
Chapter 3

Ordinary Di↵erential Equations

3.1 Introduction and Simple Examples

Di↵erential equations are a group of equations that contain derivatives, e.g.

dy

dx
+ 2xy2 = 0. (3.1)

This equation is sometimes written as y0 + 2xy2 = 0. The general solution of a di↵erential
equation is given by the set of all functions that satisfy the equation. E.g., all functions

y(x) =
1

x2 + c
,

with c 2 R an arbitrary constant are solutions to the di↵erential equation (3.1),

l.h.s =
dy

dx
+ 2xy2 = � 1

(x2 + c)2
· 2x+ 2x · 1

(x2 + c)2
= 0 = r.h.s.

Note that “l.h.s.” and “r.h.s.” stand for left- and right-hand side, respectively. Di↵erential
equations occur everywhere in physics. Examples include:

• Simple harmonic oscillator: displacement x of a particle gives rise to a restoring force
F = �kx, where k > 0 is the spring constant.

Figure 3.1: An example of a harmonic oscillator.
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According to Newton’s law of motion: Force = mass ⇥ acceleration = m dv/dt =
m d

2
x/dt

2, so that

m
d
2
x

dt2
= �kx. (3.2)

• Newton’s law of cooling:

Figure 3.2: A hot cup of tea with temperature T > TS.

This law states that the rate at which a hot body cools is proportional to the di↵erence
T � TS between the temperature T of the body and the temperature TS of the
surroundings. Expressed as an equation, this says:

dT/dt = �↵ (T � TS) , (3.3)

where ↵ is a positive constant.

• Quantum mechanics: in order to determine the allowed energies E of a quantum
system, we have to solve the stationary Schrödinger equation

� ~2
2m

d
2
 

dx2
+ V (x) (x) = E (x). (3.4)

• Wave equation: in vacuum, the change of the electric field E(x, t) as a function of
position x and time t is described by the wave equation

@
2
E

@t2
= c

2@
2
E

@x2
. (3.5)

Figure 3.3: An electromagnetic wave propagating with velocity c. It is easy to check that
E(x, t) = f(x � ct) with f an arbitrary function is a solution of the wave equation.
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These are all di↵erential equations, because they contain derivatives d
2
x/dt

2, dT/dt,
d
2
 /dx

2, @2E/@t
2, and @

2
E/@x

2. We write down a di↵erential equation (usually based
upon some assumptions about a physics system) and then try to find the functions that
satisfy the equation. In physics, once we have such a function, we can use it to predict
other behaviours of the system. The aim of this and the next few lectures is to explain
how to find solutions of di↵erential equations.

3.1.1 Terminology

We need to define some terminology that will often be used:

• Independent and dependent variables: For the harmonic oscillator, the displacement
x(t) depends on time t, so we call t the independent variable and x the dependent
variable. The idea is to find the function x(t) expressing how the dependent variable
depends on the independent variable. Similarly, for the cooling body, time t is the
independent variable and T is the dependent variable. For the wave equation the
electric field E(x, t) is the dependent variable, x and t are independent variables.

• Ordinary di↵erential equations (ODE’s): these are equations with only one indepen-
dent variable, so that we only have ordinary di↵erentials (e.g. d

2
x/dt

2), not partial
di↵erentials. Examples (3.1), (3.2), (3.3), and (3.4) are all ODE’s. The wave equation
(3.5) is a partial di↵erential equation. In this course we will only discuss ODE’s.

• Order of di↵erential equation: this refers to the maximum number of times that the
dependent variable is di↵erentiated in the equation. In examples (3.1) and (3.3)
we only have first derivatives, so these are first-order di↵erential equations. The
harmonic oscillator (3.2) is an example of a second-order di↵erential equation since
x(t) is di↵erentiated twice (d2x/dt2).

• Linearity: a di↵erential equation is linear if the dependent variable occurs at most to
the first power. Examples include (3.2), (3.3), and (3.4). Example (3.1) is a non-
linear di↵erential equation since the dependent variable y is squared. Some other
examples:

(a) dy

dx
= cot y (not linear because of term cot y)

(b) y
dy

dx
= 1 (not linear because of product yy0)

(c) x
2
y + sin x d

2
y

dx2 = x
5 (linear because dependent variable y only to first power)

The general form of an n-th order linear ODE is given by

an(x)
d
n
y

dxn
+ an�1(x)

d
n�1

y

dxn�1
+ . . .+ a2(x)

d
2
y

dx2
+ a1(x)

dy

dx
+ a0(x)y = b(x), (3.6)

where ai(x) and b(x) are functions of x (could also be constant) and an(x) 6= 0.
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• Homogeneity: a linear ODE is homogeneous if the dependent variable appears to
the first power in every term. For example, the harmonic oscillator ODE (3.2) is
homogeneous, because every term contains x(t).

The general n-th order linear ODE (3.6) is homogeneous , b(x) ⌘ 0.

• Notation: in physics, the dependent and independent variables are often given symbols
which reflect the physical meaning of the variables (e.g. T for temperature, t for
time). But in these lectures, we will usually call the dependent variable y and the
independent variable x (as in (3.1)).

3.1.2 A Simple Example

Defining ✓ := T � TS as a new dependent variable, we can rewrite Newton’s law of cooling
(3.3) as

d✓/dt = �↵✓. (3.7)

The reason is that
d✓

dt
=

d

dt
(T � TS) =

dT

dt
.

The ODE (3.7) is first order, linear, and homogeneous. One solution of this equation is

✓(t) = e
�↵t

,

since d✓/dt = e
�↵t · (�↵) = �↵✓. However, it is not the only possible solution. A more

general solution is
✓(t) = Ae

�↵t
. (3.8)

The arbitrary constant A 2 R multiplies the whole solution because the original ODE is
homogeneous.

Two important messages:

• The general solution of an ODE contains arbitrary constants (integration con-
stants). We will see that 1st-order ODE’s always lead to one arbitrary constant,
and 2nd-order ODE’s lead to two arbitrary constants.

• For a linear homogeneous ODE, if we have found a solution y0(x) then the
function y(x) = Ay0(x), where A 2 R is an arbitrary constant, is also a solution.

Proof of 2nd statement: We consider a general homogeneous linear ODE, Eq. (3.6) with
b(x) ⌘ 0. Let y0(x) be a solution of this ODE,

an(x)
d
n
y0

dxn
+ . . .+ a1(x)

dy0

dx
+ a0(x)y0 = 0. (⇤)
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We now show that y(x) = Ay0(x) also satisfies the ODE,

an(x)
d
n
y

dxn
+ . . .+ a1(x)

dy

dx
+ a0(x)y

y(x)=Ay0(x)
= an(x)A

d
n
y0

dxn
+ . . .+ a1(x)A

dy0

dx
+ a0(x)Ay0

= A

✓
an(x)

d
n
y0

dxn
+ . . .+ a1(x)

dy0

dx
+ a0(x)y0

◆

(⇤)
= A · 0 = 0.

3.1.3 Fixing the Arbitrary Constants

The ODE itself does not contain the information needed to fix the values of any arbitrary
constants that appear. But in real physics situations, there is always additional information
that fixes them. This additional information is referred to as initial conditions or boundary
conditions. We illustrate this for our previous examples:

• Newton’s law of cooling. The physical quantity ✓(T ) = T (t) � TS, representing the
temperature di↵erence between the hot body and the surroundings is given by

✓(t) = Ae
�↵t

,

where A 2 R denotes the arbitrary integration constant. In this example, we might
know the initial value of ✓, i.e. the temperature T (0) of the hot body at t = 0, from
which we could calculate T (0) � TS = ✓(0). From the general solution of the ODE
we know that ✓(0) = A, so this fixes the value of A. This is an example of an initial
condition.

• Harmonic oscillator. In this case, the general solution is given by

x(t) = A cos(!t) + B sin(!t), (3.9)

where ! =
p
k/m, and A and B are arbitrary constants. Note that the general

solution contains two integration constants because the ODE (3.2) is 2nd-order. Let
us quickly verify that (3.9) indeed satisfies the ODE (3.2),

dx

dt
= �A! sin(!t) + B! cos(!t) = v(t), (3.10)

d
2
x

dt2
= �A!

2 cos(!t) � B!
2 sin(!t) = �!2

x. (3.11)

Eq. (3.11) is indeed equivalent to (3.2), as required. To fix two arbitrary constants we
need two initial conditions, e.g. the position x0 and the velocity v0 at t = 0. Plugging
this into the general solution x(t) (3.9) and the corresponding velocity v(t) = dx/dt

(3.10), we obtain x(0) = A = x0 and

v(0) = B! = v0 () B =
v0

!
.

Hence the special solution that satisfies the initial conditions is given by

x(t) = x0 cos(!t) +
v0

!
sin(!t).
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3.2 Separable First-Order ODE’s

There is a large class of first-oder ODE’s that are simple to solve, because they have a
special property called “separability”. To explain separability, take the following example:
we want to solve the equation

dy

dx
=

�
1 + x

2
�
y. (3.12)

Formally, we can rearrange this to give

dy

y
=

�
1 + x

2
�
dx,

separating the dependent and independent variables. Now integrate both sides:
Z

1

y
dy =

Z �
1 + x

2
�
dx.

Noting that these are indefinite integrals, we obtain

ln |y| = x+
1

3
x
3 + C,

where C 2 R is an arbitrary constant. Exponentiating this equation we obtain

|y| = exp

✓
x+

1

3
x
3 + C

◆
.

From this it follows that

y = ±e
C exp

✓
x+

1

3
x
3

◆
= A exp

✓
x+

1

3
x
3

◆
, (3.13)

where in the last step we have redefined the integration constant as A := ±e
C . By defini-

tion, this constant can take any positive or negative value. Since y ⌘ 0 is a trivial solution
of the ODE (3.12), we can generalise this to A 2 R. Such a multiplicative integration
constant is expected since the original ODE is homogeneous. We check if (3.13) is indeed
the general solution of (3.12),

dy

dx
= A exp

✓
x+

1

3
x
3

◆ �
1 + x

2
�
=

�
1 + x

2
�
y,

which agrees with the original ODE.

General rule: Take the original ODE, splitting dy/dx into dy and dx. If we can rear-
range the equation so that dy and all other quantities containing y are on the left and
dx and all quantities containing x are on the right, then the ODE is called separable.
In this case the general solution can be found by integrating the separated equa-
tion. Note that the integrals are indefinite. This is where the arbitrary integration
constant enters.

Warning: One cannot always just pick apart a di↵erential like this. In general it might help
to remember that it is a limit, and that the dy and dx belong together. If the operation
makes sense when you move away from the limit and then move back, its usually ok. If we
were mathematicians, we’d have to prove this formally, of course.
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3.2.1 Worked Examples

(1) Find the general solution y = f(x) of the di↵erential equation

dy

dx
= y sin x.
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(2) Find the solution of the separable ODE

x
dy

dx
� xy = y,

for which y = 1 when x = 2.
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(3) The two above examples were homogeneous, linear ODE’s, giving rise to a multi-
plicative integration constant. Let’s now solve the non-linear first-order ODE

dy

dx
� xy

2 = x.
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3.3 Linear First-Order ODE’s

Previously, I explained how to solve first-order ODE’s in the case where they are separable.
Unfortunately, most first-order ODE’s are not separable. However, many of them can still
be solved. The aim of this section is to explain a completely general method for solving
linear first-order ODE’s. According to Eq. (3.6), the most general form of such an ODE is

a1(x)
dy

dx
+ a0(x)y = b(x).

Dividing by a1(x) we can bring this to the “standard form” of a linear first-order ODE:

dy

dx
+ P (x)y = Q(x). (3.14)

P (x) and Q(x) can be complicated functions of x. Note that this linear ODE is inho-
mogeneous unless Q(x) ⌘ 0.

3.3.1 ‘Integrating Factor’ Method

The idea is to multiply the ODE (3.14) with an appropriate integrating factor S(x),

S(x)
dy

dx
+ S(x)P (x)y = S(x)Q(x). (3.15)

If we demand that S(x) satisfies the equation

dS

dx
= S(x)P (x), (3.16)

we can rewrite the l.h.s. of (3.15) as

S(x)
dy

dx
+ S(x)P (x)y = S(x)

dy

dx
+

dS

dx
y =

d

dx
[S(x)y] ,

where in the last step we have used the product rule of di↵erentiation. Our ODE (3.15)
then reads

d

dx
[S(x)y] = S(x)Q(x),

and can easily be integrated,

S(x)y =

Z
S(x)Q(x)dx+ C, (3.17)

with C 2 R. The integrating factor is determined by Eq. (3.16), which is a separable
first-order ODE,

dS

S
= P (x)dx,

After integration this gives

ln |S| =
Z

P (x)dx+B.
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with B 2 R. Exponentiating both sides we obtain

S(x) = e

R
P (x)dx

. (3.18)

Note that we have fixed the integration constant since we just need a special solution of
(3.16). Combining Eqs. (3.17) and (3.18), we have found the general solution of the linear
first-order ODE (3.14),

y =
1

S(x)

✓Z
S(x)Q(x)dx+ C

◆
, where S(x) = e

R
P (x)dx

. (3.19)

Rather than memorising the formal solution it is better just to remember the basic idea.
Let’s look at the example

dy

dx
+

1

x
y = 1. (3.20)

We multiply the ODE with the integrating factor S(x),

S(x)
dy

dx
+ S(x)

1

x
y = S(x) (⇤)

and demand that it satisfies the condition

dS

dx
= S(x)

1

x
.

In this case we can write the l.h.s. of (*) as d

dx
[S(x)y]. The ODE for S(x) can be easily

solved by separation of variables,

dS

S
=

dx

x
=) ln |S| = ln |x| +B =) S(x) = Ax (A 2 R).

Note that we just need a special solution so we can set A = 1. With S(x) = x we can write
(*) as

d

dx
(xy) = x,

which after integration gives

xy =
1

2
x
2 + C =) y =

1

2
x+

C

x
.

This is the general solution of ODE (3.20).
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3.3.2 Worked Examples

(1) Find the general solution of the linear first-order ODE

x
2 dy

dx
� 2xy =

1

x
.

 

We bring the ODE to standard form
dd Ey 3

and multiply with an integrating factor sad
sexyday SHE y Skates
and demand dada Skc c
Our ODE then reads

dafsexly Sixx e

Obtain Sly by separation of variables of
dsg Eda butsI 2h41

SE Te
na et da Sza 5

2 x
4 C C CERI

ya t Ck

x'dat 2xg x 24,3 24 1 243
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(2) Find the general solution of the linear first-order ODE

dy

dx
+ y cos x = sin(2x).

 

Multiply ODR with integrating factor six
SLx dfa t Skycosx y SCHstuck

DI asdi
da sixty SKI since CH

dis a Cosi DX bist Saux

Sexy esinx

r es daf estoy esh siuC2x

esh g folk e
u

siuC2xl te

Zfdx Cath cos x Saux to

2fd3 e Z t C
sink u v

DZ cosxd x

21 Eez fore J t c
ZEE c e t C

2Lsinx 1 ester c

glad 2 six c C e
sin x
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3.4 Perfect Di↵erential Method

If a first-order ODE is non-linear (so it contains terms like y
2, yy0, . . .), the systematic

method discussed in Sec. 3.3 cannot be used. If the ODE is also non-separable, then the
only realistic hope left is the perfect-di↵erential method, also known as the exact-di↵erential
method. If the ODE contains dy/dx only to the first power, then it can always be written
as

Q(x, y)
dy

dx
+ P (x, y) = 0, (3.21)

or equivalently as

P (x, y)dx+Q(x, y)dy = 0. (3.22)

Here P and Q are functions of x and y. Now suppose that P (x, y) and Q(x, y) are the
partial di↵erentials with respect to x and y of some other function f(x, y),

P (x, y) =
@f

@x
, Q(x, y) =

@f

@y
. (3.23)

In this case, the l.h.s. of Eq. (3.22) can be written as the total di↵erential of f ,

df =
@f

@x
dx+

@f

@y
dy = P (x, y)dx+Q(x, y)dy = 0. (3.24)

Since df = 0, the function f has to be constant,

f(x, y) = C, (3.25)

where C 2 R is an arbitrary constant. This represents the general solution to the original
ODE (3.22). Note that Eq. (3.25) does not contain derivatives. It implicitly defines the
functions y(x) that satisfy the original ODE. However, it is not always possible to rearrange
the implicit expression (3.25) to express y as a function of x (to solve for y).

In this method, we need to test whether the given P (x, y) and Q(x, y) can be represented
as @f/@x and @f/@y. A necessary condition for this to be true is

@P

@y
=

@
2
f

@y@x
=

@
2
f

@x@y
=
@Q

@x
. (3.26)

It can be shown that @P/@y = @Q/@x is also a su�cient condition for P and Q to be
representable in this way.

To see how this works in practice, say we want to find the general solution of the non-linear,
non-seperable, first-order ODE

2x2
y
dy

dx
+ 2xy2 = 1. (3.27)

This ODE can be expressed in the standard form (3.22) with

P (x, y) = 2xy2 � 1, Q(x, y) = 2x2
y.
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We first need to find out if the ODE can be solved by the perfect di↵erential method.
We apply the standard test: since @P/@y = 4xy = @Q/@x, we know that there exists a
function f(x, y) such that P (x, y) = @f/@x and Q(x, y) = @f/@y,

I.
@f

@x
= 2xy2 � 1, II.

@f

@y
= 2x2

y.

Integrating the first equation, we obtain

f(x, y) =

Z
(2xy2 � 1)dx = x

2
y
2 � x+ g(y), (3.28)

where g(y) is the “integration constant”. Note that y is held constant in the above integra-
tion, so g can be function of y. Or to phrase this di↵erently, taking the partial derivative
with respect to x in Eq. I, any function of y is treated as a constant and drops out. Likewise,
from integration of II, we obtain

f(x, y) =

Z
2x2

y dy = x
2
y
2 + h(x). (3.29)

We have to determine the functions g(y) and h(x) such that Eqs. (3.28) and (3.29) give us
the same expression for f(x, y). This is the case for h(x) = �x and g(y) = 0, corresponding
to f(x, y) = x

2
y
2 � x. The general solution of ODE (3.26) is given by f(x, y) = const,

x
2
y
2 � x = C, (3.30)

with C 2 R. Contours of points (x, y) that satisfy this equation for di↵erent values of
the integration constant C are shown below. Note that we can solve Eq. (3.30) for y,
y = ±

p
1/x+ C/x2.

-1 0 1 2 3 4 5 6
-4

-2

0

2

4

x

y C = �1

C = 0

C = 1
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3.4.1 Worked Example

Show that the ODE ⇣
2xy + e

�x
2
⌘
dy

dx
= 2xye�x

2 � y
2

can be written as an exact di↵erential and find the general solution in an implicit form.
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3.5 Second-Order Linear ODE’s with Constant Coef-
ficients

Second-order ODE’s are those containing the second derivative d
2
y/dx

2 of the dependent
variable. The only kind of second-order ODE’s considered here are linear ODE’s, in which
the coe�cients of d2y/dx2, dy/dx and y are all constant,

a2
d
2
y

dx2
+ a1

dy

dx
+ a0y = b(x),

where b(x) is a function of x only. We will assume that the constants a2, a1 and a0 are real
numbers and that a2 6= 0 (otherwise the ODE would be first order). Dividing by a2, the
ODE can always be brought to the standard form

d
2
y

dx2
+ p

dy

dx
+ qy = f(x). (3.31)

3.5.1 Homogeneous ODE’s

We start by the discussing the special case of homogeneous ODE’s, for which f(x) = 0,

d
2
y

dx2
+ p

dy

dx
+ qy = 0. (3.32)

Such ODE’s are solved by functions of the form

y = e
kx
, (3.33)

provided that the constant k is chosen appropriately. To see this we first calculate the
first and second derivatives of the function (3.33),

dy

dx
= ke

kx
,

d
2
y

dx2
= k

2
e
kx
.

Inserting the ansatz (3.33) into the ODE (3.32) we obtain

0 =
d
2
y

dx2
+ p

dy

dx
+ qy = k

2
e
kx + pke

kx + qe
kx =

�
k
2 + pk + q

�
e
kx
.

Our ansatz satisfies the ODE if the constant k is a solution of the quadratic equation

k
2 + pk + q = 0. (3.34)

In general, there are two roots (solutions) of this equation, given by

k1,2 = �p

2
±

r
p2

4
� q (3.35)
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We have found two specific solutions y1 = e
k1x and y2 = e

k2x. How to construct the
general solution of the homogeneous ODE (3.32)? In general, if two functions y1(x) and
y2(x) satisfy (3.32), then the linear combination y(x) = Ay1(x) +By2(x) is also a solution
(note that this is true for any linear homogeneous ODE):

d
2
y

dx2
+ p

dy

dx
+ qy = A

d
2
y1

dx2
+B

d
2
y2

dx2
+ p

✓
A
dy1

dx
+B

dy2

dx

◆
+ q (Ay1 +By2)

= A

✓
d
2
y1

dx2
+ p

dy1

dx
+ qy1

◆

| {z }
=0

+B

✓
d
2
y2

dx2
+ p

dy2

dx
+ qy2

◆

| {z }
=0

= 0.

Therefore, the function

y = Ae
k1x +Be

k2x, (3.36)

with k1, k2 given in Eq. (3.35) is a solution of the homogeneous equation (3.32). This
is the general solution since it contains two integration constants A, B, as required for a
second-order ODE.

Let us now consider three possible types of roots k1 and k2:

• Real roots:
p
2

4
� q > 0

In this case k1, k2 2 R, k1 6= k2, and the general solution (3.36) is the sum of two
exponential functions. The function y is real if A,B 2 R.

• Complex roots:
p
2

4
� q < 0

In this case we can write
k1,2 = ↵± i�, (3.37)

with ↵ = �p/2 2 R and � =
p
q � p2/4 2 R. The general solution of the homoge-

neous ODE is given by

y = Ae
k1x +Be

k2x

= Ae
(↵+i�)x +Be

(↵�i�)x

= e
↵x

�
Ae

i�x +Be
�i�x

�

= e
↵x [(A+B) cos(�x) + i(A � B) sin(�x)] ,

where, in the last step, we have used Euler’s Theorem e
iz = cos z + i sin z. We can

always redefine the integration constants, C := A+B and D := i(A � B), yielding

y = e
↵x [C cos(�x) +D sin(�x)] . (C,D 2 R) (3.38)

68



• Degenerate roots:
p
2

4
� q = 0

The two roots of Eq. (3.35) are identical, k1 = k2 = k = �p/2. While y1 = e
kx is

a solution of the ODE (3.32), y = Ae
kx cannot be the most general solution since

it only contains one arbitrary constant. We show that y2 = xe
kx is an independent

second solution,

d
2
y2

dx2
+ p

dy2

dx
+ qy2 =

d

dx

�
e
kx + kxe

kx
�
+ p

�
e
kx + kxe

kx
�
+ qxe

kx

= ke
kx + ke

kx + k
2
xe

kx + pe
kx + pkxe

kx + qxe
kx

= 2
⇣
k +

p

2

⌘
e
kx +

�
k
2 + pk + q

�
xe

kx

k=� p
2=

✓
�p

2

4
+ q

◆

| {z }
=0

xe
kx = 0.

Hence the general solution in the degenerate case (sometimes referred to as “marginal
case”) is

y = Ae
kx +Bxe

kx
. (A,B 2 R) (3.39)
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3.5.2 Worked Examples

Find the general solutions of the following homogeneous second-order di↵erential equations:

(a) 2
d
2
y

dx2
+ 5

dy

dx
+ 3y = 0, (b)

d
2
y

dx2
� 10

dy

dx
+ 25y = 0, (c)

d
2
y

dx2
+ 4

dy

dx
+ 5y = 0.
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3.5.3 Inhomogeneous ODE’s

We now return to the original inhomogeneous ODE (3.31),

d
2
y

dx2
+ p

dy

dx
+ qy = f(x).

The first step is to obtain a general solution of the corresponding homogeneous ODE
(obtained by setting f(x) = 0), using the methods discussed in the previous section. This
solution is called the complementary function yCF(x). Let us suppose that somehow we can
find a particular solution of the inhomogeneous ODE (3.31). Such a solution is called the
particular integral yPI(x). Then the sum

y(x) = yCF(x) + yPI(x) (3.40)

is the general solution of the inhomogeneous ODE since

d
2
y

dx2
+ p

dy

dx
+ qy =

✓
d
2
yCF

dx2
+ p

dyCF

dx
+ qyCF

◆

| {z }
=0

+

✓
d
2
yPI

dx2
+ p

dyPI

dx
+ qyPI

◆

| {z }
=f(x)

= f(x),

and yCF(x) contains two arbitrary integration constants. This means that the whole prob-
lem is solved if we have a way of finding yPI(x). Unfortunately, this is usually down to a
matter of trial and error.

In these lectures, we will only describe how to find a particular integral yPI(x) for some
important and common types of functions f(x).

• Polynomials. If f(x) is an nth degree polynomial,

f(x) = A0 + A1x+ . . .+ Anx
n
, (3.41)

then there is always a particular integral of the form

yPI(x) = ↵0 + ↵1x+ . . .+ ↵nx
n
. (3.42)

To determine the coe�cients ↵0, . . . ,↵n for any given p, q, A0, . . . An we insert the
ansatz (3.41) into the inhomogeneous ODE,

A0 + A1x+ . . .+ Anx
n = 2↵2 + 6↵3x+ . . .+ ↵nn(n � 1)xn�2

+p
�
↵1 + 2↵2x+ . . .+ n↵nx

n�1
�

+q (↵0 + ↵1x+ . . .+ ↵nx
n)

= (2↵2 + p↵1 + q↵0) + (6↵3 + 2p↵2 + q↵1) x

+ . . .+ q↵nx
n
.

For the two polynomials to be equal, the coe�cients have to be equal, leading to
(n+ 1) coupled linear equations,

2↵2 + p↵1 + q↵0 = A0

6↵3 + 2p↵2 + q↵1 = A1

...

q↵n = An.

Solving this set of equations we obtain ↵0, . . . ,↵n.

72



• Exponentials. If f(x) is an exponential function,

f(x) = A0e
!x
, (3.43)

then the particular integral is
yPI(x) = ↵0e

!x
, (3.44)

where ↵0 is a constant related to p, q, A0, and !. To find a formula for ↵0, we insert
the ansatz (3.44) into the inhomogeneous ODE,

A0e
!x =

d
2
y

dx2
+ p

dy

dx
+ qy

= ↵0!
2
e
!x + p↵0!e

!x + q↵0e
!x

= ↵0

�
!
2 + p! + q

�
e
!x
. (3.45)

From this it follows that

↵0 =
A0

!2 + p! + q
. (3.46)

Note that if ! is equal to one of the roots k1,2 of the quadratic equation k
2+pk+q = 0,

then the bracket in Eq. (3.45) is zero and our ansatz does not solve the inhomogeneous
ODE. In this case the particular integral has the form

yPI(x) = Bxe
!x
. (3.47)

To check this and to determine B, we insert the ansatz into the ODE,

A0e
!x =

d
2
y

dx2
+ p

dy

dx
+ qy

=

✓
d

dx
+ p

◆
(Be

!x +B!xe
!x) + qBxe

!x

= 2B!e!x +B!
2
xe

!x + pBe
!x + pB!xe

!x + qBxe
!x

= Be
!x

�
2! + !

2
x+ p+ p!x+ qx

�

= Be
!x[(2! + p) + (!2 + p! + q)| {z }

=0

x].

If 2! + p 6= 0, then our ansatz (3.47) solves the inhomogeneous ODE for B =
A0/(2! + p). In the very special case that the roots k1,2 are degenerate and equal
to !, we have k1 = k2 = �p/2 = !. In this case the particular integral is given by
yPI(x) = Cx

2
e
!x with C = A0/2.

• Cosine and sine functions. If f(x) is a periodic function of the form

f(x) = A0 cos(!x) + A1 sin(!x), (3.48)

the the particular integral is

yPI(x) = ↵0 cos(!x) + ↵1 sin(!x), (3.49)
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with coe�cients ↵0 and ↵1 expressible in terms of p, q, A0, A1 and !. To see this,
note that

dyPI

dx
= �↵0! sin(!x) + ↵1! cos(!x),

d
2
yPI

dx2
= �↵0!

2 cos(!x) � ↵1!
2 sin(!x).

Inserting into the inhomogeneous ODE, we obtain

A0 cos(!x) + A1 sin(!x) =
�
�↵0!

2 + p↵1! + q↵0

�
cos(!x)

+
�
�↵1!

2 � p↵0! + q↵1

�
sin(!x).

Requiring the cosine and sine terms to be equal separately, we have

(q � !
2)↵0 + p!↵1 = A0,

�p!↵0 + (q � !
2)↵1 = A1.

These are simultaneous linear equations which can be solved to obtain ↵0 and ↵1.
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3.5.4 Worked Examples

Find the solutions of the inhomogeneous second-order ODE’s

d
2
y

dx2
� 6

dy

dx
+ 8y = f(x),

with
(a) f(x) = 16x+ 12, (b) f(x) = 5 cos x,

for which y = 1 and dy/dx = 0 at x = 0.
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