Chapter 1

Differential Vector Operators

1.1 Scalar and Vector Fields

A field is a physical quantity having a value at every point within some region (domain) D
of space. In this course we will define fields in two and three spatial dimensions, D C R?
or D C R3. If the domain is not specified we assume that it is equal to the entire space.
Examples of fields are air pressure, temperature, velocity of water in the ocean, force,
electric and magnetic fields. One distinguishes between scalar fields and vector fields:

e A scalar field is a physical quantity having a value but no direction at every point
r = (x,y,x) in the domain. Examples are pressure and temperature.

p:DCR — R
r — o(r). (1.1)

e A wector field is a physical quantity having both direction and magnitude at every
point r = (z,y, ) in the domain. Examples include velocity, force, and electric and
magnetic fields.

A:DCR® — R®
A, (r)
r — A(r)=[A,(r)|. (1.2)

The main focus of Physics is on understanding how fields vary in space and time. This is
equally the case for classical mechanics, quantum mechanics, electromagnetism, fluid dy-
namics, and quantum field theory. Local variations of fields will be described by differential
vector operators which we will introduce in this chapter.



Figure 1.1: (a) An example of a two-dimensional scalar field, ¢(r) = ¢(x,y) = e~ @ +v*),
defined in the domain D : 2% + y? < 1. The value of the field is shown along the z-axis.
(b) Contour lines of the field ¢. These are lines along which the field is constant. (c) The
vector field A(r) = 5=(z,y*)" over the same domain D.

1.2 Partial Derivatives of Fields

We can take the derivative of a scalar field ¢(r) = ¢(x,y, z) with respect to one of the
coordinates, treating the other variables as constants. This operation is called partial
derivative. E.g. the partial derivative with respect to x is denoted by % (we say ‘del’ for
0) or short d,¢. It measures the rate of change of ¢ as we change z, keeping y and z fixed.

Example: The partial derivatives of the scalar field ¢(r) = ¢(z,y) = 2? + y + zye™® are
given by
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The partial derivative of a vector field is calculated by taking the partial derivative of each
component, e.g.

0. A
aA x €T
i 0. A = | 0,4,
. 0z A
20 — 2
Example: The partial derivatives of the vector field A(r) = | z*y | are given by
- 2
exz
2 0 -1
WA=\ 22y |, 9A=|2"], 0,A= 0
226" 0 2w2e"%



1.3 Directional Derivative and Gradient

The partial derivatives measure the change of ¢ along the directions of x, y and z. How to
calculate the derivative of ¢ along a general direction, given by a unit vector !

Let us define the auxiliary function

g(s) = o(r + su) = ¢(z + suy, y + suy, 2 + suy)

of the single variable s. The derivative of ¢ along the direction 1 is given by ¢'(0) = Z—g 0’
which can be calculated using the chain rule,
9¢ 99 99
! 0) = T a_ z -
g(0)=u 8x+uy0y+u e
Defining the gradient operator
0 0 9]
V=68_—+&-—+6&_—, 1.3
eax+eyay+eaz (1.3)
where
1 0 0
&=\|0|, é=11], é&,=10],
0 0 1
denote the Cartesian basis vectors, we can write the directional derivative of ¢ along u as
J(0)=u-Vo.
The vector field
O
0 9] 0] -
V¢:grad¢:éx—¢+éy—¢+éz—¢ = | 0,0 (1.4)
ox oy 0z 8.6

is called the gradient of ¢.> We can write the directional derivative of ¢ along 1 as

u- Vo =|a] |V¢|cosa = |V¢|cosa,

where |Vo| = 1/(9:0)? + (9y¢)? + (9.¢)? is the length of the vector V¢ and « the angle
between 1 and V¢. Hence, the directional derivative is maximal when a = 0 (u parallel to
V¢). This implies that

'A unit vector has length 1, [a| = | /u2 + u2 + u2 = 1, and the hat symbol is used to indicate that the

vector is a unit vector.

2In two dimensions the gradient of the field ¢(r) = ¢(x,y) is defined as V¢ = grad¢ = <gmz)
Y
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The gradient V¢ of a scalar field ¢ always points toward the direction of maximum
increase of ¢.

The directional derivative is zero along directions u tangential to the hypersurfaces given
by ¢(r) = C (C € R). In three dimensions the hypersurfaces are two-dimensional surfaces,
in two dimensions contour lines. In general, a hypersurface has dimension d — 1 where d is
the dimension of the embedding space. A vanishing directional derivative along tangential
directions, - V¢ = 0, implies that:

The gradient V¢ of a scalar field ¢ is perpendicular (normal) to the hypersurfaces
defined by ¢(r) = C (surfaces in d = 3, contour lines in d = 2).

2

Example: Consider the two-dimensional scalar field ¢(r) = e~ @*+¥") = ¢

0 qb _2$67(x2+y2) (2,2 €T 2
= (=7 = = e~ (@+y) = —2""r.
Ve (3y¢) <—2ye‘(g‘2+y2) ‘ v) ="

<0
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Figure 1.2: Gradients V¢ of the vector field ¢(r) = e~ (1) at a few selected points r = r.
The gradients are perpendicular to the contour lines and point toward the direction of the
steepest increase of ¢.

Note that the field ¢(r) = e~ @ %) just depends on the distance = /22 + 32 of the point
r = (z,y) to the origin, ¢(r) = e~". The contour lines are therefore circles around the
origin. Such scalar fields are called rotationally symmetric. 1t is possible to derive a general
expression for the gradient of such fields:



The gradient of a rotationally symmetric scalar field ¢(r) = f(r) with » = |r| and
f(r) a differentiable function of r is given by

Vo = f(r)é, (1.5)

where &, :=r/r is the unit vector along the direction of r.

Let us prove this equation for a two-dimensional scalar field. The proof in d = 3 and in
fact general dimension is completely analogous.

{00\ (0f(VET ) fwm)?mzx
vo = (o)~ (arrvisim) - PVTT )2y
= J0); (g) = /(8.

1.4 The Total Differential of Fields

The total differential of a scalar field ¢(r) = ¢(x,y, z) is defined as

_ 904, 99y, 00
dop = 8xdx+ aydy+ aZalz. (1.6)

It measures the infinitesimal change of ¢ as we change x, y and z by infinitesimal amounts
dx, dy and dz. Defining the vectorial line element

we can re-write the total differential in the compact form

dp = V- dr. (1.7)

The total differential of a vector field A(r) is given by

0A 0A 0A
dA = %dx + a—ydy -+ Edz. (1.8)

Changing = by dz and keeping y and z constant, the vector A changes by the infinitesimal
vector dA parallel to 0, A = %.



1.5 Divergence and Curl of Vector Fields

Consider a three-dimensional vector field

The divergence of the vector field is defined as

divA = V- A = 9,4, + 9,4, + 0.A.. (1.9)

Ay (r)

), divA =V - A = 0,4, + 9,A,. The divergence of a
Ay(r)

In two dimensions, A(r) =
vector field is a scalar field.

Note that V - A is a common short-hand notation for the divergence of A. It reflects the
close analogy to the ‘dot’ product (scalar product) of two vectors. But be careful! V is a
vector operator that acts on the vector field A and therefore has to be “multiplied” from
the left. While the divergence V - A is a scalar field,

AV =A,0,+ A0, + A.0.

is a differential operator that gives the directional derivative when acted on a scalar field.
Hence V-A # A - V.

The curl of a three-dimensional vector field is defined as

0,A, — 0. A,
curlA =V x A= |0,A4, —9;A, | . (1.10)
0z Ay — Oy A,

The curl of a vector field is a vector field. The short-hand notation V x A reflects the close
analogy with the cross product (vector product) between two vectors. However, as in the
case of the divergence, V acts on the field and has to be “multiplied” from the left. The
anti-commutation rule for the cross product of vectors, a x b = —b x a does not apply in
this case.

Example: Calculate the divergence and curl of the vector field
r2yz

A=[x+=2

y2

divA = V-A=0,A,+0,A,+ 0.A, =2xyz+ 0+ 0 = 2zyz,

0yA, — 0. A, 2y — 1
curlA = VxA=|0,A4,—-0,A,| = %y
0. Ay — 0y A, 1— 2%z
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What do the divergence and curl tell us about a vector field? To find an answer to this
question, let us consider the following very simple vector fields,

Z -y
Ar)=|y| and B(r)=| =z
0 0
In both cases the vectors lie in the xy-plane. We obtain
0 0
V-A=2, VXA=1[0]; V-B=0, VxB=1(0
0 2

Hence the vector field A has a constant, non-zero divergence and zero curl while A has a
vanishing divergence and a constant curl which points along the z-axis.
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Figure 1.3: Plots of the vector fields A(r) (a) and B(r) (b). In both cases the vectors have
been rescaled by a constant factor to a smaller length for greater clarity.

Let us assume that the fields describe the flow of the particles or molecules in a liquid.
For the field A the origin acts like a source of particles while for B the flow is rotational
around the origin, or in the three dimensional space around the z-axis. The curl points
along the positive z-axis which, according to the “right-hand rule”, corresponds with an
anti-clockwise rotation. The divergence of a vector field indicates sinks and sources, the
curl rotational flow.?

3For that reason the curl is sometimes also called rotation, or “rot” in short.
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1.6 Product Rules

Let ¢(r), p(r) be scalar fields and A(r) and B(r) vector fields. Then the following product
rules apply:

V(¢p) (Vo) p+¢(Vp) (1.11a)

V. (pA) = ¢(V-A)+ (V) A (1.11b)

V x (pA) = ¢(V xA)+ (V) x A (1.11c)
V- (AxB) = (VxA)-B-—A.(VxB) (1.11d)
Vx(AxB) = (V-B+B-V)A—(V-A+A-V)B (1.11e)

For the equations that involve curl operators and cross products between vector fields
we require that A and B are three-dimensional vector fields. Equations (a) and (b) are
valid in any dimension.

It is important to check that the equations involving differential vector operators are
well defined, e.g. the divergence operator needs to act on a vector field. Let us inspect
equation (b), for example. ¢A is a product between a scalar field and a vector field which
results in a vector field. Hence taking the divergence of this field is a well defined operation
and produces a scalar field. The terms on the right-hand side therefore need to be scalar
fields. The first term is a product between two scalar fields, ¢ and divA, resulting in a
scalar field. The second term is a dot-product between two vector fields, V¢ and A, which
also results in a scalar field.

Let us prove equations (a), (b), and (e). The proof of the remaining equations (c) and (d)
we leave for the problem-solving tutorial.

Proof:

(a) The idea is to use the conventional product rule of differentiation in each component
of the gradient,

D (6p) (0:0) p+ ¢ (9up) N Oup
V(gbp) = ay(¢p) = (8y¢) p+ o (ayp) = abe p+o ayp
9:(¢p) (0.0) p+ ¢ (0-p) 0.9 D.p
= (Vo)p+6(Vp)
(b)
V-(¢pA) = V. ( Az) + 0y (9A,) + 0.(9A.)

Ap+ 6 (0:A,) + (0,0) Ay + 6 (9,4,) + (9:0) A. + ¢ (9.A.)
+ ( y¢) Ay +(0.0) A, + ¢ (0, A, + 0,A, + 0. A,)
A +¢(V-A).

= (x¢)
= (Vo)
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Proof (continued):

(e) This equation is an identity between vectors. Here we just show that the z-components
of the vector fields on both sides are equal. The proof for the other components is
completely analogous. Let us first compute the x-component of the vector field on
the left-hand side of the equation:

A,B. — A.B,
Vx(AxB)], = |Vx|A.B,—-A,B.
A;By — AyB, ) | |

= 8, (A.B, — AyB,) — 0. (A.B, — A,B.)
= (81/1496) By + Ay (ayBy) - (ayAy) B, — Ay (ayBI)
_(azAz) Bx - Az <8szr) + (azAa:) Bz + A;v (asz)

We show that we get the same expression by evaluating the x component of the
right-hand side of the equation,

(V-B+B-V)A—(V-A+A-V)B|,
= (8,B; + 9,B, + 9.B, + B,0, + B,0, + B,0,) A,
— (0, Az + 0yA, + 0. A, + A0, + A0, + A.0,) B,
= (0:Bey A, + (0,By) As + (0.B.) Ay + Buk&:A7) + By (0,As) + B (9:44)
—(0.45) B, — (0,Ay) By — (0:4.) By — A 0:B;) — Ay (0,B,) — A, (0.By)
= A, (ayBy) + Ap (asz) - Ay (ayBx) — A, (azBm)
+(0,As) By + (0,A,) B, — (0,A,) B, — (0.A,) B,
=[Vx (AxB),.

1.7 2nd Order Variations of Fields, Laplace Operator

Consider a scalar field ¢(r). The gradient V¢ is a vector field. It is possible to compute
the divergence of V¢ in both two and three dimensions. In d = 3:

0v9
div gradg =V -Vo =V - | 9,0 | = 070+ 920+ 029,
0:¢
where 92 stands for ;—;. In d = 2 we simply obtain V - V¢ = §%¢ + 8§¢.
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A¢ = V?¢ = div gradg = 82¢ + 0;¢ + 02¢ (1.12)

is called the Laplacian of ¢. The second order differential operator
A=V?>=0.+09.+0; (1.13)

is called the Laplace operator.

The Laplacian A¢ is a scalar field. As an example, let us compute the Laplacian of the
field ¢(r) = e~ @ +v°).

Opp = —2mwe (@)

R = —2e” ) 4 ggem (PPHY) = (42° — 2)67(””2“”2)

2 o 2 . 7($2+ 2)
0,0 = (4y~ —2)e Y
_ 24 _ 92 20 2 2 —(224y?) _ 2 2
Ap = Vp=0,0+0,0= (42" + 4y —4)e V) =4(r*—1)e

We can also calculate the curl of a three-dimensional vector field V¢:

[ 0) 0y0,¢ — 0.0,¢
VxVe=Vx|d0]|=|0.0.0—080.0|=0.
az¢ 8x6y¢ - ay8x¢

In the last step we have used that the order of partial derivatives does not matter (partial
derivatives commute). Hence, for any scalar field ¢ in three dimensional space

curl gradg =V x Vo = 0. (1.14) ]

Another important relation is that the curl of a three-dimensional vector field A has zero
divergence,

divewrlA =V - (VxA)=0. (1.15) ]

You will prove this equation in the problem-solving tutorial.
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