional Euclidean space is usually defined by introducing three mutually
orthogonal basis vectors êx, êy and êz. However, this notation doesn’t generalise to
arbitrary number of dimensions, so we use ê1 = êx, ê2 = êy, and ê3 = êz instead. These
basis vectors have unit length,

ê1 · ê1 = ê2 · ê2 = ê3 · ê3 = 1, (4.1)

and are perpendicular to each other:

ê1 · ê2 = ê2 · ê3 = ê3 · ê1 = 0. (4.2)

These properties are summarised in one equation as

ê
i
· ê

j
= �i j, (4.3)

where the Kronecker delta �i j is shorthand for

�i j =

(
1 if i = j

0 if i , j
(4.4)

Any vector v in this three-dimensional space may be written down in terms of its
components along the ê

i
. Thus

v = v1 ê1 + v2 ê2 + v3 ê3 ,

where the coe�cients vi may be obtained by taking the scalar product of v with the basis
vector ê

i
,

vi = ê
i
· v . (4.5)

(i.e multiply the left hand side and the right hand side by ê
i
).

This follows because the ê
i
are perpendicular and have length one.
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If we know two vectors v and u in terms of their components, then their scalar
product is

u · v = (u1 ê1 + u2 ê2 + u3 ê3) · (v1 ê1 + v2 ê2 + v3 ê3) = u1 v1 + u2 v2 + u3 v3 =
3X

i=1

ui vi . (4.6)

A particularly important case is that of the scalar product of a vector with itself, which
gives rise to Pythagoras’s theorem

v
2 = v · v = v

2
1 + v

2
2 + v

2
3 . (4.7)

The length of a vector v is

v =| v |=
p

v2 =
q

v
2
1 + v

2
2 + v

2
3 . (4.8)

If v = 1 the vector is called a unit vector. A vector is the zero vector if and only if all its
components vanish. Thus

v = 0 () (v1 , v2 , v3) = (0, 0, 0) . (4.9)

4.2.1 Linear Dependence
A set of vectors X1 , X2 , · · · X

n
are linearly dependent when it is possible to find a set of

scalar coe�cients ci (not all zero) such that

c1 X1 + c2 X2 + · · · + cn X
n
= 0 .

If no such constants ci exist, then the X
i
are linearly independent.

The vector v is a linear combination of the basis vectors ê
i
. Note that the basis vectors

themselves are linearly independent, because there is no linear combination of the ê
i
which

vanishes – unless all the coe�cients are zero. Putting it in other words,

ê3 , ↵ ê1 + � ê2 , (4.10)

where ↵ and � are arbitrary scalars. Clearly, something in the x-direction plus something
else in the y-direction cannot give something lying in the z-direction.

On the other hand, for three vectors taken at random, one might well be able to express
one of them in terms of the other two. For example, consider the three vectors given in
component form by

u =

0
BBBBBB@

1
2
3

1
CCCCCCA , v =

0
BBBBBB@

4
5
6

1
CCCCCCA and w =

0
BBBBBB@

7
8
9

1
CCCCCCA . (4.11)

Then
w = 2v � u, (4.12)
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or equivalently
(�1)u + 2v + (�1)w = 0. (4.13)

We then say that u, v and w are linearly dependent. This is an important concept.

Therefore in summary, the three-dimensional space S3 is defined as one where there are
three (but no more) orthonormal linearly independent vectors ê

i
. Any vector lying in

this three-dimensional space can be written as a linear combination of the basis vectors.
All this is really saying is that we can always write v in the component form;

v = v1 ê1 + v2 ê2 + v3 ê3 .

Note the ê
i

are not unique. We could, for example, rotate the system through 45� and
use these new axes as basis vectors. We will now generalise this to an arbitrary number
of dimensions and letting the components become complex. Note that such complex
vector spaces are important for Quantum Mechanics.

4.3 n-Dimensional Linear Vector Space

4.3.1 Definition
A linear vector space S is a set of abstract quantities a , b , c , · · · , called vectors, which
have the following properties:

1. If a 2 S and b 2 S, then

a + b = c 2 S.

c = a + b = b + a (Commutative law)
(a + b) + c = a + (b + c) (Associative law) . (4.14)

2. Multiplication by a scalar (possibly complex)

a 2 S =) � a 2 S (� a complex number) ,
� (a + b) = � a + �b ,
� (µ a) = (�µ) a (µ another complex number) . (4.15)

3. There exists a null (zero) vector 0 2 S such that

a + 0 = a (4.16)

for all vectors a.

4. For every vector a there exists a unique vector �a such that

a + (�a) = 0 . (4.17)
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Perhaps surprisingly, the solutions y(x) of an n-th order, homogeneous linear ODE,

an(x)
d

n
y

dxn
+ . . . + a1(x)

dy

dx
+ a0(x)y = 0,

satisfy all the above criteria. They therefore form an n-dimensional linear vector space.
The vectors are given by functions y(x) that satisfy the ODE. In the case of second-order
homogeneous linear ODEs (n = 2), if we know two independent solutions y1(x) and
y2(x), the general solution is given by all linear combinations

y(x) = Ay1(x) + By2(x).

y1(x) and y2(x) therefore form a basis of this two-dimensional vector space.

4.3.2 Basis vectors and components in n-dimensional space
Any set of n linearly independent vectors X1 , X2 , · · · X

n
can be used as a basis for an

n-dimensional vector space Sn. This implies that the basis is not unique. Once the basis
has been chosen, any vector can be written uniquely as a linear combination

v =
nX

i=1

vi X
i

of the basis vectors. The set of numbers v1, . . . , vn (the components) are said to represent

the vector v in that basis. The concept of a vector is more general and abstract than that of
the components. The components are somehow man-made. If we rotate the coordinate
system then the vector stays in the same direction but the components change.

In this n-dimensional space, unlike in the Euclidian Space, we have not assumed that
the basis vectors are unit vectors or orthogonal to one another. For certain physical
problems, it is convenient to work with basis vectors which are not perpendicular —
e.g. when dealing with crystals with hexagonal symmetry. However, here we will only
work with basis vectors ê

i
which are orthogonal and of unit length.

4.3.3 Definition of scalar product in n-dimensional space
Let u =

P
n

i=1 uiêi
and v =

P
n

i=1 viêi
be arbitrary vectors of an n-dimensional vector space

Sn with complex components ui 2 C and vi 2 C. Then the scalar product of these two
vectors is defined by

u · v = u
⇤
1 v1 + u

⇤
2 v2 + · · · + u

⇤
n

vn. (4.18)

The only di↵erence from the usual form is the complex conjugation on all the components
ui, since the vectors have to be allowed to be complex. Note that

v · u = v
⇤
1 u1 + v

⇤
2 u2 + · · · + v

⇤
n

un = (u · v)⇤. (4.19)

In general, the scalar product is a complex scalar.

Consequences of the definition:
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1. w · (↵u + �v) = ↵w · u + �w · v.

2. Putting u = v, we see that

u
2 = u · u = u

⇤
1 u1 + u

⇤
2 u2 + · · · + u

⇤
n

un = |u1|2 + |u2|2 + · · · + |un|2 . (4.20)

Generalisation of Pythagoras’s theorem for complex numbers. Since the |ui|2 are
real and cannot be negative, then u

2 � 0.

3. Two vectors are orthogonal if u · v = 0.

4. Components of a vector are given by the scalar product vi = ê
i
· v.
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4.4 Matrices and linear transformations
Reminder: what is a set? Any collection of quantities, operators or objects forms a set.
Each individual quantity, operator or object is called an element. If the set contains a
finite number of elements it is said to be a finite set, otherwise it’s called infinite.

4.4.1 Linear Transformations
Very often, e.g. in physics, we need to perform some operation on a vector v which
changes it into another vector in the space Sn. For example, rotate the vector. Denote the
operation by Â and, instead of tediously saying that Â acts on v, write it symbolically as
Â v. By assumption, therefore, u = Â v is another vector in the same space Sn.

How to express the operator Â in the basis ê1, ê2, · · · , ên
? To investigate this further, see

how the operation Â changes the basis vectors ê1, ê2, · · · , ên
. Let us look at ê1, which has

a 1 in the first position and zeros everywhere else:

ê1 =

0
BBBBBBBBBBBBBBB@

1
0
0
:

0

1
CCCCCCCCCCCCCCCA

(n terms in the column). (4.21)

The result of Âê1 gives rise to a vector which we shall denote by a1 because it started
from ê1. Thus

a1 = Â ê1 . (4.22)
To write this in terms of components, we must introduce a second index

a1 =

0
BBBBBBBBBBBBBBB@

a11
a21
a31

:
an1

1
CCCCCCCCCCCCCCCA

. (4.23)

(because the first index now defines the row).
To specify the action of Â completely, we must define how it acts on all the basis

vectors ê
j
:

a
j
= Â ê

j
=

0
BBBBBBBBBBBBBBB@

a1 j

a2 j

a3 j

:
anj

1
CCCCCCCCCCCCCCCA

. (4.24)

This requires n
2 numbers aij (i, j = 1, . . . ,n). Instead of writing a

j
explicitly as a column

vector, we can use the basis vectors once again to show that

a
j
= a1 j ê1 + a2 j ê2 + . . . + anj ê

n
=

nX

i=1

aij ê
i
. (4.25)
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as ê
i
has 1 in the i’th position and 0’s everywhere else.

Knowing the basis vectors transformation, it is (in principle) easy to evaluate the action
of Â on some vector v =

P
j
vj ê

j
. Then

u = Â v =
X

j

vj(Â ê
j
) =

X

i j

ai j vj ê
i
. (4.26)

But, writing u in terms of components as well,

u =
X

i

ui ê
i
, (4.27)

and comparing coe�cients of ê
i
, we find

ui =
nX

j=1

aij vj . (4.28)

Note that basis vectors transform with
P

i
ai j ê

i
, whereas the components involve the

other index
P

j
ai j vj.

The set of numbers aij represents the abstract operator Â in the particular basis chosen;
these n

2 numbers determine completely the e↵ect of Â on any arbitrary vector: the vector
undergoes a linear transformation. It is convenient to arrange all these numbers into an
array

A =

0
BBBBBBBBBB@

a11 a12 · · · a1n

a21 a22 · · · a2n

: : · · · :
an1 an2 · · · ann

1
CCCCCCCCCCA
, (4.29)

called a matrix. This one is in fact a square matrix with n rows and n columns.

Matrices are useful mathematical tools for describing linear transformations in physics
which you need to be familiar with.

A matrix is a two-dimensional1 array of numbers A = aij where i and j are indices
running from 1 to n and m, respectively. We will be using matrices with n = m = 2, 3 or
4 (and 1 or course!), but they can be arbitrarily large.

As we signify a vector by underlining it and writing it in bold in order to distinguish it
from a scalar, we similarly write A in bold face in order to show that it is a matrix. You
will find other conventions used elsewhere too. It’s important to get used to di↵erent
conventions!

1It may (or may not) help to note that the generalisation of vectors and matrices is to tensors. First-rank
tensors are vectors, second-rank tensors are matrices, and higher dimensional tensors also exist and are
sometimes used in physics, but are beyond the scope of this course.
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In general a matrix is a set of elements, which can be either numbers or variables, set out
in the form of an array. For example

 
2 6 4
�1 i 7

!
or

 
0 �i

3 + 6i x
2

!

(rectangular) (square)

A matrix having n rows and m columns is called an n ⇥ m matrix. The above examples
are 2 ⇥ 3 and 2 ⇥ 2 matrices. A square matrix clearly has n = m. Note that matrices are
enclosed in brackets.

A vector is a simple matrix which is n ⇥ 1 (column vector) or 1 ⇥ n (row vector), as in
0
BBBBBBBBBBBBBBB@

v1
v2
v3

:
vn

1
CCCCCCCCCCCCCCCA

or (v1, v2, v3, · · · , vn) .

4.4.2 Worked Examples
For the standard cartesian basis ê1 = êx and ê2 = êy of the two-dimensional vector space
S2 determine the matrix representation A of the operator Â that

(a) reflects a vector over the x-axis;

(b) rotates a vector through an angle � anti-clockwise.
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4.4.3 Matrix addition or subtraction
To add (or subtract) two matrices, M = A ± B, one simply adds (subtracts) the corre-
sponding elements,

mij = aij ± bij.
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So for example, for the two simple matrices,

A =
 

1 2
1 0

!
and B =

 
2 1
3 1

!
, (4.30)

we have

M = A + B =
 

3 3
4 1

!
.

It follows immediately that A+B = B+A (commutative law of addition) and (A+B)+C =
A + (B + C) (associative law).

The sum of two matrices A and B can only be defined if the matrices have the same
dimension, e.g. if they are both m ⇥ n matrices. In this case, M = A ± B is also an m ⇥ n

matrix.

4.4.4 Multiple Transformations; Matrix Multiplication
If a matrix M is the product of two matrices A and B, i.e. M = AB, the elements of M
are given by:

mij = (AB)i j =
nX

k=1

aikbkj ⌘ aikbkj (4.31)

where we have introduced the “Einstein summation convention” where a repeated index
implies a sum over the repeated index. Thus, for two 3 ⇥ 3 matrices:

A =

0
BBBBBB@

a11 a12 a13
a21 a22 a23
a31 a32 a33

1
CCCCCCA and B =

0
BBBBBB@

b11 b12 b13
b21 b22 b23
b31 b32 b33

1
CCCCCCA .

then their product is:

M =

0
BBBBBB@

a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32 a11b13 + a12b23 + a13b33
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32 a21b13 + a22b23 + a23b33
a31b11 + a32b21 + a33b31 a31b12 + a32b22 + a33b32 a31b13 + a32b23 + a33b33

1
CCCCCCA .

Again, for the simple matrices in eq. 4.30,

M = AB =
 

8 3
2 1

!
.

Note that matrix multiplication is not in general commutative, i.e.

AB , BA.

For our example,

BA =
 

3 4
4 6

!
, AB.
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but it is associative, i.e.
(AB)C = A(BC)

for any matrices A,B and C. Let’t prove this (cf. Eq 1.31 in order not to get confused
with the indeces):

[(AB)C]il =
X

j

(AB)i jcjl =
X

j

X

k

(aikbkj)cjl

=
X

j

X

k

aik(bkjcjl) =
X

k

aik(BC)kl = [A(BC)]il.

Note that matrix multiplication can only be defined if the number of columns in A is
equal to the number of rows in B. Then if A is m ⇥ n and B is n ⇥ p, then C is m ⇥ p.

To interpret the e↵ect of multiplication, suppose that we know the action of some operator
Â on any vector and also the action of another operator B̂. What is the action of the
combined operation of B̂ followed by Â? Consider

w = B̂ v
u = Â w .
u = Â B̂ v = Ĉv . (4.32)

To find the matrix representation of Ĉ, write the above equations in component form:

wi =
X

j

bi j vj

uk =
X

i

aki wi

=
X

i, j

aki bijvj

=
X

j

ckj vj . (4.33)

Since this is supposed to hold for any vector v, it requires that

ckj =
nX

i=1

aki bij . (4.34)

This is the law for the multiplication of two matrices A and B. The product matrix has
the elements ckj.

Matrices do not commute because they are constructed to represent linear operations
and, in general, such operations do not commute. It can matter in which order you do
certain operations.
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4.5 Determinants
For a square matrix there is a useful number called the determinant of the matrix. For a
1 x 1 matrix the determinant is just the value of the single element; hence we shall show
what we mean by a determinant by taking as an example a 2 x 2 matrix. We will then
move to higher order matrices.

4.5.1 Two-by-Two Determinants
The determinant is a useful number which is defined for square matrices. For a 2 ⇥ 2
matrix, the determinant is

det A =

�����
a11 a21
a12 a22

����� = a11a22 � a12a21 (4.35)

This is a second order determinant.

The determinant is an ordinary scalar quantity and can be defined for any set of four
numbers aij. An example:

� =

�����
1 3
4 2

����� = 1 ⇥ 2 � 3 ⇥ 4 = �10 .

4.5.2 Higher order determinants and cofactors
Let’s write a 3rd order determinant as:

� = det A =

��������

a11 a12 a13
a21 a22 a23
a31 a32 a33

��������
,

where the element aij is in row i and column j. To evaluate higher order determinants,
we need to evaluate the cofactor of each element. The cofactor of the element aij is defined
as

cij = (�1)i+ j det Mi j, (4.36)

where Mi j is the matrix remaining when row i and column j have been removed from
the matrix A (Mi j sometimes called Minor). For example, if you remove from the matrix

A =

0
BBBBBB@

1 4 3
6 8 9
�2 1 4

1
CCCCCCA

the second row and the third column, the resulting minor matrix is

M23 =

 
1 4
�2 1

!
,
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and the resulting cofactor

c23 = (�1)2+3 det M23 = �
�����

1 4
�2 1

����� = �(1 + 8) = �9.

The determinant of A is obtained by multiplying each element of one row (or one column)
by its cofactor and adding the results (see e.g. Boaz Chapter 3 section 3).

To see how this works, a 3 ⇥ 3 determinant can be expanded by the first row as

� =

��������

a11 a12 a13
a21 a22 a23
a31 a32 a33

��������
= a11c11 + a12c12 + a13c13

= a11

�����
a22 a23
a32 a33

����� � a12

�����
a21 a23
a31 a33

����� + a13

�����
a21 a22
a31 a32

����� (4.37)

Thus we can express the 3⇥3 determinant as the sum of three 2⇥2 ones. Note particularly
the negative sign in front of the second 2 ⇥ 2 determinant, which comes from the
cofactors. Evaluating the 2 ⇥ 2 determinants this gives the final result

� = a11(a22a33 � a23a32) � a12(a21a33 � a23a31) + a13(a21a32 � a22a31)
= a11a22a33 � a11a23a32 � a12a21a33 + a12a23a31 + a13a21a32 � a13a22a31 (4.38)

Alternatively, one can expand the determinant by the second column,

� =

��������

a11 a12 a13
a21 a22 a23
a31 a32 a33

��������
= �a12

�����
a21 a23
a31 a33

����� + a22

�����
a11 a13
a31 a33

����� � a32

�����
a11 a13
a21 a23

����� ,

and this gives exactly the same value as before. Pay special attention to the terms which
pick up the minus sign. The pattern is:

��������

+ � +
� + �
+ � +

��������
.

A 4 ⇥ 4 determinant can be reduced to four 3 ⇥ 3 determinants as����������

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

����������

= a11

��������

a22 a23 a24
a32 a33 a34
a42 a43 a44

��������
� a12

��������

a21 a23 a24
a31 a33 a34
a41 a43 a44

��������
+ a13

��������

a21 a22 a24
a31 a32 a34
a41 a42 a44

��������
� a14

��������

a21 a22 a23
a31 a32 a33
a41 a42 a43

��������
(4.39)

Alternatively, one can reduce the size of determinant by taking linear combinations of
rows and/or columns (see later). This can be generalised to higher dimensions.

Before we move on let us think for a moment why one would want to calculate a
determinant. Determinants are used in many mathematical applications. For example,
you can use the determinant of a matrix to solve a system of linear equations, or to
calculate the volumes of parallelepipeds. They are also particularly useful in quantum
mechanics.
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4.5.3 Some properties of determinants
1. If rows are written as columns and columns as rows, the determinant is unchanged.

�0 =

�����
a11 a21
a12 a22

����� = a11a22 � a21a12 =

�����
a11 a12
a21 a22

����� .

2. A determinant vanishes if one of the rows or columns contains only zeroes.

3. If we multiply a row (or column) by a constant, then the value of the determinant
is multiplied by that constant.

�0 =

�����
↵ a11 ↵ a12

a21 a22

����� = ↵ a11a22 � ↵ a12a21 = ↵
�����

a11 a12
a21 a22

����� .

4. A determinant vanishes if two rows (or columns) are multiples of each other i.e. if
ai2 = ↵ ai1 for i = 1, 2, then � = ↵ a11a21 � ↵ a11a21 = 0, as can be seen from this very
simple example:

�0 =

�����
2 4
6 12

����� = (2 ⇥ 12) � (4 ⇥ 6) = 0

5. If we interchange a pair of rows or columns, the determinant changes sign.

�0 =

�����
a12 a11
a22 a21

����� = a12a21 � a11a22 = �
�����

a11 a12
a21 a22

����� .

6. Adding a multiple of one row to another (or a multiple of one column to another)
does not change the value of a determinant.

�0 =

�����
(a11 + ↵ a12) a12
(a21 + ↵ a22) a22

����� = (a11 + ↵ a12)a22 � a12(a21 + ↵ a22)

= [a11a22 + ↵ a12a22 � a12a21 � ↵ a12a22] =
�����

a11 a21
a12 a22

����� + 0 .

This is a very useful rule to help simplify higher order determinants. In our 2 ⇥ 2
example, take 4 times row 1 from row 2 to give

� =

�����
1 3
4 2

����� =
�����

1 3
0 �10

����� = 1 ⇥ (�10) � 3 ⇥ 0 = �10 .

By this trick we have just got one term in the end rather than two.

Examples

1. Evaluate

� =

��������

1 2 3
4 5 6
7 8 9

��������
·

� = 1
�����

5 6
8 9

����� � 2
�����

4 6
7 9

����� + 3
�����

4 5
7 8

����� = (45 � 48) � 2 (36 � 42) + 3 (32 � 35) = 0 .

The answer is zero because the third row is twice the second minus the first.

18



2. Evaluate

� =

��������

1 �3 �3
2 �1 �11
3 1 5

��������
·

Add three times column 1 to both columns 2 and 3.

� =

��������

1 0 0
2 5 �5
3 10 14

��������
=

�����
5 �5

10 14

����� =
�����

5 0
10 24

����� = 120 .

Determinants calculated on computers make often use of subtraction of rows (or
columns) such that there is only one element at the top of the first column with zeros
everywhere else. This reduces the size of the determinant by one and can be applied
systematically. With pencil and paper, this often involves keeping track of fractions.
Di↵erent books call this technique by di↵erent names.

4.5.4 Testing for linear independence using determinants
It follows from Rule 4 in the last section that we can use the determinant to test whether
a set of vectors are linearly independent. Consider the vectors in Section 4.2.1:

u =

0
BBBBBB@

1
2
3

1
CCCCCCA : v =

0
BBBBBB@

4
5
6

1
CCCCCCA : w =

0
BBBBBB@

7
8
9

1
CCCCCCA . (4.40)

If we write them in a matrix, and take the determinant, we see that
��������

1 4 7
2 5 8
3 6 9

��������
= 0. (4.41)

If it is not obvious whether a set of vectors are linearly independent, then evaluating this
determinant provides a definitive test. If the determinant is zero, they are not linearly
independent. If it is non-zero, they are.

4.5.5 Determinant of a Matrix Product
By writing out both sides explicitly, it is straightforward to show that for 2 ⇥ 2 or 3 ⇥ 3
square matrices the determinant of a product of two matrices is equal to the product of
the determinants.

| A B |=| A | ⇥ | B | . (4.42)

However, this result is true in general for n ⇥ n square matrices of any size.
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Proof

Consider the product of matrices A and B. Then det(AB) is:

= (ab)11(ab)22 � (ab)21(ab)12

= (a11b11 + a12b21)(a21b12 + a22b22) � (a21b11 + a22b21)(a11b12 + a12b22)
= a11a22b11b22 + a11a21b11b12 + a12a21b21b12 + a12a22b21b22 � a11a21b11b12 � a12a21b11b22 � a11a22b12b21 � a12a22b21b22

= a11a22(b11b22 � b12b21) � a12a21(b11b22 � b21b12)
= (a11a22 � a12a21)(b11b22 � b12b21)

One consequence of this is that, although A B , B A, their determinants are equal. In
the first example that I gave of matrix multiplication, we see that | A B |=
| B A |= �1.

4.5.6 Vector product represented as a determinant
One useful application of the determinant is as follows. Consider the determinant

|M| =

��������

i j k
ax ay az

bx by bz

��������

Work out the cofactors for the first row. For î the cofactor is aybz�azby, for ĵ it is�axbz+azbx

and for k̂ it is axby � aybx. So |M| = A⇥B where A = axî+ ayĵ+ azk̂ and B = bxî+ byĵ+ bzk̂.
This might help you remember how to calculate either vector products or determinants!

4.5.7 Scaling of volume, and the Jacobian
One reason determinants are useful in physics is that if a 2D matrix has |A| = a, then any
transformation scales the area by a factor of a. Likewise, for a 3D transformation, volume
is scaled by the determinant of the transformation. The notation detA = |A| is suggestive
of this; the determinant is in some ways analogous to the modulus of a number or the
magnitude of a vector.

As a start, consider the e↵ect of a few simple matrices on the unit square. We can arrange
the four column vectors giving the vertices of the unit square in a matrix:

 
0 0 1 1
0 1 0 1

!
(4.43)

and then apply various transformations to them, for example, stretch along the x-axis
(all x-coordinates multiplied by two).

 
2 0
0 1

!  
0 0 1 1
0 1 0 1

!
=

 
0 0 2 2
0 1 0 1

!
(4.44)
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The area of the stretched square (now a rectangle) is 2 ⇥ 1 = 2, and the determinant of
the transformation matrix is also 2. So in this case it is clear that the transformed area (2)
is equal to the determinant of the transformation matrix (2) multiplied by the original
area (1). This is a fairly trivial example of a general rule.

This can be generalised by considering the e↵ect of a linear transformation on the volume
(or area) element. Earlier on in the course we looked at how the volume element changes
for various di↵erent coordinate transformations. We can now write down a general way
of finding expressions like this for any coordinate transformation, or equivalently a
change of variables in an integration.
Consider two sets of coordinates, (x1, x2, x3) and (x01, x

0
2, x
0
3). Using partial derivatives we

can write down the expression for a small change in the prime coordinates, given a small
change in the unprimed ones:

dx
0
1 =

@x01
@x1

dx1 +
@x01
@x2

dx2 +
@x01
@x3

dx3

dx
0
2 =

@x02
@x1

dx1 +
@x02
@x2

dx2 +
@x02
@x3

dx3

dx
0
3 =

@x03
@x1

dx1 +
@x03
@x2

dx2 +
@x03
@x3

dx3

As a matrix equation this is:

0
BBBBBB@

dx
0
1

dx
0
2

dx
0
3

1
CCCCCCA =

0
BBBBBBBBBB@

@x01
@x1

@x01
@x2

@x01
@x3

@x02
@x1

@x02
@x2

@x02
@x3

@x03
@x1

@x03
@x2

@x03
@x3

1
CCCCCCCCCCA

0
BBBBBB@

dx1
dx2
dx3

1
CCCCCCA

or, more compactly,
dr
0 = Jdr.

The determinant of J gives the factor by which the volume element changes when we
make the transformation. |J| is called the Jacobian. Evaluating it for the case (x01, x

0
2, x
0
3) =

(x, y, z) and (x1, x2, x3) = (r,✓,�) or (r,✓, z) gives the factors we quoted in the Section for
spherical and cylindrical coordinates respectively.

4.5.8 Example
Work out the volume element in spherical polar coordinates, given that the volume
element in cartesians in dxdydz.

Let x
0
1 = x, x02 = y, x03 = z and x1 = r, x2 = ✓, x3 = �. And we have x = r sin✓ cos�, y =

21



r sin✓ sin�, z = r cos✓. so

dx =
@x
@r

dr +
@x
@✓

d✓ +
@x
@�

d�

dy =
@y

@r
dr +

@y

@✓
d✓ +

@y

@�
d�

dz =
@z
@r

dr +
@z
@✓

d✓ +
@z
@�

d�

i.e.

dx = sin✓ cos�dr + r cos✓ cos�d✓ � r sin✓ sin�d�

dy = sin✓ sin�dr + r cos✓ sin�d✓ + r sin✓ cos�d�

dz = cos✓dr � r sin✓d✓

So in matrix form we have: and is
0
BBBBBB@

dx

dy

dz

1
CCCCCCA =

0
BBBBBB@

sin✓ cos� r cos✓ cos� �r sin✓ sin�
sin✓ sin� r cos✓ sin� r sin✓ cos�

cos✓ �r sin✓ 0

1
CCCCCCA

0
BBBBBB@

dr

d✓
d�

1
CCCCCCA

So the volume element under this transformation scales by
��������

sin✓ cos� r cos✓ cos� �r sin✓ sin�
sin✓ sin� r cos✓ sin� r sin✓ cos�

cos✓ �r sin✓ 0

��������
=

��������

cos✓ �r sin✓ 0
sin✓ cos� r cos✓ cos� �r sin✓ sin�
sin✓ sin� r cos✓ sin� r sin✓ cos�

��������

(swapping two rows twice leaves determinant unchanged). This evaluates to:

cos✓(r2(cos✓ sin✓(cos2 � + sin2 �)) + r
2 sin✓ sin2 ✓(cos2 � + sin2 �)

= r
2 sin✓(cos2 ✓ + sin2 ✓)

= r
2 sin✓
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4.6 Some properties of Matrices

4.6.1 The identity or unit matrix
The multiplicative identity is the matrix which leaves any matrix unchanged when
multiplied by it, i.e.

IA = AI = A

for any square matrix A. Thus, if A is a n ⇥ n�matrix, I is a matrix with 1 along the
diagonal and zero elsewhere;

I =

0
BBBBBBBBBB@

1 0 0 ...
0 1 0 ...
0 0 1 ...
... ... ... ...

1
CCCCCCCCCCA

Equivalently, in component notation, let A be an n⇥n matrix and I the n⇥n unit matrix.
Then

(A I)i j =
X

k

aik �kj = aij ,

since the Kronecker-delta �i j vanishes unless i = j. Thus

A I = A . (4.45)

Similarly
(I A)i j =

X

k

�ik akj = aij ,

and
I A = A . (4.46)

The multiplication on the left or right by I does not change a matrix A. In particular, the
unit matrix I (or any multiple of it) commutes with any other matrix of the appropriate
size.

4.6.2 The transpose of a matrix
To find the transpose of a matrix, switch rows for columns.

A
T =

0
BBBBBB@

a11 a21 a31
a12 a22 a32
a13 a23 a33

1
CCCCCCA

or for each component:
(AT)i j = aji.

The transpose of an n ⇥m matrix is an m ⇥ n matrix.
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Transpose of a transpose

Clearly (AT)T = A.

Symmetric matrices

If AT = A, A is symmetric.
If AT = �A, A is anti-symmetric.

Transposing matrix products

Transposing a product of matrices reverses the order of multiplication.

(A B)T = BT AT . (4.47)

To prove this, try comparing the i j entries of

(A B)T (4.48)

with those of
BT AT (4.49)

Let’s say C = AB. Then the typical elements of C are:

cij =
nX

k=1

aik bkj .

By definying element of CT, cji, then:

cji =
nX

k=1

bjk aki

Transposing a product of matrices reverses the order of multiplication. This is true no
matter how many terms there are;

(A B C)T = CT BT AT .

This rule, which is also true for operators, will be used by the Quantum Mechanics
lecturers in the second and third years.

4.6.3 Equal Matrices
Two matrices A and B are equal if they have the same number n of rows and m of
columns and if all of the corresponding elements are equal.

4.6.4 Multiplication by a scalar
B = �A =) bij = �aij .
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Orthogonal Matrices

If AT A = I, A is an orthogonal matrix. As an example let’s check that the two-
dimensional rotation matrix

A =
 

cos� � sin�
sin� cos�

!
.

is orthogonal. For this, you need cos2 �+sin2 � = 1. Matrix A rotates the system through
angle �, while the transpose matrix AT rotates it back through angle ��. Because of this,
orthogonal matrices are of great practical use in di↵erent branches of Physics. Taking
the determinant, and using the determinant of a product rule(Eq. 4.42) gives

| AT | | A |=| I |= 1 .

But the determinant of a transpose of a matrix is the same as the determinant of the
original matrix — it doesn’t matter if you switch rows and columns in a determinant.
Hence

| A | | A |=| A |2= 1 ,

so | A |= ±1.

Product of Orthogonal Matrices

Suppose A and B are orthogonal matrices. Their product C = A B is also orthogonal.

CT C = (A B)T (A B) = BT AT A B = BT I B = BT B = I .

Physical meaning of our example: since the matrix for rotation about the x-axis is
orthogonal and so is rotation about the y-axis, then the matrix for rotation about the
y-axis followed by one about the x-axis is also orthogonal.

4.6.5 Complex conjugation
To take the complex conjugate of a matrix, just complex-conjugate all its elements:

(A⇤)i j = a
⇤
i j
. (4.50)

For example

A =
 
�i 0

3 � i 6 + i

!
=) A⇤ =

 
+i 0

3 + i 6 � i

!
.

If A = A⇤, the matrix is real.

4.6.6 Hermitian conjugation
Hermitian conjugation combines complex conjugation and transposition. It is probably
more important than either – especially in Quantum Mechanics. The Hermitian con-
jugate matrix is sometimes called the Hermitian adjoint, and is usually denoted by a
dagger (†).
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A† = (AT)⇤ = (A⇤)T . (4.51)

Thus (A†)† = A. For example

A =
 
�i 0

3 � i 6 + i

!
=) A† =

 
+i 3 + i

0 6 � i

!
.

If A† = A, A is Hermitian.
If A† = �A, A is anti-Hermitian.

All real symmetric matrices are Hermitian, but there are also other possibilities. Eg
 

0 i

�i 0

!

is Hermitian.

The rule for Hermitian conjugates of products is the same as for transpositions:

(A B)† = B†A† . (4.52)

4.6.7 Unitary Matrices
Matrix U is unitary if

U†U = I . (4.53)

Unitary matrices are very important in Quantum Mechanics!

Again consider the determinant product rule, Eq. 4.42.

| U† | | U |=| I |= 1 .

Changing rows and columns in a determinant does nothing, but Hermitian conjugate
also involves complex conjugation. Hence

| U |⇤ | U |= 1 ,

and so | U |= e
i�, with � being real.

4.6.8 The Trace of a matrix
The trace is the sum of the diagonal elements:

Tr(A) = a11 + a22 + a33 = ⌃aii = aii

where I have introduced the Einstein summation convention that repeated indices in a
term imply a sum. Note that

Tr(A) = Tr(AT).
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4.7 The multiplicative inverse of a matrix
The inverse of a matrix is defined as A�1 where

AA�1 = I

where I is the identity matrix. Thus inverting a matrix (i.e. finding its identity) is useful
for solving matrix equations.

To just quote the result first, the inverse is given by

A�1 =
1
|A|C

T (4.54)

where C is the matrix made up of the cofactors of A (see Section 4.5.2). CT is known as
the adjoint matrix to A, denoted as Aadj.

Another way of writing this is

(A�1)i j =
1
|A|cji

I will now try and motivate this general result using a 2 ⇥ 2 example.

4.7.1 Explicit 2 ⇥ 2 evaluation
Consider

A =
 

1 2
4 3

!
and B =

 
a b

c d

!
.

We need to determine unknown numbers a, b, c, d from the condition

B A =
 

a + 4b 2a + 3b

c + 4d 2c + 3d

!
=

 
1 0
0 1

!
,

[Note that here what we are saying is that the product of the two matrices gives the
Identity matrix i.e I will show you that the unknown matrix B is the inverse of matrix A]
This gives

a + 4b = 1 a + 3
2b = 0 ,

c + 4d = 0 c + 3
2d = 1

2 .

These simultaneous equations have solutions a = � 3
5 , b = 2

5 , c = 4
5 , and d = �1

5 . In matrix
form then

B = A�1 = 1
5

 
�3 2

4 �1

!
.

A =
 

1 2
4 3

!
and (A�1)T = �1

5

 
3 �4
�2 1

!
.

Notice that inside the bracket, all the coe�cients are exchanged across the diagonal
between A and A�1. There are a couple of minus signs, but these are coming in exactly
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the positions that one gets minus signs when expanding out a 2 ⇥ 2 determinant. The
only remaining puzzle is the origin of the factor �1

5 . Well this is precisely

1
| A | =

1
(1 ⇥ 3 � 4 ⇥ 2)

= �1
5
·

The determinant | A | has come in useful after all.

This simple observation is true for the inverse of any 2 ⇥ 2 matrix. Consider

A =
 
↵ �
� �

!
.

According to the hand-waving observation above, one would expect

A�1 =
1

(↵� � ��)

 
� ��
�� ↵

!
.

Verify that the A�1 defined in this way does indeed satisfy A�1 A = I.

IMPORTANT: Do not forget the minus signs and do not forget to transpose the matrix
afterward.

This justifies the expression in Eq. 4.54, at least for 2 ⇥ 2 matrices. For a 3 ⇥ 3 matrix one
can again write down the most general form, carry out the operations outlined above,
and show explicitly that A�1 A = I. Eq. (4.54) is valid for any size matrix, but in this
course you won’t need to work out anything bigger than 4 ⇥ 4.

Example

Find the inverse of

A =

0
BBBBBB@

�1 2 3
2 0 �4
�1 �1 1

1
CCCCCCA .

Matrix of minors is

M =

0
BBBBBB@

�4 �2 �2
5 2 3
�8 �2 �4

1
CCCCCCA .

Cofactor matrix changes a few signs to give

C =

0
BBBBBB@

�4 +2 �2
�5 2 �3
�8 2 �4

1
CCCCCCA .

Adjoint matrix involves changing rows and columns:

Aadj =

0
BBBBBB@

�4 �5 �8
+2 2 2
�2 �3 �4

1
CCCCCCA .
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Now
| A |= �1 ⇥ (�4) � 2 ⇥ (�2) + 3 ⇥ (�2) = 2 .

Hence

A�1 =
1
2

0
BBBBBB@

�4 �5 �8
2 2 2
�2 �3 �4

1
CCCCCCA .

Can check that this is right by doing the explicit A�1A multiplication.

Note that if | A |= 0, we say the determinant is singular; A�1 does not exist . [It has some
infinite elements.]

There are lots of other ways to do matrix inversion: Gaussian or Gauss-Jordan elimina-
tion, as described by Boas. These methods become more important as the size of the
matrix goes up.

4.7.2 Properties of the inverse matrix
a) A A�1 = A�1 A = I; a matrix commutes with its inverse.

b) (A�1)T = (AT)�1; the operations of inversion and transposition commute.

c) If C = A B, what is C�1 ? Consider

B�1 A�1 I = B�1 A�1 C C�1 = B�1 A�1 A B C�1 = B�1 B C�1 = C�1 = (A B)�1 .

Hence
(A B)�1 = B�1 A�1 . (4.55)

reverse the order before inverting each matrix.

d) If A is orthogonal, i.e. AT A = I, then A�1 = AT.

e) If A is unitary, i.e. A†A = I, then A�1 = A†.

f) Using the determinant of a product rule, Eq. 4.42, it follows immediately that
| A�1 |= 1/ | A |.
g) Division of matrices is not really defined, but one can multiply by the inverse matrix.
Unfortunately, in general,

A B�1 , B�1 A .
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4.8 Solution of Linear Simultaneous Equations
We have already seen in fact that simultaneous equations of form

a11 x1 + a12 x2 + a13 x3 = b1 ,

a21 x1 + a22 x2 + a23 x3 = b2 ,

a31 x1 + a32 x2 + a33 x3 = b3

for unknown xi can be written in matrix form
0
BBBBBB@

a11 a12 a13
a21 a22 a23
a31 a32 a33

1
CCCCCCA

0
BBBBBB@

x1
x2
x3

1
CCCCCCA =

0
BBBBBB@

b1
b2
b3

1
CCCCCCA ,

that is
A x = b or

X

j

ai j xj = bi .

The solution can immediately be written down then by multiplying both sides by A�1:

x = A�1 b .

So this is where the inverse of the matrix is very useful. All that remains is to evaluate
the result!

Using the previous expression for the inverse matrix, Eq. 4.54,

xj =
X

i

(Aadj) ji bi/ | A | .

There are many special cases of this formula; we will now look at two of these special
cases and we will then describe a ’short-cut’ to doing full matrix inversion.

4.8.1 Vanishing determinant
If | A |= 0. Then matrix A is singular the inverse matrix cannot be defined. Provided
that the equations are mutually consistent, this means that (at least) one of the equations
is not linearly independent of the others. So we do not in fact have n equations for n

unknowns but rather only n � 1 equations. Can only try to solve the equations for n � 1
of the xi in terms of the bi and one of the xi. It might take some trial and error to find
which of the equations to throw away.

4.8.2 Homogeneous equations
If all bi = 0, have to look for a solution of the homogeneous equation

A x = 0 .

There is, of course, the uninteresting solution where all the xi = 0. Can there be a more
interesting solution? The answer is yes, provided that | A |= 0. Note: this is very
important - see 4.10.
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4.8.3 Cramer’s rule
If you write it out in full you will see that

X

i

(Aadj) ji bi is the determinant obtained by

replacing the j’th column of A by the column vector b. So the solution is

x1 =

��������

b1 a12 a13
b2 a22 a23
b3 a32 a33

��������

,
� , x2 =

��������

a11 b1 a13
a21 b2 a23
a31 b3 a33

��������

,
� , x3 =

��������

a11 a12 b1
a21 a22 b2
a31 a32 b3

��������

,
� , (4.56)

where

� =

��������

a11 a12 a13
a21 a22 a23
a31 a32 a33

��������
. (4.57)

Just replace the appropriate column with the column of numbers from the right hand
side. This is called Cramer’s rule and can be used as a short cut to doing full matrix
inversion.

Example

Use Cramer’s rule to solve the following simultaneous equations just for the variable x1:

3x1 � 2x2 � x3 = 4 ,
2x1 + x2 + 2x3 = 10 ,
x1 + 3x2 � 4x3 = 5 .

We can expand the determinant appearing here by the first row as

� =

��������

3 �2 �1
2 1 2
1 3 �4

��������
= 3(�4 � 6) + 2(�8 � 2) � 1(6 � 1) = �55 .

Alternatively, adding simultaneously columns 2 and 3 to column 1 gives

� =

��������

0 �2 �1
5 1 2
0 3 �4

��������
.

Expand now by the first column (not forgetting the minus sign)

� = �5(8 + 3) = �55 .

Now by Cramer’s rule,

� ⇥ x1 =

��������

4 �2 �1
10 1 2

5 3 �4

��������
=

��������

4 �2 �1
0 �5 10
5 3 �4

��������
=

��������

4 �2 �5
0 �5 0
5 3 2

��������
= �5(8 + 25) = �165 .

Hence x1 = 3.
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4.9 Scalar Product using matrices
Finally, we can also write the scalar product of two vectors as a matrix operation.

V ·W = ViWi

= V
T
W

= (V1 V2 V3)

0
BBBBBB@

W1
W2
W3

1
CCCCCCA

= V1W1 + V2W2 + V3W3

In fact, in general hidden in the middle here is another matrix known as the metric, G, of
the space in which the vectors are defined;

V ·W = V
T
GW = (V1 V2 V3)

0
BBBBBB@

g11 g12 g13
g21 g22 g23
g31 g32 g33

1
CCCCCCA

0
BBBBBB@

W1
W2
W3

1
CCCCCCA

This metric defines how the di↵erent coordinates combine to give length elements. For
Cartesian coordinates it is equal to the identity matrix, since ds

2 = dx
2 + dy

2 + dz
2, so we

can ignore it. For cylindrical polars, ds
2 = dr

2 + r
2
d✓2 + dz

2 and the metric is
0
BBBBBB@

1 0 0
0 r

2 0
0 0 1

1
CCCCCCA

For orthogonal coordinate systems, the metric will always be diagonal (see Section
4.10.2).

4.10 Eigenvalues and eigenvectors of a linear operator
Matrices are very useful in solving many technological problems e.g. those involving
coupled oscillations (as we shall see at the end of the course). These problems give rise
to equations such as:

Mv = �v . (4.58)

where M is a matrix, v a column vector and � a scalar quantity. For non trivial solutions
(� , 0) the values of � are called the eigenvalues of the matrix M and the corresponding
solutions of the given equation are called the eigenvectors. [Note: you will also find that
the eigenvalues are called characteristic values and the eigenvectors characteristic vectors].

Eigenvalues can be determined by considering that M = IM, and hence Eq. (4.58)
can be recast as follows:

IMv = �Iv ) Mv = �Iv ) (M � �I)v = 0 ,

where we have just inserted the identity matrix I in front of a vector, as can always be
done (because remember that M = IM).
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Now, we know from Sect 4.8.2. that a non-zero vector v satisfying the previous
equation exists if and only if det(M��I) = 0 (note that the null vector is a trivial eigenvector

of any linear operator: it will be henceforth always disregarded). We have thus determined
the condition for a scalar � to be eigenvalue of M: � must be a root of the so-called
“characteristic equation”, given by

det(M � �I) = 0 . (4.59)

What is the nature of the eigenvalues? Let’s expand det(M � �I) = 0:

det(M � �I) =

����������

a11 � � a12 ... a1n

a21 a22 � � ... a2n

.. .. ... ..
an1 an2 ... ann � �

����������

where the ann are the elements of the matrix M and where the eigenvalues � are the roots

of Eq. 4.59 As � appears only once in each row (column) then the expansion of this
determinant is a polynomial of degree n in �. The polynomial det(M � �I) is referred to
as the characteristic polynomial of M.

More than one linearly independent eigenvector may correspond to the same eigen-
value � j because multiplying an eigenvector by a given scalar yields another eigenvector
associated to the same eigenvalue. This can be easily proven: assume that v

j
is an eigen-

vector of M with eigenvalue � j (so that Mv
j
= � jv j

), and consider the action of M on the
vector cvj, where c 2 is any scalar, then:

M(cv
j
) = cMv

j
= c� jv j

= � j(cv
j
) ,

the third equality is true because Mv = �v; which proves that cv
j
is also an eigenvector

with eigenvalue � j. Hence, eigenvectors can only be determined up to an arbitrary
multiplicative factor.

Let us now specify a systematic, pragmatic recipe to determine eigenvalues and
eigenvectors of a linear operator:

1. Write down the characteristic equation (eq 4.59) and solve it to find the eigenvalues
� j.

2. For each �, you will have an eigenvector v to give:

(M � �kI)vk = 0 (4.60)

where k = 1,2,.....,n (equivalent to the number of eigenvalues).

3. Set one of the elements arbitrarily: to do this, pick one element, say v1, and make
sure the eigensystem does not imply v1 = 0. Them simply set v1 = 1 and solve the
eigensystem.

4. Since as we mentioned earlier an eigenvector is indeterminate up to a scalar mul-
tiplier, it is convenient to determine normalised eigenvectors, i.e. eigenvectors of
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modulus 1. For any eigenvector with real elements v1, v2 etc, the corresponding
normalized eigenvector v is defined as:

v =
1���v
���

0
BBBBBBBBBB@

v1
v2
...
vn

1
CCCCCCCCCCA

(4.61)

where
���v

��� is the norm or Euclidian length of v.

5. You then can calculate the normalized eigenvector by remembering that the norm
or Euclidian length can be evaluated in the folllowing way:

���v
��� =

⇣
v

2
1 + v

2
2 + .... + v

2
n

⌘1/2
(4.62)

Recall now the above session on the scalar product using matrices and see that:
���v

��� =
⇣
vTv

⌘1/2
(4.63)

Let us now see a concrete example. Consider the 2 ⇥ 2 matrix A:

A =
 

0 1
1 0

!
.

The characteristic equation det(A � �I) = 0 reads (point 1)

det
 
�� 1
1 ��

!
= �2 � 1 = (� + 1)(� � 1) = 0 .

The two solutions of the equation are hence �1 = �1 and �2 = 1. These are the two
eigenvalues of A. To find the eigenvector v1 corresponding to �1, one has to set

v1 =

 
a

b

!

(two rows because the matrix has two rows) and solve the eigensystem Av1 = �1v1 for
the variables a and b (point 2):

Av1 =

 
0 1
1 0

!  
a

b

!
=

 
b

a

!
= �1v1 = �v1 =

 
�a

�b

!
.

(because � = -1) Being a vector equation, the previous equality implies two scalar equa-
tions: b = �a and a = �b. These two equations are identical. The only relevant equation
is then

b = �a .

This equation does not imply a = 0. Hence, according to point 3, we can set a = 1 and
have

v1 =

 
1
�1

!
.
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Finally, the vector v1 is normalised as per point 4 and 5:

v1 =

 
1
�1

!
/
p

12 + (�1)2 =

 
1
�1

!
/
p

2 .

The eigenvector v2 associated to �2 = +1 can be determined as

v2 =

 
1
1

!
/
p

2 .

The eigenvalues and eigenvectors of real matrices are not necessarily real: consider
for example the matrix B:

B =
 

0 1
�1 0

!
.

The characteristic equation det(�I � B) = 0 reads (point 1)

det
 
� �1
1 �

!
= �2 + 1 = (� � i)(� + i) = 0 .

The two solutions of the equation are hence �1 = �i and �2 = i. These are the two
eigenvalues of B. To find the non-normalized eigenvector v1 corresponding to �1, one
has to set

v1 =

 
a

b

!

and solve the eigensystem Bv1 = �1v1 for the variables a and b (point 2):

Bv1 =

 
0 1
�1 0

!  
a

b

!
=

 
b

�a

!
= �1v1 = �iv1 =

 
�ia

�ib

!
.

As expected, the vector equation above corresponds to a single independent scalar
equation (apparent if one multiplies one of the two rows by i). Setting a = 1, as per point
3, determines b = �i, such that

v1 =

 
1
�i

!
.

The vector v1 is normalised as per point 4, recalling the rules for the inner product of
complex vectors:

v1 =

 
1
�i

!
/
p

12 + i(�i) =
 

1
�i

!
/
p

2 .

It can be shown following the same steps that the normalised eigenvector v2 correspond-
ing to �2 = +i is given by

v2 =

 
�i

1

!
/
p

2 .
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4.10.1 Degenerate eigenvalues
As already pointed out, the characteristic equation (eq 4.59), which determines the
eigenvalues of the linear operator M, is an algebraic equation of order n. If two or more
solutions of the equation coincide, the characteristic polynomial is said to have degenerate

roots. In that case, clearly, there will be less than n eigenvalues.
However, the eigenvalue corresponding to a degenerate root may have a number of

corresponding eigenvectors up to its multiplicity (this is not necessarily the case!). Such
eigenvectors are determined by the eigensystem, like any eigenvector, but for them the
eigensystem might feature more than one redundant equation, so that one may have to
arbitrarily set more than one entry of the eigenvector.

This situation is better illustrated with a concrete example. Consider the matrix B:

B =

0
BBBBBB@

5 1 2
1 5 �2
2 �2 2

1
CCCCCCA .

The characteristic equation det(�I � B) = 0 reads

det

0
BBBBBB@

� � 5 �1 �2
�1 � � 5 2
�2 2 � � 2

1
CCCCCCA = �

3 � 12�2 + 36� = �(� � 6)2 = 0 ,

with solutions 0 and 6. These are the only two eigenvalues of the matrix B. However, note
that the eigenvalue 6 is a root of the characteristic equation with multiplicity 2 (in that the
factor (��6) to the power 2 occurs in the characteristic polynomial). As anticipated above,
the eigenvalue 6 may have up to 2 corresponding linearly independent eigenvectors, in
which case it is said to be degenerate (‘doubly’ degenerate, in this instance).

The eigenvector v1 corresponding to �1 = 0 is found by setting

v1 =

0
BBBBBB@

a

b

c

1
CCCCCCA

and solving the eigensystem Bv1 = �1v1 for the variables a, b and c:

Bv1 =

0
BBBBBB@

5 1 2
1 5 �2
2 �2 2

1
CCCCCCA

0
BBBBBB@

a

b

c

1
CCCCCCA =

0
BBBBBB@

5a + b + 2c

a + 5b � 2c

2a � 2b + 2c

1
CCCCCCA = �1v1 =

0
BBBBBB@

0
0
0

1
CCCCCCA .

Adding up the first and second lines of the previous scalar equation yields

a + b = 0 ,

such that the third line becomes
4a + 2c = 0 .

We can then set c = 1 to get a = �1/2 and b = 1/2. Finally, the eigenvector v1 can be
normalised to obtain

v1 =

0
BBBBBB@

�1
1
2

1
CCCCCCA /
p

6 .
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Let us now move on to the degenerate eigenvalue �2 = 6. Setting

v2 =

0
BBBBBB@

a

b

c

1
CCCCCCA ,

the eigensystem Bv2 = �2v2 for the variables a, b and c reads:

Bv1 =

0
BBBBBB@

5 1 2
1 5 �2
2 �2 2

1
CCCCCCA

0
BBBBBB@

a

b

c

1
CCCCCCA =

0
BBBBBB@

5a + b + 2c

a + 5b � 2c

2a � 2b + 2c

1
CCCCCCA = �2v2 =

0
BBBBBB@

6a

6b

6c

1
CCCCCCA .

The three equations from the vector equality above are all identical and equivalent to

a � b � 2c = 0 . (4.64)

All vectors satisfying such a relationship are eigenvectors associated to �2 = 6. Clearly,
however, we are left with only one condition to determine the three variables a, b and c.
Two of them will have hence to be set arbitrarily. By setting a = 1 and c = 1, one gets

b = �1 ,

such that the first eigenvector corresponding to �2 is determined as

v2 =

0
BBBBBB@

1
�1
1

1
CCCCCCA ,

normalised as

v2 =

0
BBBBBB@

1
�1
1

1
CCCCCCA /
p

3 .

Setting a = 1 and c = 0 instead gives

v3 =

0
BBBBBB@

1
1
0

1
CCCCCCA ,

normalised as

v3 =

0
BBBBBB@

1
1
0

1
CCCCCCA /
p

2 .

The eigenvectors v2 and v3 are both associated to the same degenerate eigenvalue �2.
Note that the expressions of v2 and v3 depend on the choice we made for the coe�cients
when solving the einsystem for �2. Di↵erent choices could have been made, leading to
di↵erent eigenvectors v2 and v3. The choice we made was such as to make v2 and v3
orthogonal to each other: this can always be made.
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4.10.2 Diagonal matrices
A diagonal matrix is a square matrix with elements only along the diagonal:

A =

0
BBBBBBBBBB@

a11 0 0 · · ·
0 a22 0 · · ·
0 0 a33 · · ·
· · · · · · · · · · · ·

1
CCCCCCCCCCA
.

(We already encountered this). Thus

(A)i j = ai �i j .

(recall the Kronecker delta definiton in Section 4.2).
Now consider two diagonal matrices A and B of the same size.

(A B)i j =
X

k

aik bkj =
X

k

ai �ik �kj bk = (ai bi) �i j .

because if i = j then the only non-zero entries are the matching ones so the product is
aiibii while if i , j the entries in the matrix A B are zeros. This is what the introduction of
the Kronecker delta function is useful for.

Hence A B is also a diagonal matrix with elements equal to the products of the cor-
responding individual elements. Note that for diagonal matrices, A B = B A, so that A
and B commute.

Many problems using matrices are easier to solve if a transformation can be found
which simplifies the structure of the matrix while leaving the eigenvalues unchanged.
Diagonalizing a matrix will simplify it. Not all matrices can be diagonalized. Let us first
use an example of a diagonalizable matrix and then we can generalize the conditions for
diagonalization. Consider the matrix:

A =
 
4 1
2 3

!
(4.65)

The eigenvalues of this matrix are: �1 = 2, �2 = 5 and the corresponding normalized
eigenvectors are:

v1 =

0
BBBB@
�1p

5
2p
5

1
CCCCA ,v2 =

0
BBBB@

1p
2

1p
2

1
CCCCA (4.66)

[Calculate them as part of an exercise please!] Consider now the matrix, B, whose
columns are formed from the normalized eigenvectors of A. Then

B =
0
BBBB@
�1p

5
1p
2

2p
5

1p
2

1
CCCCA B�1 =

0
BBBB@
�
p

5
3

p
5

3
2
p

2
3

p
2

3

1
CCCCA (4.67)

A straightforward calculation now gives:

B�1AB =
 
2 0
0 5

!
(4.68)
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This means that the matrix A is diagonalizable.
We now need to find the necessary and su�cient conditions for a matrix to be diagonal-
izable. From the above example one can infer that such condition is that for a n⇥n matrix
to be diagonazible it has to have n linearly independent eigenvectors. The diagonalized
matrix will have non-zero entries only on the main diagonal.

Let us therefore now generalize the example we used to start with. Assume that a
n ⇥ n matrix M is diagonalisable, with a basis of eigenvectors v

j
, j = 1, ....,n. Let � j be

the eigenvalue associated to each v
j
so that:

Mv
j
= � jv j

Let L be defined as the n⇥n matrix with columns equal to the n vectors v
j
’s. We shall

adopt the following notation:

L =
⇣
v1, . . .v j

, . . .v
n

⌘
, (4.69)

where each v
j
represents the column of entries of the vector v

j
in a generic basis. [Note:

j is the index, n is the ’maximum’ value...]
Since we assumed the matrix is diagonazable then the v

j
s are linearly independent,

and the matrix L must be invertible: a matrix L�1 exists such that L�1L = I. Let us
represent L�1 as a matrix of rows:

L�1 =

0
BBBBBBBBBBBBBBBBBB@

w1
...

w
k

...
w

n

1
CCCCCCCCCCCCCCCCCCA

. (4.70)

Then L�1L = I can be expressed as
0
BBBBBBBBBBBBBBBBBB@

w1
...

w
k

...
w

n

1
CCCCCCCCCCCCCCCCCCA

⇣
v1, . . .v j

, . . .v
n

⌘
=

0
BBBBBBBBBBBBBBBBBBBB@

w1v1 · · · w1v
j
· · · w1v

n

...
. . . . . . ...

w
k
v1 · · · w

k
v

j
· · · w

k
v

n

... . . . . . .
...

w
n
v1 · · · w

n
v

j
· · · w

n
v

n

1
CCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBB@

1 0 0 0 0

0 . . . 0 0 0
0 0 1 0 0

0 0 0 . . . 0
0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCA

,

The previous matrix equation can be represented as

w
k
v

j
= � jk , (4.71)

where the ‘Kronecker delta’ � jk is defined by: � jk = 1 if j = k and � jk = 0 if j , 0, as
always.

Now, let us apply the ordinary rules of matrix multiplication to evaluate the matrix
D = L�1ML, which represents the transformation M in the new basis of eigenvectors
(‘eigenbasis’):2

2Let us recall that, in general, given an invertible matrix L and a linear operator represented by the
matrix M, the transformation L�1ML (known as ‘similarity’), represents the linear operator in the new
basis given by the columns of L. The fact that the columns of L form a basis, i.e. that they are linearly
independent vectors, is equivalent to state that the square matrix L is invertible.
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D = L�1M
⇣
v1, . . .v j

, . . .v
n

⌘
= L�1

⇣
Mv1, . . .Mv

j
, . . .Mv

n

⌘

= L�1
⇣
�1v1, . . .� jv j

, . . .�nv
n

⌘
=

0
BBBBBBBBBBBBBBBBBB@

w1
...

w
k

...
w

n

1
CCCCCCCCCCCCCCCCCCA

⇣
�1v1, . . .� jv j

, . . .�nv
n

⌘

=

0
BBBBBBBBBBBBBBBBBBBB@

�1w1v1 · · · � jw1v
j
· · · �nw1v

n

...
. . . . . . ...

�1w
k
v1 · · · � jwk

v
j
· · · �nw

k
v

n

... . . . . . .
...

�1w
n
v1 · · · � jwn

v
j
· · · �nw

n
v

n

1
CCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBB@

�1 0 0 0 0

0 . . . 0 0 0
0 0 � j 0 0

0 0 0 . . . 0
0 0 0 0 �n

1
CCCCCCCCCCCCCCCCCCA

.

As anticipated above, the expression of the diagonalisable linear transformation M in
the basis given by its eigenvectors is a diagonal matrix D, with the eigenvalues on the main

diagonal and zero entries everywhere else.
In practice, the matrix L which diagonalises the matrix M is just constructed as the

matrix whose column are the eigenvectors of M. For instance, for the matrix A =
 
0 1
1 0

!
,

the matrix L is given by

L =
 

1 1
�1 1

!
/
p

2 .

The inverse L�1 is given by

L�1 =

 
1 �1
1 1

!
/
p

2 ,

and the diagonalisation can be checked directly

L�1AL =
1
2

 
1 �1
1 1

!  
0 1
1 0

!  
1 1
�1 1

!
=

 
�1 0
0 1

!
.

As illustrated by the following counterexample, not all square matrices can be diago-

nalised. Consider in fact the matrix J:

J =
 

0 1
0 0

!
.

The characteristic equation for J reads �2 = 0, such that �1 = 0 is the only (potentially
doubly degenerate) eigenvalue of J. The generic vector is v1 = (a, b)T. Note that this is
equivalent to

v1 =

 
a

b

!

So the eigensystem for �1 = 0 is
Jv1 = �v1
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Jv1 =

 
0 1
0 0

!  
a

b

!

and so

Jv1 =

 
b

0

!
=

 
0
0

!
.

The only condition that can be extracted from the eigensystem is hence b = 0. The
vector v1 = (1, 0)T is in fact an eigenvector of J. However, no other linearly independent
eigenvector exists. In particular, the vector v2 = (0, 1)T, orthogonal to v1 and which
would form a basis with the latter, is not an eigenvector of J as can be directly verified:

Jv2 =

 
0 1
0 0

!  
0
1

!
=

 
1
0

!
, �2v2 .

A matrix like J is referred to as a Jordan block. Jordan blocks are never diagonalisable.

4.10.3 Invariants and eigenvalues
It is clear from the expression determined above

D = L�1ML (4.72)

(where D is the diagonal matrix containing the eigenvalues of M on the main diagonal),
that the eigenvalues are invariant under a change of basis of the vector space.

Let us see this with a practical example: consider a change of basis described by the
invertible matrix N, such that M! M0 = N�1MN. By multiplying R.H.S. and L.H.S by
N and N�1 i.e:

NM0N�1 = NN�1MNN�1

One has M = NM0N�1, which can be inserted into Eq. (4.72) to obtain

D = L�1ML = L�1NM0N�1L = L0�1M0L0 with L0 = N�1L .

(to get the last passage try ’inserting’ L0�1 on both sides of the expression for L0). So, while
the matrix of eigenvectors changes from L into N�1L, the diagonal matrix of eigenvalues
D stays the same under the change of basis.

The eigenvalues are related to other invariant quantities, which are generally much
easier to evaluate. We have in fact encountered two of them already:

• The determinant det(M), whose invariance is easily proved.3

• The ‘trace’ Tr(M), which as we recall is defined as the sum of the elements on
the main diagonal. The trace equals the sum of all the eigenvalues of a matrix:
Tr(M) =

P
n

j=1 � j.

For instance, in the case of matrix A of our previous example, one has det(A) = �1
and Tr(A) = 0, which are indeed, respectively, the product and the sum of the two
eigenvalues �1 and +1.

3From Binet’s formula for the determinant of a product det(AB) = det(A)det(B), one has det(L�1ML) =
det(L�1)det(M)det(L) = 1

det(L) det(L)det(M) = det(M)
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4.10.4 An Application of Diagonalization
We can use diagonalization to compute the powers of a matrix, as long as the latter is
diagonazable. Let M be a matrix that can be diagonalised, i.e. such that

D = L�1ML ,

where D is a diagonal matrix (with the eigenvalues � j of M on the main diagonal and
zeros elsewhere) and L is an invertible matrix (whose columns represent the eigenvectors
of M). By the usual ’trick’ we can get:

M = LDL�1 ,

Then if we wanted to evaluate M2, and remembering that the matrix product is
associative:

M2 = (LDL�1)2 = (LDL�1)(LDL�1) = LD(L�1L)DL�1 = LD2L�1

Hence for any power:
Mn = LDnL�1

4.10.5 Summary of special matrices and diagonalization
Before proceeding, let us recall some of the properties of matrices:

• Given a matrix M, the transpose of M is denoted by MT and is obtained by writing
its rows as the column of M. In terms of matrix entries one has: MT

jk
= Mkj (swap

rows and columns).

• Given a matrix M, the hermitian conjugate of M is denoted by M† and is obtained
by complex conjugation of the transpose MT: M† =MT⇤. In terms of matrix entries
one has: M†

jk
=M⇤

kj
(swap rows and columns and complex conjugate).

We can now list some classes of special matrices (we covered most of them already):

• A square matrix M is said to be normal if and only if M†M =MM†.

• A square matrix H is said to be hermitian if and only if H† = H.

• A square matrix S is said to be real and symmetric if and only if its entries are real
and ST = S.

• A square matrix U is said to be unitary if and only if U†U = UU† = I.

• A square matrix O is said to be orthogonal if and only if it has real entries and
OTO = OOT = I.

Let us first clarify the dependencies between the sets of matrices defined above:

• Since for real matrices hermitian conjugation is the same as transposition, orthogonal

matrices are unitary: O†O = OTO = I.
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Figure 4.1: Set relationships between classes of special matrices.

• Since for real matrices hermitian conjugation is the same as transposition, real

symmetric matrices are hermitian: S† = ST = S.

• Unitary matrices are normal: U†U = I = UU†.

• Hermitian matrices are normal: H†H = HH = HH†.

• Normal matrices are diagonalisable: unitary, orthogonal, hermitian, and real symmet-
ric matrices are all normal and hence diagonalisable

To be normal, is, in a sense, the broader su�cient condition known for diagonal-
isability. Notice that this condition is only su�cient and not necessary: there exist
diagonalisable matrices which are not normal. In general, given a non-normal matrix,
the only way to know whether it is diagonalisable or not is by trying to find its eigenvec-
tors and verifying whether they form a basis of the vector space or not. Notice moreover
that, since unitary, orthogonal, hermitian and real symmetric matrices are all normal,
and hence diagonalisable, these are other (narrower) su�cient conditions for diagonal-
isability. The relations between these classes of matrices are depicted in Fig. 4.1. As an
exercsise for you to do at home: take a permutation matrix:

0
BBBBBB@

1 0 0
0 0 1
0 1 0

1
CCCCCCA

and see how many classes it belongs to.

4.10.6 Eigenvalues and eigenvectors of hermitian matrices
We just saw that any hermitian matrix H = H† is diagonalisable.
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Let us then denote by � j and �k two generic eigenvalues of the hermitian matrix H,
with corresponding eigenvectors v

j
and v

k
:

Hv
j
= � jv j

, (4.73)
Hv

k
= �kvk

. (4.74)

Let multiply Eq. (4.73) on the left by v†
k

to obtain

v†
k
Hv

j
= � jv†kv

j
. (4.75)

Because of equation 4.52
(A B)† = B†A† .

the hermitian conjugate of Eq. (4.74) reads

v†
k
H† = v†

k
H = �⇤

k
v†

k

(where we made use of the property H = H†), and can be multiplied on the right by v
j

to get
v†

k
Hv

j
= �⇤

k
v†

k
v

j
. (4.76)

The left hand sides of Eqs. (4.75) and (4.76) are the same, so that we can equate the right
hand sides to obtain

(� j � �⇤k)v†kv
j
= 0 . (4.77)

Eq. (4.77) has two consequences:

• If j = k, one has v†
k
v

j
= v†

j
v

j
= |v

j
|2 , 0 (because null vectors, with all zero entries, are

trivial eigenvector of any matrix and are excluded by hypothesis when considering
eigenvectors of linear operators), such that one is left with � j = �⇤j: the eigenvalues

of hermitian matrices are always real.

• If j , k and � j , �k, then v†
k
v

j
= 0: the eigenvector of hermitian operators associated to

di↵erent eigenvalues are orthogonal.

The eigenvectors of a hermitian operator may always be chosen to form an orthonormal basis.

This important result may be rephrased in terms of the transformation that diago-
nalises H, which we will call U: U�1HU = D. The matrix U is the matrix with columns
equal to the eigenvectors of H: if such eigenvectors are orthonormal, the matrix U is
given by

U =
⇣
v1, . . .v j

, . . .v
n

⌘
, with v†

j
v

k
= � jk ,

Note that v†
j
v

k
= � jk is the inner product i.e (v

j
,v

k
)

and the inverse can be immediately constructed:

U�1 =

0
BBBBBBBBBBBBBBBBBBB@

v†1
...

v†
j

...
v†

d

1
CCCCCCCCCCCCCCCCCCCA

= U† .
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The matrix U is hence unitary: any hermitian matrix is diagonalisable and can be diagonalised

by a unitary transformation.

Also, as we determined above, the eigenvalues of hermitian matrices are real.
Real symmetric matrices being hermitian, their eigenvalues are bound to be real too.

Moreover, along the same lines described here, it can be shown that real symmetric
matrices can always be diagonalised by orthogonal (that is, essentially, real and unitary)
transformations. Orthogonal transformations represent generalised rotations (reducing
to the common spatial rotations in dimension 2 and 3): real symmetric matrices can
hence always be diagonalised by rotating the basis of the vector space.
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4.11 Real quadratic forms
Quadratic forms are polynomials with n variables, all of degree two.

Matrices do not only represent linear transformations, but also quadratic combina-
tions of sets of variables. Let {x1, . . . , xn} and {y1, . . . , yn}be two sets of n variables, assumed
for simplicity to be real, and let

P
n

j,k=1 qjkxjyk be any generic quadratic combination of
them, with real coe�cients qjk (which can of course form a matrix) i.e

nX

j,k=1

qjkxjyk = q11x1y1 + q12x1y2 + .... + qnnxnyn (4.78)

This expression can be written in matrix form:

= xTQy

setting:

x =

2
66666666664

x1
x2
...
xn

3
77777777775
,y =

2
66666666664

y1
y2
...
yn

3
77777777775
,Q =

2
66666666664

q11 q12 ... q1n

q21 q22 ... q2n

. . ... .
qn1 qn2 qnn

3
77777777775

Real symmetric matrices hence also represent all the possible quadratic forms Q(x) 2
acting on real vector spaces, which are fed a vector and output a real number. Let us
show this via a simple example. Let’s consider the form of potential energy:

1
2

K(x1 � x2)2

In matrix form this can be written as:

xTKx

In order to find the elements of the matrix K note that the main diagonal has the coe�cient
of each quadratic variable (e.g. q11 and q22 in this case), while the o↵ diagonal has the
coe�cient belonging to the product of the two variables. Expand the potential energy
to find:

1
2

K(x1)2 +
1
2

K(x2)2 � 1
2

2x1x2

The coe�cient of the first quadratic variable (x1) is then 1
2K and so it is the coe�cient of

the second quadratic variable (x2). Then:

q12 + q21 = �
1
2

2K

and so the o↵ diagonal elements are both �K/2.
The applications of quadratic forms are beyond count: for instance, the potential

energy of a set of coupled harmonic oscillators (springs) can be represented by a real
quadratic form. Notice that because Q is symmetric, it may always be diagonalised,
which is often handy. In the next section, we will solve the dynamics of a system of
coupled oscillators: although we will not make explicit use of the potential energy in
our solution (simply because we will tackle the equations of motion directly), we will
solve the problem by a diagonalisation which is completely analogous to diagonalising
the quadratic form for the potential energy of the coupled springs.
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4.12 Normal modes of oscillation
To appreciate the usefulness of the algebraic techniques we learned, it is instructive to
consider a relevant example where such techniques are applied to solve the dynamics of
a classical (non-quantum) system.

Consider three particles of equal mass m joined by springs with elastic constant k and
rest length l, and constrained to move on a line (Fig. 4.2). By Newton’s and Hook’s laws,
the equations of motion governing the positions x1, x2 and x3 of the three particles are:

mẍ1 = k(x2 � x1 � l) , (4.79)
mẍ2 = �k(x2 � x1 � l) + k(x3 � x2 � l) , (4.80)
mẍ3 = �k(x3 � x2 � l) . (4.81)

These second-order di↵erential equations for the functions x1(t), x2(t) and x3(t) are coupled:
each solution will hence depend on the other two and is in general not easy to find if the
equations are tackled directly in the form given above. However, we will see that the
diagonalisation of a matrix will allow us to write down a set of equations equivalent to
the above, but much simpler to solve.

Notice that, by defining the vector of positions x = (x1, x2, x3)T and the vector of
derivatives ẍ = (ẍ1, ẍ2, ẍ3)T, the Eqs. (4.79-4.81) can be recast in vector notation as follows:

ẍ =
k

m
Ax +

k

m
x0 , (4.82)

where

A =

0
BBBBBB@

�1 1 0
1 �2 1
0 1 �1

1
CCCCCCA

and

x0 =

0
BBBBBB@

�l

0
l

1
CCCCCCA .

This last column vector is made up of all the coe�cients independent from the vector
x and so first row (’representing’ the first equation - eq. 4.80) we have �l, second row
we have �l + l = 0 (see eq. 4.81) and third ro we have l (see independent coe�cient in
eq. 4.82). The matrix A above can be derived by working out the coe�cients of each of
our variables. It has to be 3 ⇥ 3 because we have 3 equations. Then in the first column
we have all the coe�cients of x1, in second column all the coe�cioents of x2 and third
column all the coe�cients of x3. The matrix A is real and symmetric, and can hence be
diagonalised. We leave the diagonalisation procedure to the reader, and just give the
result in terms of the eigenvalues �1, �2 and �3 and associated normalised eigenvectors
v1, v2 and v3:

�1 = 0 , �2 = �1 , �3 = �3 ,

v1 =

0
BBBBBBBB@

1/
p

3
1/
p

3
1/
p

3

1
CCCCCCCCA
, v2 =

0
BBBBBBB@

1/
p

2
0

�1/
p

2

1
CCCCCCCA
, v3 =

0
BBBBBBBB@

1/
p

6
�2/
p

6
1/
p

6

1
CCCCCCCCA
.
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Figure 4.2: Three bodies of mass m coupled by two springs of elastic constant k and rest
length l, constrained to move along one dimension (x).

As expected, since the matrix is real and symmetric, the eigenvalues are real and the
eigenvectors are real and orthogonal. The transformation R which diagonalises A is
therefore the orthogonal transformation given by

R =

0
BBBBBBBB@

1/
p

3 1/
p

2 1/
p

6
1/
p

3 0 �2/
p

6
1/
p

3 �1/
p

2 1/
p

6

1
CCCCCCCCA
,

with R�1 = RT (orthogonality). One has then

RTAR = D , with D =

0
BBBBBB@

0 0 0
0 �1 0
0 0 �3

1
CCCCCCA . (4.83)

The previous equation can be multiplied through on the left by R and on the right by
RT, on both sides, to obtain the equivalent relation

A = RDRT .

Let us now insert this expression for A into Eq. (4.82):

ẍ =
k

m
RDRTx +

k

m
x0 ,

which can be multiplied through on the left by RT and written as

RTẍ =
k

m
DRTx +

k

m
RTx0 . (4.84)

Let us now call:

y = RTx , and y
0
= RTx0 =

0
BBBBBBB@

0
�
p

2l

0

1
CCCCCCCA

(4.85)

(recall the equation for x0), which, if inserted into eq 4.85 yields

ÿ =
k

m
Dy +

k

m
y

0
. (4.86)
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Now, because the matrix D is diagonal, the three scalar di↵erential equations contained
in (4.86), are much simpler than the original system we set out to solve. In terms of the
components y1, y2 and y3 of y, one has:

ÿ1 = 0 , (4.87)

ÿ2 = � k

m
y2 +

p
2

kl

m
, (4.88)

ÿ3 = �3
k

m
y3 . (4.89)

The threre equations above have been found by looking at explicitly evaluating the y
and y

0
components in eq. 4.87 i.e for example ÿ1 = 0 because the first column of D is

all 0s. The first term in the R.H.S of the equation of ÿ2 is determined by multiplying the
second column of D by k/m and by multiplying the vector y

0
by k/m and so on.

Each equation now depends on only one of the three unknown functions: the system
of di↵erential equation has been ‘decoupled’. The identification of the new variables y1,
y2 and y3 which allowed for such a decoupling was made possible by the diagonalisation
of the coupling matrix A. Notice that, although for simplicity we assumed all the masses,
spring constants and rest lengths to be the same, the very same decoupling would have
been possible for any system of coupled harmonic oscillators, regardless of such details.
The matrix A is in fact always symmetric, and hence diagonalisable, for these systems
(a consequence, in a sense, of Newton’s reaction principle).

The three variables y1, y2 and y3, decoupling the dynamics of the coupled springs,
are commonly known as normal modes of oscillation. The mode y1 just represents the
centre of mass of the three particles (here the sum of the three positions, as all the masses
were assumed equal): in fact, its equation of motion is that of a free particle (the force
acting on y1 is zero), as expected since no external force is acting on the three particles.
Modes y2 and y3 are instead at times referred to, respectively, as the ‘breathing’ and the
‘Egyptian’ mode. Normal modes play a central role in quantum mechanics as well, for
instance in the description of quantized electromagnetic fields.
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