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Changepoint problems

I Modern technology has facilitated the real-time monitoring of many types
of evolving processes.

I Very o�en, a key feature of interest for data streams is a changepoint.
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From o�line to online

I The vast majority of the literature concerns the o�line problem
(Killick et al., 2012; W. and Samworth, 2018; Wang et al., 2018; Baranowski et al.,
2019; Liu et al., 2019).

I Univariate online changepoints have been studied within the
well-established field of statistical process control
(Duncan, 1952; Page, 1954; Barnard, 1959; Fearnhead and Liu, 2007; Oakland, 2007).

I Much less work on multivariate, online changepoint problems
(Tartakovsky et al., 2006; Mei, 2010; Zou et al., 2015).
Several methods involve scanning a moving window of fixed size
(Xie and Siegmund, 2013; Soh and Chandrasekaran, 2017; Chan, 2017).
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Online algorithm

Key definition of an online algorithm for a data stream:

Definition. An algorithm is online if both its storage requirements and the
computational complexity for processing a new observation depend only on the
number of bits needed to represent the new data.

I For the purposes of this definition, all real numbers are considered as
floating point numbers.

I Importantly, we can only track a finite amount of summary statistics and
are not allowed to store all historical data.

Online changepoint detection 5/33



Online algorithm

Key definition of an online algorithm for a data stream:

Definition. An algorithm is online if both its storage requirements and the
computational complexity for processing a new observation depend only on the
number of bits needed to represent the new data.

I For the purposes of this definition, all real numbers are considered as
floating point numbers.

I Importantly, we can only track a finite amount of summary statistics and
are not allowed to store all historical data.

Online changepoint detection 5/33



Problem se�ing

We consider a high-dimensional online changepoint detection problem:

I Data: for some unknown, deterministic time z ∈ N ∪ {0}, we have

X1, . . . , Xz ∼ Np(0, Ip) and Xz+1, Xz+2, . . . ∼ Np(θ, Ip).

I θ = 0: data generated under the null, i.e. no change.
I θ 6= 0: data generated under the alternative, i.e. there exists a change.

I Assume ϑ := ‖θ‖2 is at least a known lower bound β > 0.
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Performance measures

A sequential changepoint procedure is an extended stopping time N
(w.r.t. the natural filtration) taking values in N ∪ {∞}.

I patience: E0(N);

I Two types of response delays:

– Average case response delay

Ēθ(N) := sup
z∈N

Ez,θ
{

(N − z) ∨ 0
}

;

– Worst case response delay

Ēwc
θ (N) := sup

z∈N
ess supEz,θ

{
(N − z) ∨ 0 | X1, . . . , Xz

}
.
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A warm-up: univariate online changepoint detection



Example of an online algorithm
Let p = 1 and assume θ > 0. Page’s procedure (Page, 1954):

Rn := max
0≤h≤n

n∑
i=n−h+1

β(Xi − β/2) = max
{
Rn−1 + β(Xn − β/2), 0

}
.

Threshold T ≡ Tβ for changepoint declaration.

Page’s procedure has asymptotically optimal worst case response delay under a
patience constraint (Lorden, 1971).
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Example of an online algorithm?
Let p = 1 and assume θ > 0. Scanning window-based method with window
width w > 0:

Wn :=

n∑
i=n−w+1

β(Xi − β/2).

– Window size w needs to increase when β decreases.
– Storage requirement depends on β.
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Example of a non-online algorithm

Let p = 1 and assume θ > 0. Shiryaev–Roberts procedure (Shiryaev, 1963;
Roberts, 1966):

SRn :=

n∑
i=1

n∏
h=i

eb(Xh−b/2).

– The statistics cannot be defined recursively

– A sequential but not online algorithm
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A high-dimensional, multiscale online algorithm: ocd



Curse of dimensionality

I Page’s procedure in 1-d relies on the well-ordering of R.
I Generalising to high dimensions:
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– If we know the direction of θ, Page’s procedure can still be used.
– Infeasible to examine all possible directions for a change for large p.
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Diagonal statistics

I Write Xi = (X1
i , . . . , X

p
i )> ∈ Rp. Fix n ∈ N and b ∈ R\{0}. For each

j ∈ [p], define (we have suppressed n and b dependence)

Rj := max
0≤h≤n

n∑
i=n−h+1

b(Xj
i − b/2)

tj := argmax
0≤h≤n

n∑
i=n−h+1

b(Xj
i − b/2).

I
(
Rj)j∈[p] are called the diagonal statistics.
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O�-diagonal statistics

I For each j, compute normalised tail partial sums of length tj in all
coordinates j′ ∈ [p]:

Aj
′,j :=

1√
tj

n∑
i=n−tj+1

Xj′

i ∼null N(0, 1).
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I For each j, compute normalised tail partial sums of length tj in all
coordinates j′ ∈ [p]:

Aj
′,j :=

1√
tj

n∑
i=n−tj+1

Xj′

i ∼null N(0, 1).

I We aggregate to form an o�-diagonal statistic anchored at coordinate j:

Qj :=
∑
j′:j′ 6=j

(
Aj

′,j
)2

∼null χ
2
p−1.
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∑
j′:j′ 6=j

(
Aj

′,j
1{|Aj′,j |≥a}

)2

for some a > 0.
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Pu�ing it together

I Vary the scale parameter b over a (signed) dyadic grid

B :=

{
± β√

2` log2(2p)
: ` = 0, . . . , blog2(2p)c

}
.

I Aggregate diagonal and o�-diagonal statistics from di�erent coordinates
and at di�erent scales (recall Rj and Qj both have n and b dependence):

Sdiag
n := max

(j,b)∈[p]×B
Rjn,b,

Soff
n := max

(j,b)∈[p]×B
Qjn,b.

I Declare change when either Sdiag
n or Soff

n is large.
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Pseudocode
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Dense, sparse and adaptive versions

I Choose a = 0 to detect a dense change.
I Choose a =

√
8 log p to detect a sparse change.

I The adaptive version runs two ocd algorithms with a = 0 and
a =
√

8 log p in parallel and declares when either detects a change:

N := inf

{
n :

Sdiag
n

T diag
∨ S

off,d
n

T off,d
∨ S

off,s
n

T off,s
≥ 1

}
.
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ocd in action

Se�ing: p = 100, z = 900, ϑ = β = 1 and γ = 5000

s = 3 s = 100
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Theoretical analysis



Why does ocd work?

I Patience: guaranteed by choosing thresholds appropriately.

I Response delay:
– Sdiag detect changes that are concentrated in a single coordinate.
– Soff aggregates signal across many coordinates.
– If the tail partial sum consists of post-change data only, then

Qj :=
∑
j′:j′ 6=j

(
Aj

′,j
)2 ∼altern. χ

2
p−1(tj‖θ−j‖22).
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Halving the tail length

I What if The last tj points contain some pre-change data?

I We would like to aggregate over ≈ tj/2 points, so that Qj is eventually
formed using post-change data only.

How can we achieve this in an online manner?

Online changepoint detection 22/33



Halving the tail length

I What if The last tj points contain some pre-change data?

I We would like to aggregate over ≈ tj/2 points, so that Qj is eventually
formed using post-change data only.

How can we achieve this in an online manner?

Online changepoint detection 22/33



Halving the tail length

I What if The last tj points contain some pre-change data?

I We would like to aggregate over ≈ tj/2 points, so that Qj is eventually
formed using post-change data only.

How can we achieve this in an online manner?

Online changepoint detection 22/33



A toy problem

Given X1, X2, . . . ∈ R, how can we keep track of the sum of the final τ ≈ t/2
observations at time t in an online way?
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A toy problem

Given X1, X2, . . . ∈ R, how can we keep track of the sum of the final τ ≈ t/2
observations at time t in an online way?

t/2 ≤ τ < 3t/4 for t ≥ 2.
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A slight variant: ocd′

Part of the modified algorithm, ocd′, using ‘halved’ tail lengths:
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Theoretical guarantees: patience

Choose thresholds

T diag = log{24pγ log2(4p)}
T off,d = ψ

(
2 log{24pγ log2(2p)}

)
T off,s = 8 log{24pγ log2(2p)}

where ψ(x) = p− 1 + x+
√

2(p− 1)x and γ ≥ 1 is a user-specified desired
patience level.

Theorem. Assume there is no change. Then, the adaptive version of ocd′ with
the above choice of thresholds satisfies E0(N) ≥ γ.
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Theoretical guarantees: response delay
The e�ective sparsity of θ ∈ Rp is

s ≡ s(θ) :=

∣∣∣∣{j ∈ [p] : |θj | ≥ ‖θ‖2√
s(θ) log2(2p)

}∣∣∣∣.
Theorem. Assume that the post-change signal θ satisfies ‖θ‖2 = ϑ ≥ β > 0
with e�ective sparsity s. Then, the adaptive version of ocd′ with the same
choice of thresholds satisfies:

(a) (Worst case response delay)

Ēwc
θ (N) .

s log(epγ) log(ep)

β2
∨ 1;

(b) (Average case response delay)

Ēθ(N) .

(√
p log(epγ)

ϑ2
∨
√
s log(ep/β) log(ep)

β2

)
∧ s log(epγ) log(ep)

β2
,

for all su�iciently small β < β0(s).
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Response delays vs. sparsity

Assume that ϑ � β . 1 and log(γ/β) . log p. Then

Ēwc
θ (N) .

s log2(ep)

ϑ2
and Ēθ(N) .

(s ∧√p) log2(ep)

ϑ2
.

√

p

Effective sparsity

R
es
p
o
n
se

d
el
a
y

Sparse

Adaptive

Dense

Worst case

√

p

Effective sparsity

R
es
p
o
n
se

d
el
a
y

Sparse

Adaptive

Dense

Average case
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Comparison with other methods

We compare ocd with other recently proposed methods:
I Mei: `1 and `∞ aggregation of likelihood ratio tests in each coordinate.

(Mei, 2010)
I XS: Use window-based method to aggregate statistics for testing the null

against a normal mixture in each coordinate. (Xie and Siegmund, 2013)
I Chan: Similar to XS, but with an improved choice of tuning parameters.

(Chan, 2017)

Simulation se�ings: p ∈ {100, 2000}, s ∈ {5, b√pc, p}, ϑ ∈ {1, 0.5, 0.25} and θ
is generated as ϑU , where U is uniformly distributed on the union of all s sparse
unit spheres in Rp.

I All thresholds are determined using Monte Carlo simulation.
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Comparison with other methods

p s ϑ ocd Mei XS Chan

100 5 1 46.9 125.9 47.3 42.0
100 5 0.5 174.8 383.1 194.3 163.7
100 5 0.25 583.5 970.4 2147 1888.8
100 10 1 53.8 150.1 52.9 51.5
100 10 0.5 194.4 458.2 255.8 245.6
100 10 0.25 629.7 1171.3 2730.7 2484.9
100 100 1 74.4 268.3 89.6 102.1
100 100 0.5 287.9 834.9 526.8 756.0
100 100 0.25 1005.8 1912.9 3598.3 3406.6
2000 5 1 67.3 316.7 79.5 59.5
2000 5 0.5 247.3 680.2 607.7 285.0
2000 5 0.25 851.3 1384.8 4459.2 3856.9
2000 44 1 136.0 596.1 149.1 145.0
2000 44 0.5 479.1 1270.8 2945.5 2751.4
2000 44 0.25 1584.2 2428.8 4457.8 5049.7
2000 2000 1 360.7 2126.5 1020.0 2074.7
2000 2000 0.5 1296.0 3428.1 4669.3 4672.7
2000 2000 0.25 3436.7 4140.4 5063.7 5233.5

Table: Estimated response delay for ocd, Mei, XS and Chan over 200 repetitions, with
z = 0 and γ = 5000.
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Summary

I We propose a new, multiscale method for high-dimensional online
changepoint detection.

I We perform likelihood ratio tests against simple alternatives of di�erent
scales in each coordinate, and aggregate these statistics.

I R package ocd is available on CRAN.

Main reference
I Chen, Y., Wang, T. and Samworth, R. J. (2020) High-dimensional, multiscale

online changepoint detection. Preprint, arxiv:2003.03668.
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Thank you!
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