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Missing data

Missing data are ever more important in the Big Data era, because
complete-case analysis is less feasible.

Consider a complete-case analysis with an n× d matrix, where each entry is
observed independently with probability p = 0.99.

I When d = 5, around 95% of observations are retained

I When d = 300, only around 5% of observations are retained.
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Missing data

Approaches to handle missing data:
I Imputation (Ford, 1983; Rubin, 2004)
I Factored likelihood (Anderson, 1957)
I Expectation-Maximisation (Dempster et al., 1977)

Recently, there has been increased emphasis on missing data in
high-dimensional problems:
I Sparse regression (Loh and Wainwright, 2012; Belloni et al., 2017)
I Classification (Cai and Zhang, 2018b)
I Covariance and precision matrix estimation (Lounici, 2014; Loh and Tan,

2018)
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High-dimensional PCA problem set-up

Suppose the (partially observed) matrix Y ∈ Rn×d is of the form

Y = UV >K +Z,

where VK ∈ Rd×K has orthonormal columns and U is a random n×K matrix
(with n > K) having i.i.d. rows with mean zero.

Let Ωij := {Yij is observed} and YΩ := Y ◦Ω. We observe the pair (YΩ,Ω)
and wish to estimate Col(VK).

Performance of an estimator V̂K measured by the loss function

L(V̂K ,VK) := ‖ sin Θ(V̂K ,VK)‖F,

where Θ(U ,V ) is the matrix of principal angles between Col(U) and Col(V ).
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Inverse-Probability Weighted estimator

Consider the p-homogeneous se�ing, where Ωij
iid∼ Bern(p). Then

P := E(ω1ω
>
1 ) = p2

{
1d1

>
d − (1− p−1)Id

}
.

Its elementwise inverse isW := p−2
{
1d1

>
d − (1− p)Id

}
,

and we can define the weighted sample covariance matrix

G :=

(
1

n
Y >Ω YΩ

)
◦W .

This ensures that E(G | Y ) = n−1Y >Y . Define Ŵ by replacing p inW with
p̂ := (nd)−1‖Ω‖1, and set

Ĝ :=

(
1

n
Y >Ω YΩ

)
◦ Ŵ .

The IPW estimator of VK is given by the top K eigenvectors of Ĝ, denoted V̂K
(Cai and Zhang, 2018a; Cho, Kim and Rohe, 2017).
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(Cai and Zhang, 2018a; Cho, Kim and Rohe, 2017).

Tengyao Wang 6/29



Assumptions

For r ∈ N and a d-dimensional random vector x, define its Orlicz norm

‖x‖ψr := sup
u∈Sd−1

sup
q∈N

(E|u>x|q)1/q

q1/r

and a version that is invariant to invertible a�ine transformations:

‖x‖ψ∗r := sup
u∈Sd−1

‖u>(x− Ex)‖ψr

Var1/2(u>x)
.

(A1) U , Z and Ω are independent;

(A2) ‖u1‖ψ∗2 ≤ τ ;

(A3) Z = (zij)i∈[n],j∈[d] has i.i.d. entries with Ez11 = 0, Var z11 = 1 and
‖z11‖ψ∗2 ≤ τ ;

(A4) ‖y21j‖ψ1
≤M for all j ∈ [d].
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Upper bound

Theorem. Assume (A1)–(A4) and that n, d ≥ 2, dp ≥ 1. Let λj denote the jth
largest eigenvalue of Σu. If n ≥ d log2 d log2 n/(λ1p+ log d), then

EL(V̂K ,VK) .M,τ
1

λK

(
Kd(λ1p+ log d) log2 d

np2

)1/2

.

The sample size requirement is reasonable: with no missing data and when
λ1 � 1, the top eigenvector of the sample covariance matrix estimator is
consistent if and only if d/(nλ1)→ 0 (Shen et al., 2016).

The theorem reveals a phase transition depending on the relative magnitudes of
λ1p and log d. In particular,

EL(V̂K ,VK) .M,τ


1

λK

(
Kd log3 d

np2

)1/2

if λ1p . log d,

λ
1/2
1

λK

(
Kd log2 d

np

)1/2

if λ1p & log d.
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Minimax lower bound

Let Pn,d(λ1, p) denote the class of distributions of pairs (YΩ,Ω) satisfying (A1),
(A2), (A3) with K = 1. Since we are now working with vectors instead of
matrices, we write v in place of V1.

Theorem. There exists a universal constant c > 0 such that

inf
v̂

sup
P∈Pn,d(λ1,p)

EPL(v̂,v) ≥ cmin

{
1

λ1

(
d(λ1p+ 1)

np2

)1/2

, 1

}
,

where the infimum is taken over all estimators v̂ = v̂(YΩ,Ω) of v.

Thus V̂1 achieves the minimax optimal rate of estimation up to a
poly-logarithmic factor when M and τ are regarded as constants and K = 1.
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General observation mechanisms
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General observation mechanisms: example

Suppose that

P
{
ω1 = (1, 0, 1, . . . , 1)>

}
= P

{
ω1 = (0, 1, 1, . . . , 1)>

}
= 1/2.

Consider Σ = Id +αα>, where α = (2−1/2, 2−1/2, 0, . . . , 0)> ∈ Rd, and
Σ′ = Id +α′(α′)>, where α′ = (2−1/2,−2−1/2, 0, . . . , 0)> ∈ Rd.

Suppose that y ∼ Nd(0,Σ) and y′ ∼ Nd(0,Σ′). Then (y ◦ ω,ω) and
(y′ ◦ ω,ω) are identically distributed.

But the respective leading eigenvectors of Σ and Σ′ are α and α′, which are
orthogonal!
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primePCA: a single iteration of refinement

primePCA (projected refinement for imputation of missing entries in PCA)
iteratively refines a warm initialiser. We write ỹi := yi ◦ ωi.
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Two-to-infinity subspace distance

For U ,V ∈ Od×K , letW1DU ,VW
>
2 be an SVD of V >U and let

WU ,V := W1W
>
2 . ThenWU ,V solves the Procrustes problem in the sense that

WU ,V ∈ arg min
W∈OK×K

‖U − VW ‖F.

The two-to-infinity distance between Col(U) and Col(V ) is then defined to be

T (U ,V ) :=
∥∥U − VWU ,V

∥∥
2→∞,

where ‖A‖2→∞ := supx:‖x‖2=1 ‖Ax‖∞.
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Contraction of each iteration

Proposition. Let V̂ (out)
K := refine

(
K, V̂

(in)
K ,Ω,YΩ

)
. We assume that

mini∈[n] ‖ωi‖1 > K , that mini∈[n]
d1/2σK((V̂

(in)
K )Ji )

|Ji|1/2
≥ 1/σ∗ > 0, and write the

SVD of Y as LΓR>.

Suppose that Z = 0, and that both ‖L‖2→∞ ≤ µ1(K/n)1/2 and
‖R‖2→∞ ≤ µ2(K/d)1/2 hold for some µ1, µ2 ≥ 1. Then there exist c1, C > 0,
depending only on µ1, µ2 and σ∗, such that whenever

(i) T (V̂
(in)
K ,VK) ≤ c1σK(Γ)

K2σ1(Γ)
√
d

,

(ii) ρ := CK2σ1(Γ)‖Ωc‖1→1

σK(Γ)n < 1,

we have that

T (V̂
(out)
K ,VK) ≤ ρT (V̂

(in)
K ,VK).
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primePCA
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Geometric convergence in noiseless case

Theorem. For t ∈ [niter], let V̂ (t)
K be the tth iterate of Algorithm 2 with input

K , V̂ (0)
K , Ω ∈ {0, 1}n×d, YΩ ∈ Rn×d, niter ∈ N, σ∗ ∈ (0,∞) and κ∗ = 0. Let

I :=
{
i : ‖ωi‖1 > K,σK

(
(VK)Ji

)
≥ |Ji|1/2/

(
d1/2σ∗

)}
,

where Ji := {j : ωij = 1}. Let YI = LΓR> be an SVD of YI . Suppose that
both ‖L‖2→∞ ≤ µ1(K/|I|)1/2 and ‖R‖2→∞ ≤ µ2(K/d)1/2. Let

Z :=
{
σK
(
(VK)Ji

)
d1/2/|Ji|1/2 : i ∈ [n], ‖ωi‖1 > K

}
,

and assume that ε := minz∈Z |z − σ−1∗ | > 0. Then there exist c1, C > 0,
depending only on µ1, µ2, σ∗ and ε, such that whenever

T (V̂
(0)
K ,VK) ≤ c1σK(YI)

K2σ1(YI)
√
d

and ρ :=
CK2σ1(YI)‖Ωc

I‖1→1

σK(YI)|I|
< 1,

we have T (V̂
(t)
K ,VK) ≤ ρtT (V̂

(0)
K ,VK) for every t ∈ [niter].
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Initialisation

Consider the following modified weighted sample covariance matrix

G̃ :=
1

n

n∑
i=1

ỹiỹ
>
i ◦ W̃ ,

where for any j, k ∈ [d],

W̃jk :=

{
n∑n

i=1 ωijωik
if
∑n
i=1 ωijωik > 0,

0, otherwise.

We take as our initial estimator of VK the matrix of top K eigenvectors of G̃,
denoted ṼK .
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Performance of initialiser

Proposition. Assume the same conditions as in the previous theorem. Then
there exists a universal constant C > 0 such that for any ξ > 1, if

λK > C

{(
Mτ2R‖W̃ ‖1→1ξ log d

n

)1/2

+
M‖W̃ ‖opξ log2 d

n

}
,

then with PΩ-probability at least 1− (2K + 4)d−(ξ−1), we have

L(ṼK ,VK) ≤ 29/2eτµ

λK

(
KMR

d

)1/2(
ξ1/2‖W̃ ‖1/21 log1/2 d

n1/2
+
ξ‖W̃ ‖F log d

n

)
.

N.B. The bound depends on W̃ only through the entrywise `1 and `2 norms of
the whole matrix.
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Simulations: Noiseless case
Fix n = 2000, d = 500, K = 2 and ui ∼ Nd(0,Σu) where Σu = 100I2. Set

VK =

√
1

500

(
1250 1250

1250 −1250

)
∈ R500×2.

(H1) Homogeneous: P(ωij = 1) = 0.05 for all i ∈ [n], j ∈ [d];

(H2) Mildly heterogeneous: P(ωij = 1) = PiQj for i ∈ [n], j ∈ [d], where

P1, . . . , Pn
iid∼ U [0, 0.2] and Q1, . . . , Qd

iid∼ U [0.05, 0.95] independently;

(H3) Highly heterogeneous columns: P(ωij = 1) = 0.19 for i ∈ [n] and all odd
j ∈ [d] and P(ωij = 1) = 0.01 for i ∈ [n] and all even j ∈ [d].

(H4) Highly heterogeneous rows: P(ωij = 1) = 0.18 for j ∈ [d] and all odd
i ∈ [n] and P(ωij = 1) = 0.02 for j ∈ [d] and all even i ∈ [n].

Compare with softImpute: fix λ > 0 and take the top K eigenvectors of

Ŷ soft := arg min
X∈Rn×d

{
1

2
‖YΩ −XΩ‖2F + λ‖X‖∗

}
(Mazumder, Hastie and Tibshirani, 2010).
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Noiseless case

primePCA softImpute

(H1)
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Noiseless case

primePCA softImpute

(H3)
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Simulations: Noisy case

Now generate zi ∼ Nd(0, Id), independent of all other data, and set
Σu = ν2I2 where ν ∈ {20, 40, 60}, corresponding to

SNR := tr Cov(y1)/tr Cov(z1) ∈ {1.6, 6.4, 14.4}.

Also compare with hardImpute (Mazumder, Hastie and Tibshirani, 2010), which retains only a fixed
number of top singular values in each iteration of matrix imputation;
i.e. softImpute with λ = 0.

For softImpute, use oracle choice of λ for each repetition.
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Simulations: Noisy case

ν = 20 ν = 40 ν = 60

(H1) hardImpute 0.444(0.001) 0.251(0.001) 0.186(0.0005)
softImpute(oracle) 0.186(0.0004) 0.095(0.0002) 0.064(0.0002)

primePCA_init 0.306(0.001) 0.266(0.001) 0.259(0.001)
primePCA 0.171(0.0004) 0.084(0.0002) 0.056(0.0001)

(H2) hardImpute 0.473(0.001) 0.291(0.001) 0.236(0.001)
softImpute(oracle) 0.308(0.001) 0.185(0.001) 0.141(0.001)

primePCA_init 0.399(0.002) 0.357(0.001) 0.349(0.001)
primePCA 0.232(0.001) 0.115(0.001) 0.077(0.0005)

(H3) hardImpute 0.479(0.001) 0.385(0.001) 0.427(0.001)
softImpute(oracle) 0.374(0.001) 0.222(0.001) 0.170(0.001)

primePCA_init 0.486(0.001) 0.449(0.001) 0.442(0.001)
primePCA 0.290(0.001) 0.145(0.001) 0.097(0.0004)

(H4) hardImpute 0.174(0.0005) 0.089(0.0003) 0.062(0.0003)
softImpute(oracle) 0.121(0.0002) 0.062(0.0001) 0.042(0.0001)

primePCA_init 0.203(0.001) 0.175(0.0005) 0.169(0.0004)
primePCA 0.116(0.0003) 0.058(0.0002) 0.038(0.0001)
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Million Song Dataset

I Original data has 110,000 users (rows) and 163,206 songs (columns);
entries represent number of times a song was played by a particular user.

I Proportion of non-missing entries in the matrix is 0.008%.
I Restrict a�ention to songs that have at least 100 listeners (1,777 songs in

total). This improves the proportion of non-missing entries to 0.23%.
I �antiles of the number of listeners for each song:

0% 50% 60% 70% 80% 90% 100%
100 154 178 214 272.8 455.6 5043

�antiles of the total play counts of each user:
0% 50% 60% 70% 80% 90% 100%
0 6 9 14 21 38 1114

I �antiles of non-missing matrix entry values:
0% 50% 60% 70% 80% 90% 100%
1 1 2 3 5 8 500

To guard against excessive influence from outliers, discretise play counts:
Play count 1 2 – 3 4 – 6 7 – 10 ≥ 11

Level of interest 1 2 3 4 5
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Million Song Dataset
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Outlier songs
ID Title Artist Genre
1 Your Hand In Mine Explosions In The Sky Rock
2 All These Things That I’ve Done The Killers Rock
3 Lady Marmalade Christina Aguilera / Lil’ Kim/ Pop

Mya / Pink
4 Here It Goes Again Ok Go Rock
5 I Hate Pretending (Album Version) Secret Machines Rock
6 No Rain Blind Melon Rock
7 Comatose (Comes Alive Version) Skillet Rock
8 Life In Technicolor Coldplay Rock
9 New Soul Yael Naïm Pop
10 Blurry Puddle Of Mudd Rock
11 Give It Back Polly Paulusma Pop
12 Walking On The Moon The Police Rock
13 Face Down (Album Version) The Red Jumpsuit Apparatus Rock
14 Savior Rise Against Rock
15 Swing Swing The All-American Rejects Rock
16 Without Me Eminem Rap
17 Almaz Randy Crawford Pop
18 Hotel California Eagles Rock
19 Hey There Delilah Plain White T’s Rock
20 Revelry Kings Of Leon Rock
21 Undo Björk Rock
22 You’re The One Dwight Yoakam Country
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Summary

I Heterogeneous missingness is ubiquitous.
I The way in which the heterogeneity interacts with the underlying structure

of interest is crucial.
I primePCA iteratively projects observed entries of data matrix onto column

space of current estimate to impute missing entries, then updates estimate
by computing leading right singular space of imputed matrix.

I With an incoherence condition, the error of primePCA converges to zero at
geometric rate in the noiseless se�ing.

I Theoretical guarantees depend on average, as opposed to worst-case,
properties of the missingness mechanism.

Main reference:
I Zhu, Z., Wang, T. and Samworth, R. J. (2019) High-dimensional principal

component analysis with heterogeneous missingness.
https://arxiv.org/abs/1906.10125.
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