Chapter 3

Ordinary Differential Equations

3.1 Introduction and Simple Examples
Differential equations are a group of equations that contain derivatives, e.g.

dy 2
— +2 = 0. 3.1
. + 2xy (3.1)

This equation is sometimes written as 3’ + 2zy? = 0. The general solution of a differential
equation is given by the set of all functions that satisfy the equation. E.g., all functions

1

x24c’

y(z) =

with ¢ € R an arbitrary constant are solutions to the differential equation (3.1),

1 1
2-2x+2x'—:0:r.h.s.

dy 2
lhs=Y fop?=——~
S Ty (22 +¢) (22 +¢)?

Note that “l.h.s.” and “r.h.s.” stand for left- and right-hand side, respectively. Differential
equations occur everywhere in physics. Examples include:

e Simple harmonic oscillator: displacement x of a particle gives rise to a restoring force
F = —kx, where k > 0 is the spring constant.

Figure 3.1: An example of a harmonic oscillator.
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According to Newton’s law of motion: Force = mass x acceleration = m dv/dt =
m d*x/dt?, so that

d*z

"ar

225
S\

S

e Newton’s law of cooling:

Figure 3.2: A hot cup of tea with temperature T' > Tj.

This law states that the rate at which a hot body cools is proportional to the difference
T — Ts between the temperature T of the body and the temperature Ts of the
surroundings. Expressed as an equation, this says:

dT'/dt = —a (T — Ts) , (3.3)
where « is a positive constant.

e Quantum mechanics: in order to determine the allowed energies F of a quantum
system, we have to solve the stationary Schrodinger equation

—h—2d2—¢ + V(z)p(z) = EY(x). (3.4)

2m dz?

e Wave equation: in vacuum, the change of the electric field E(z,t) as a function of
position z and time t is described by the wave equation

PE  ,0°E

ct
=

Figure 3.3: An electromagnetic wave propagating with velocity c¢. It is easy to check that
E(z,t) = f(x — ct) with f an arbitrary function is a solution of the wave equation.
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These are all differential equations, because they contain derivatives d?z/dt?, dT/dt,
d*y/dz?, O*E/0t*, and 0?E/0x?. We write down a differential equation (usually based
upon some assumptions about a physics system) and then try to find the functions that
satisfy the equation. In physics, once we have such a function, we can use it to predict
other behaviours of the system. The aim of this and the next few lectures is to explain
how to find solutions of differential equations.

3.1.1 Terminology

We need to define some terminology that will often be used:

e Independent and dependent variables: For the harmonic oscillator, the displacement
x(t) depends on time t, so we call ¢ the independent variable and x the dependent
variable. The idea is to find the function x(¢) expressing how the dependent variable
depends on the independent variable. Similarly, for the cooling body, time ¢ is the
independent variable and T is the dependent variable. For the wave equation the
electric field E(z,t) is the dependent variable, x and ¢ are independent variables.

e Ordinary differential equations (ODE’s): these are equations with only one indepen-

dent variable, so that we only have ordinary differentials (e.g. d?z/dt?), not partial
differentials. Examples (3.1), (3.2), (3.3), and (3.4) are all ODE’s. The wave equation
(3.5) is a partial differential equation. In this course we will only discuss ODE’s.

e Order of differential equation: this refers to the maximum number of times that the
dependent variable is differentiated in the equation. In examples (3.1) and (3.3)
we only have first derivatives, so these are first-order differential equations. The
harmonic oscillator (3.2) is an example of a second-order differential equation since
x(t) is differentiated twice (d2x/dt?).

e Linearity: a differential equation is linear if the dependent variable occurs at most to
the first power. Examples include (3.2), (3.3), and (3.4). Example (3.1) is a non-
linear differential equation since the dependent variable y is squared. Some other
examples:

(a) % = coty (not linear because of term cot y)
(b) y% =1 (not linear because of product yy')

(c) 2y + sin x% = 25 (linear because dependent variable y only to first power)

The general form of an n-th order linear ODE is given by

dny dnfly dZy dy
an(l')w S an,l(x)m + ...+ ag(x)@ ol Gl(ﬁl')% -+ CLO(.’L‘)y = b(l’), (36)

where a;(z) and b(z) are functions of x (could also be constant) and a,(z) # 0.
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e Homogeneity: a linear ODE is homogeneous if the dependent variable appears to
the first power in every term. For example, the harmonic oscillator ODE (3.2) is
homogeneous, because every term contains z(t).

The general n-th order linear ODE (3.6) is homogeneous < b(z) = 0. ]

e Notation: in physics, the dependent and independent variables are often given symbols
which reflect the physical meaning of the variables (e.g. T for temperature, ¢ for
time). But in these lectures, we will usually call the dependent variable y and the
independent variable x (as in (3.1)).

3.1.2 A Simple Example

Defining 0 := T — T as a new dependent variable, we can rewrite Newton’s law of cooling
(3.3) as
df/dt = —ab. (3.7)
The reason is that
g d dT
=g T —Ts)=—
The ODE (3.7) is first order, linear, and homogeneous. One solution of this equation is

0(t) = e,
since df/dt = e=*" - (—a) = —af. However, it is not the only possible solution. A more
general solution is

0(t) = Ae . (3.8)

The arbitrary constant A € R multiplies the whole solution because the original ODE is
homogeneous.

Two important messages:

e The general solution of an ODE contains arbitrary constants (integration con-
stants). We will see that 1st-order ODE’s always lead to one arbitrary constant,
and 2nd-order ODE’s lead to two arbitrary constants.

e For a linear homogeneous ODE, if we have found a solution yo(z) then the
function y(z) = Ayo(z), where A € R is an arbitrary constant, is also a solution.

J

Proof of 2nd statement: We consider a general homogeneous linear ODE, Eq. (3.6) with
b(x) = 0. Let yo(x) be a solution of this ODE,

d"yo
dzxm

+...+ al(x)@ +aog(x)yo = 0. (%)

an () dx
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We now show that y(z) = Ayo(z) also satisfies the ODE,

d™y dy
an(x)% 4+ ...+ CL1<JI)% + ao(l’)y
z)=Ayo(x ar d
OO @) AR 4 (@) AT + ao(2) Ayo
dr d
— A (an(aj) dng + ...+ al(x)% + ao(I)yo)
®) A-0=0.

3.1.3 Fixing the Arbitrary Constants

The ODE itself does not contain the information needed to fix the values of any arbitrary
constants that appear. But in real physics situations, there is always additional information
that fixes them. This additional information is referred to as initial conditions or boundary
conditions. We illustrate this for our previous examples:

e Newton’s law of cooling. The physical quantity 6(7') = T'(t) — T, representing the
temperature difference between the hot body and the surroundings is given by

o(t) = Ae—t,

where A € R denotes the arbitrary integration constant. In this example, we might
know the initial value of 6, i.e. the temperature 7°(0) of the hot body at ¢ = 0, from
which we could calculate 7'(0) — T's = 0(0). From the general solution of the ODE
we know that 6(0) = A, so this fixes the value of A. This is an example of an initial
condition.

e Harmonic oscillator. In this case, the general solution is given by
x(t) = Acos(wt) + Bsin(wt), (3.9)
where w = \/k/m, and A and B are arbitrary constants. Note that the general

solution contains two integration constants because the ODE (3.2) is 2nd-order. Let
us quickly verify that (3.9) indeed satisfies the ODE (3.2),

le_f = —Awsin(wt) + Bw cos(wt) = v(t), (3.10)
d2l' 2 2 . 2
= — Aw? cos(wt) — Bw”sin(wt) = —w”z. (3.11)

Eq. (3.11) is indeed equivalent to (3.2), as required. To fix two arbitrary constants we
need two initial conditions, e.g. the position xy and the velocity vy at t = 0. Plugging
this into the general solution z(¢) (3.9) and the corresponding velocity v(t) = dz/dt
(3.10), we obtain z(0) = A = xy and
U(O):BWZUO<:>B:@.
w
Hence the special solution that satisfies the initial conditions is given by

x(t) = xg cos(wt) + kil sin(wt).
w
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3.2 Separable First-Order ODE’s

There is a large class of first-oder ODE’s that are simple to solve, because they have a
special property called “separability”. To explain separability, take the following example:
we want to solve the equation

dy

—=(1+2%)y. 3.12

—=(1+2")y (3.12)
Formally, we can rearrange this to give

d

& _ (14 2?) dz,

Y

separating the dependent and independent variables. Now integrate both sides:

/idy:/(l—&-xz) dz.

Noting that these are indefinite integrals, we obtain
1
In |y| ::r—i—gxg—i-C,

where C' € R is an arbitrary constant. Exponentiating this equation we obtain

1
ly| = exp <33+ §$3+C> .

From this it follows that

1 1
y = e exp (x + gx?’) = Aexp <x + §m3) , (3.13)
where in the last step we have redefined the integration constant as A := +¢e®. By defini-
tion, this constant can take any positive or negative value. Since y = 0 is a trivial solution
of the ODE (3.12), we can generalise this to A € R. Such a multiplicative integration
constant is expected since the original ODE is homogeneous. We check if (3.13) is indeed
the general solution of (3.12),
dy

1
prt Aexp (x—i— gx?’) (1—}—952) = (1+.Z’2) v,

which agrees with the original ODE.

General rule: Take the original ODE, splitting dy/dz into dy and dz. If we can rear-
range the equation so that dy and all other quantities containing y are on the left and
dx and all quantities containing x are on the right, then the ODE is called separable.
In this case the general solution can be found by integrating the separated equa-
tion. Note that the integrals are indefinite. This is where the arbitrary integration
constant enters.

Warning: One cannot always just pick apart a differential like this. In general it might help
to remember that it is a limit, and that the dy and dx belong together. If the operation
makes sense when you move away from the limit and then move back, its usually ok. If we
were mathematicians, we’d have to prove this formally, of course.
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3.2.1 Worked Examples

(1) Find the general solution y = f(z) of the differential equation

dy .
—Z = ysinzx.
dzx y

Tus OOE is gefow\wu

4—3 = gug dx

WL tu\egl‘&A‘ﬁ— tlv'("’\ Sv
Ja y = 8!'0\:( olx

e e
/Qulal

— cosx + C Ce(&)
Expom“q}v{%.% p
— oSk «C . -Cosx
( 3’ = (-2 = & e

- A e/—wsx (&Mm (v\kr‘\‘/\d"\
Hauwe Aé& Com be_ om Néu

cequ
W e ont <ol bow d <ab {;
ﬂ OYE, ¢ r

% 3 A a‘@fx N gl'lkx - S\‘V\K a—
s v:ziu.i.wci.
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(2) Find the solution of the separable ODE

dy
rT— — Y =
dl‘ y y?

for which y = 1 when z = 2.

We Rk SzPaJ&}rf— Vot fabley
d
IR U0 REN =(1+5) ox

lm\eﬁ{ﬂw‘a, both Sdues -

154 = V(o)
D delgl = xt el +C
EIY’MMHOJ"%,. boMn clolas

ln\ = ef\xl e

= :’) = ié: x e’
=A
Wo  dhede J‘__ ont seldion s«lus}ds
e OOE,

xR rg = w(Aets Are) - x Axe®
= A;vef = :) /

We we Ha kbl coudihon o
dafdimiva A :

1 . A
| = ZAQ e AhEZL
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(3) The two above examples were homogeneous, linear ODE’s, giving rise to a multi-
plicative integration constant. Let’s now solve the non-linear first-order ODE

Y .1 0(3 = YK d.«
= WWJ
= J
We e 4 ond  SoluwHow S’««kc‘{»&s Yo OOFE:

"

[
Fxte e

-{;am %XL +C,)

2 - xf = et (Bhg)
- X Lan® %_xz +c)
= A
s quured .
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3.3 Linear First-Order ODE’s

Previously, I explained how to solve first-order ODE’s in the case where they are separable.

Unfortunately, most first-order ODE’s are not separable. However, many of them can still

be solved. The aim of this section is to explain a completely general method for solving

linear first-order ODE’s. According to Eq. (3.6), the most general form of such an ODE is
dy

a (:1:)% + ag(x)y = b(x).

Dividing by a;(x) we can bring this to the “standard form” of a linear first-order ODE:

Z—i + P(a)y = Qx). (3.14)

P(z) and Q(z) can be complicated functions of z. Note that this linear ODE is inho-
mogeneous unless Q(z) = 0.

3.3.1 ‘Integrating Factor’ Method
The idea is to multiply the ODE (3.14) with an appropriate integrating factor S(x),

S(w)j—i + S(x)P(x)y = S(x)Q(x). (3.15)

If we demand that S(z) satisfies the equation
ds

i P 1
5P, (3.16)
we can rewrite the Lh.s. of (3.15) as
dy B dy dS d
S@) YL+ S@)Pa)y = 5@+ 2y = 15y,

where in the last step we have used the product rule of differentiation. Our ODE (3.15)
then reads

d
— [S(@)y] = S()Q),
and can easily be integrated,
S(2)y = / S(2)O(x)dz + C, (3.17)

with € € R. The integrating factor is determined by Eq. (3.16), which is a separable

first-order ODE,
ds
< = P(z)dz,
After integration this gives

In|S| :/P(;r:)d:r+B.
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with B € R. Exponentiating both sides we obtain
S(z) = el P@dz, (3.18)

Note that we have fixed the integration constant since we just need a special solution of
(3.16). Combining Egs. (3.17) and (3.18), we have found the general solution of the linear
first-order ODE (3.14),

y = (/ S(x)Q(z)dx + C) , where S(z) = el P@d, (3.19)

1
5()

Rather than memorising the formal solution it is better just to remember the basic idea.
Let’s look at the example

dy 1

— + —y=1. 2

-ty (3.20)
We multiply the ODE with the integrating factor S(z),

1
S@) %+ S(a)ty = 5(x) (4

and demand that it satisfies the condition

ds 1

In this case we can write the Lh.s. of (*) as -L[S(z)y]. The ODE for S(z) can be easily
solved by separation of variables,

%:Ci—$:>1n]5|:ln|x\+B:>S(x):Ax (A €R).

Note that we just need a special solution so we can set A = 1. With S(z) = = we can write
(*) as

d

— (zy) = =,

7 (2y)

which after integration gives
1 1 C
vy=-2"4+C=y=—a+ —.
2 2 T
This is the general solution of ODE (3.20).
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3.3.2 Worked Examples
(1) Find the general solution of the linear first-order ODE

== — 2oy = ~.
x

dr

We bigg fa o o g\w&s}m:
ol 2
B 2y -

omd m:;l}nr wi&t:— o~ ‘Moxmfh\a_ xlau&rw $G),

S(\c)a% — S&):D = S(k) _\.3
o dpeake B2 ) Z o
O OOE Huw  (radks
|
%;[ S(xb\ = S(k) X (2)
Ol k) 19\,3 se(;»\koa. a vaadabsley g (1):

)(VJ -

O‘S_S_ = - Zde = fulsl= -2l
= S@" ',}1.
X (2\ 0‘%“ (XLB = .)_}5
= _‘32. = —% ')(-'1 -|—C. CCQR)
3 9 = - r O
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(2) Find the general solution of the linear first-order ODE

d
% + ycosz = sin(2x).

meeb 0D, il ;“W% &),U\N- vy
Q)P+ SEycosx vy = SKIsi(dx)
LA
N o O
a,z(S("‘:)) = SR)sluy (2

d s{w" Slrﬁk‘
- — - u\d x
@ Lle D] e’ sulx)

= M 4 = YA& egw‘sfw( 2\ +C
= Zyd* e cos v Shux v

= 3
cZa. 2043 €7  +C

A% = cosxd « 2
- 2l ety = Yz e
= Z,C?()e{‘t-c
=2_({s£a~x~\)e}&&’ +C

= JL&\ = 2(Sx-1) ¥ ¢ e S
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3.4 Perfect Differential Method

If a first-order ODE is non-linear (so it contains terms like y?, yy/,...), the systematic
method discussed in Sec. 3.3 cannot be used. If the ODE is also non-separable, then the
only realistic hope left is the perfect-differential method, also known as the exact-differential
method. If the ODE contains dy/dx only to the first power, then it can always be written
as

d
Qa.y) g + Pla,y) =0, (3.21)
or equivalently as
P(z,y)dz + Q(x,y)dy = 0. (3.22)

Here P and @ are functions of  and y. Now suppose that P(z,y) and Q(x,y) are the
partial differentials with respect to x and y of some other function f(x,y),

0 _ 9

P = = . 2
(@y) =35, Q) o (3.23)
In this case, the L.h.s. of Eq. (3.22) can be written as the total differential of f,
df = % dr + g—gdy = P(x,y)dx + Q(x,y)dy = 0. (3.24)
Since df = 0, the function f has to be constant,
f(z,y) =C, (3.25)

where C' € R is an arbitrary constant. This represents the general solution to the original
ODE (3.22). Note that Eq. (3.25) does not contain derivatives. It implicitly defines the
functions y(x) that satisfy the original ODE. However, it is not always possible to rearrange
the implicit expression (3.25) to express y as a function of z (to solve for y).

In this method, we need to test whether the given P(x,y) and Q(z,y) can be represented
as 0f /Ox and Of /Jy. A mecessary condition for this to be true is

or _of _9f _9Q
oy  Oydxr Oxdy Oz’

It can be shown that 0P/0y = 0Q/0x is also a sufficient condition for P and @ to be
representable in this way.

(3.26)

To see how this works in practice, say we want to find the general solution of the non-linear,
non-seperable, first-order ODE

dy
207 y—= + 2xy” = 1. 3.27
2y 2ay (3.27)
This ODE can be expressed in the standard form (3.22) with
P(z,y) =2y’ =1, Q(z,y) = 227y.
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We first need to find out if the ODE can be solved by the perfect differential method.
We apply the standard test: since 0P/dy = 4xy = 0Q/0z, we know that there exists a
function f(z,y) such that P(z,y) = df/0x and Q(x,y) = df /0y,

of

of
L= =2xy*—1, IL == =22%.
Integrating the first equation, we obtain
fag) = [@ay? = Do =7 — 2+ g(0), (3.28)

where g(y) is the “integration constant”. Note that y is held constant in the above integra-
tion, so g can be function of y. Or to phrase this differently, taking the partial derivative
with respect to x in Eq. I, any function of y is treated as a constant and drops out. Likewise,

from integration of II, we obtain
flz,y) = /2x2y dy = 2*y* + h(z). (3.29)

We have to determine the functions g(y) and h(z) such that Eqgs. (3.28) and (3.29) give us
the same expression for f(x,y). This is the case for h(z) = —z and g(y) = 0, corresponding
to f(z,y) = 2*y* — x. The general solution of ODE (3.26) is given by f(x,y) = const,

2?2yt —x=C, (3.30)

with C' € R. Contours of points (z,y) that satisfy this equation for different values of
the integration constant C' are shown below. Note that we can solve Eq. (3.30) for y,

y =41/ + C/z2.
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3.4.1 Worked Example
Show that the ODE

2

d
(Qxy + e_x2) % = 2zye ™ —y?

can be written as an exact differential and find the general solution in an implicit form.

We Pv‘vcl' \oﬂud. Hs 00 (who the  shandad _paew.:
ML) dx + (ij +e~xl)dj =0, ®

=- PC\‘U\-)) — &(gl.j)
ConMis OOF b wih as aw grad- d»ﬁ—c&l\‘alq
T

g -X o8
= 2a — - /
,a:) 9 Zre = Bx afg !

A Trere eishs a QmJ':aw _Q(gl:)‘) nga-na

(%%Q = ?Cva M‘L % = Q(\&j) ou«!L
e ?«Mjbhwou o} &) s Slew
.Q(Flo\=¢ Wil Ce®.  Lolls de‘ia;'m_
i B .

T. g\% T DZ— 7,\(3 6:—?; =3 gf('\f(a')‘: X?LQ—OEXL'Fa(’J)

T, %%: 'sz et = Q/@ﬁ«))z X?lbnf:)c « W

T od T ne aussleat § Wd=9G)=0

annd p((ﬁa) 1%3?“:&?&"" .

- T XV“"" So L”Q‘Q} fs a‘m- |:7

Xj’?\\ﬁ@:*:c . CeR.
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3.5 Second-Order Linear ODE’s with Constant Coef-
ficients

Second-order ODE’s are those containing the second derivative d*y/dx? of the dependent
variable. The only kind of second-order ODE’s considered here are linear ODE’s, in which
the coefficients of d*y/dxz?, dy/dz and y are all constant,

d? d
dz—kald—y—kaoy—b( x),

where b(z) is a function of x only. We will assume that the constants as, a; and a are real
numbers and that as # 0 (otherwise the ODE would be first order). Dividing by as, the
ODE can always be brought to the standard form

¢y dy

) +pd + qy = f(z). (3.31)

3.5.1 Homogeneous ODE’s
We start by the discussing the special case of homogeneous ODE’s, for which f(z) = 0,

2y dy
d?“’

. +qy =0. (3.32)

Such ODE’s are solved by functions of the form

provided that the constant k is chosen appropriately. To see this we first calculate the

first and second derivatives of the function (3.33),
dy k d*y 2 k

=ke™, — =k%e".
dx T da? ‘

Inserting the ansatz (3.33) into the ODE (3.32) we obtain

0= d2+d
dzz " Par

Our ansatz satisfies the ODE if the constant k is a solution of the quadratic equation

+qy—]€2kx+pk}6 +qekm:(k2+pk+q)€k

k* +pk +q=0. (3.34)

In general, there are two roots (solutions) of this equation, given by

2

b p
=T 44 /5 = .
I{ILQ B 1 q (3 35)
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We have found two specific solutions y; = €% and 3, = €*?*. How to construct the
general solution of the homogeneous ODE (3.32)7 In general, if two functions y;(x) and
yo(x) satisfy (3.32), then the linear combination y(x) = Ayi(x) + Bys(x) is also a solution
(note that this is true for any linear homogeneous ODE):

Py dy _ Ad2y1

d?y dy dy
dpz TP T 2ﬂo(A—lJrB—Z

= A— +B—= A B
dx dx? * dx? dx dm) Ta(Ay+ By

d? d d? d
4 <ﬁ ) +qy1) B (_y L +qy2) _o.

dz? dx dz? dx
=0 =0
Therefore, the function
y = AeM? + Bet2?, (3.36)

with k1, ko given in Eq. (3.35) is a solution of the homogeneous equation (3.32). This
is the general solution since it contains two integration constants A, B, as required for a
second-order ODE.

Let us now consider three possible types of roots k; and ks:

e Real roots:
2
p
——qg>0
4 q

In this case ki, ke € R, k; # ko, and the general solution (3.36) is the sum of two
exponential functions. The function y is real if A, B € R.

e Complex roots:

2
p
— —q<0
4 q

In this case we can write

k172 =a* 26, (337)

with « = —p/2 € R and = \/q — p?/4 € R. The general solution of the homoge-
neous ODE is given by

y = A" 4 Beker
_ Ae(a+iﬁ)z + Be(a—iﬂ)z
— e (Aezﬁm + Be—iﬁm)
= e [(A+ B)cos(fx) + i(A — B)sin(px)],

where, in the last step, we have used Euler’s Theorem e** = cos z + isinz. We can
always redefine the integration constants, C':= A+ B and D :=i(A — B), yielding

y = e [Ccos(fz) + Dsin(fz)]. (C,D € R) (3.38)
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e Degenerate roots:

2
p

Y _0=0
4 q

The two roots of Eq. (3.35) are identical, ky = ko = k = —p/2. While y; = e is
a solution of the ODE (3.32), y = Ae*® cannot be the most general solution since
it only contains one arbitrary constant. We show that y, = ze*® is an independent
second solution,

2 d
kx kx kx kx kx
— — = — (e kxe e kxe zTe
T3 T tay dx( - ) +p (" + ) +q

= ke™ 4 ke 4 B2zt + pet 4 phaet™ 4 quet®

= 2<k+g>ek”‘+(k2+pk+q)xekx

2
= (—% + q) ref = 0.
—_—

=0

bl
Il
|
Wl

Hence the general solution in the degenerate case (sometimes referred to as “marginal
case”) is
y = Ae*” + Bxe*”. (A, B € R) (3.39)
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3.5.2 Worked Examples

Find the general solutions of the following homogeneous second-order differential equations

dy dzy dy  ,dy

@)WL ‘le' waa,-kms 0HE hJ'O "M’L w,’_}lw_
ﬁ- zolx"'g;:) =0

awd  insedb Yo omesbe

p Q/
Ba ar** g“L ‘q:ﬁ-—i =

=\ i'ct-k—- =0

= = - _2 . S+
“te- .Jb F3 F -«

We

-—

P.wt o redl yeols Iy= -1
od b, =-3, T WJ&Ww ol
Ho OOE s

D A" + Befk wik ABeR.
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ngﬂ soluloL 4, ODE s
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= A+B) es*  wh AgeR.
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D k= ~2Eqg-5 = -2sl
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3.5.3 Inhomogeneous ODE’s

We now return to the original inhomogeneous ODE (3.31),

d> d
d—xz +pﬁ +aqy = f(z).

The first step is to obtain a general solution of the corresponding homogeneous ODE
(obtained by setting f(x) = 0), using the methods discussed in the previous section. This
solution is called the complementary function ycr(z). Let us suppose that somehow we can
find a particular solution of the inhomogeneous ODE (3.31). Such a solution is called the

particular integral ypr(x). Then the sum

y(z) = yor () + ye1(7) (3.40)

is the general solution of the inhomogeneous ODE since

dy | dy Pyor | dycr Pypr | dypr
I ‘HU% taqy = ( 12 +p Iz +quF) + ( dn2 +p% +C]?/P1> = f(2),

;,O :}E:Jc)

J/ (.

and ycr(r) contains two arbitrary integration constants. This means that the whole prob-
lem is solved if we have a way of finding ypr(x). Unfortunately, this is usually down to a
matter of trial and error.

In these lectures, we will only describe how to find a particular integral ypi(x) for some
important and common types of functions f(x).

e Polynomials. If f(x) is an nth degree polynomial,
flz)=Ao+ A1z + ...+ A2”, (3.41)
then there is always a particular integral of the form
yp1(z) = oo + oz + ... + apz™. (3.42)

To determine the coefficients ay, ..., «a, for any given p,q, Ag,... A, we insert the
ansatz (3.41) into the inhomogeneous ODE,

Ao+ Az + ...+ A x" = 205 +6asz + ...+ ayn(n — 1)z" 3
+p (a1 + 2001 + ...+ nanxnfl)
+q (o + a1z + ...+ aa™)
= (200 + poy + qag) + (6as + 2pas + qon ) @
+... .+ qaz".

For the two polynomials to be equal, the coefficients have to be equal, leading to
(n+ 1) coupled linear equations,

200 + par +qag = A
b6as + 2pas + qa; = Ay

qay, = An

Solving this set of equations we obtain ay, ..., a,.
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e Exponentials. If f(x) is an exponential function,
f(z) = Age®?, (3.43)

then the particular integral is
yp1(z) = ape™”, (3.44)

where o is a constant related to p, ¢, Ag, and w. To find a formula for «g, we insert
the ansatz (3.44) into the inhomogeneous ODE,

Py dy
A wr . I i
0€ 12 +p I +qy
= aw?e”” + pogwe® + qope”

= ap (w2 + pw + q) €. (3.45)

From this it follows that 4
= —————. (3.46)

w? 4+ pw + ¢

Note that if w is equal to one of the roots k; » of the quadratic equation k*+pk+q = 0,
then the bracket in Eq. (3.45) is zero and our ansatz does not solve the inhomogeneous
ODE. In this case the particular integral has the form

ypr(z) = Bre®®. (3.47)
To check this and to determine B, we insert the ansatz into the ODE,

Py dy
Ape?® = 2 -J
o€ T3 TPt ay

d
= (d_ + p) (Be*® + Bwre*®) + qBxe®®
x

= 2Bwe“® + Bw?ze*” + pBe“® + pBwxe*® + qBxe*”
= Be"" (2w + w’z +p + pwr + qx)
= Be“"[(2w +p) + (W + pw + q) 7]

~—_——

=0

If 2w + p # 0, then our ansatz (3.47) solves the inhomogeneous ODE for B =
Ayp/(2w + p). In the very special case that the roots k;» are degenerate and equal
to w, we have k; = ks = —p/2 = w. In this case the particular integral is given by
yp1(r) = Cz?e¥® with C' = Ay /2.

e Cosine and sine functions. If f(x) is a periodic function of the form
f(z) = Apcos(wx) + A; sin(wz), (3.48)
the the particular integral is

yp1(z) = o cos(wx) + oy sin(wz), (3.49)
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with coefficients g and «; expressible in terms of p, ¢, Ag, A; and w. To see this,
note that

d

% = —owsin(wr) + aqw cos(wz),
x

d2

digl = —aow’cos(wr) — aqw’ sin(wz).

Inserting into the inhomogeneous ODE, we obtain

Ap cos(wz) + Aysin(wz) = (—aw® + pagw + qay) cos(wz)

+ (—a1w? = pagw + gay ) sin(wz).
Requiring the cosine and sine terms to be equal separately, we have

(q — WQ)OJO +pwa; = Ay,
—pwag + (g —wiay = A

These are simultaneous linear equations which can be solved to obtain g and a.
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3.5.4 Worked Examples

Find the solutions of the inhomogeneous second-order ODE’s

Py dy
@—6@+8y—f($)a

with
(a) f(x)=16x+12, (b) f(z)=>5cosz,
for which y = 1 and dy/dx = 0 at = 0.
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et — éte}“’r%e}“—-o =) ILL—GQ+8’=0
= ke = 34 38 =341 e 2 ad ket
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@) (—}_EN Wa_ ‘)«'A‘OAN’ fn ;e ke o
T Y 0) = o4 ko lhsu'w’g AN

-uw. ML.G‘»AT‘“—”“‘ 0%1

’éo’(‘ + ‘&(domz,x) = by +
RQeey = |6
i %o{o—é&' -\ =3 | 3%

— 3{1:()4 = 2Zx+%,
o= g, (49,00 = Ae"+Re™ 2543
Use_ ?ufHal coudubous  do ddesmina A,K:

%’(x‘x:o = 2A+HB +2 =0 & A28\ (T)
) = A+84+3 =\ e AtB=-2(@

I-L - Aﬁﬂs A Y= ~3e e v s _—
U =-
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