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Shape-constrained estimation

Imposing shape restrictions on function classes

» Monotonicity, convexity, log-concavity, ...

An attractive alternative to traditional non-parametric inference

> More flexible than parametric family.
» Fully automatic estimators: tuning parameter free.
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Isotonic regression @

One of the oldest and most widely studied problems in shape-constrained
estimation.

Estimating a monotone function f from noisy observations at design points
T < Xo < -+ < Tp.
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Isotonic regression in general dimensions

Example: genetic effects on phenotypes such as height or fitness are
monotone, but additive structure are often too restrictive (Mani et al., 2007).

Fitness
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[sotonic regression in general dimensions P

The natural partial ordering on R%:
r=1 & x;<ajforallj=1,....d

Consider the class of block increasing functions:

Far={f 0.1 + R f(2) < /(') when s < o }.
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Problem description &

» Observations (X1, Y1), ..., (X,,Y,) satisfying

)/:L:fo(Xi)_Feia ’L':17...,TL,

where fj : [0,1]% — R is Borel measurable, ey, . . . , € n N(0,1) and

Xq,...,X,, are either fixed or random design points.
> We study the performance of the least squares estimator
n
fn € argminZ{n — f(Xi))?
fera o
in terms of its empirical risk

Rl fo) = E| Z{fn )= hxXP|.
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Computation P

» Design points form a directed acyclic graph G with respect to the natural
partial ordering < on R

> Vectors respecting the partial ordering lie in the monotone cone

M(G) == ﬂ {vi <yw}.

X=X,

> Least squares estimator: projection onto the monotone cone, solvable using
von Neumann’s algorithm or interior point methods.
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Existing theoretical results U

> Most theoretical results are on univariate isotonic regression (e.g. Brunk
(1955); Barlow et al. (1972); van de Geer (1990); Birgé and Massart (1993);
Meyer and Woodroofe (2000); Zhang (2002); Durot (2007, 2008); Chatterjee,
Guntuboyina and Sen (2015); Bellec (2017); Yang and Barber (2017)).

» Chatterjee, Guntuboyina and Sen (2017) establishes the bivariate rate
under fixed lattice designs.

> A separate line of work assumes additive structure in multivariate settings
(e.g. Mammen and Yu (2007); Chen and Samworth (2016)).
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Fixed lattice designs
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Fixed lattice designs i

Suppose n = n¢, we first consider the case of a fixed lattice design

(X1, ., Xn} =Lg,:={1,...,n }¢ CR%

In this case, we write 0y := (fO(Xi))1<i<n and 0, == (f”(Xi))1<i<n'
Risk function R(fn, fo) = R(0n,00) := n~ 1|0, — 6|2
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A key ingredient

» Recall: the least squares estimator 0, is the projection of (Y1,...,Y,)T
onto the monotone cone

M(Lgpn) :=={(y1,-..,Yn) : ¥ < yi whenever X; < X/ }.

> For simplicity, we assume that || fo||co < 1.

> We use Sourav Chatterjee’s characterisation of least squares projection
onto a convex set (Chatterjee, 2014).
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A key ingredient

Theorem (Chatterjee, 2014). Suppose u belong be a closed convex set
K CR%and e ~ Ny(0, I). If

2
to := argmax{]E sup (e,v — p) — —} >1,
t VEK, lv—pll2<t 2

then
Bk (1 + €) — pll3 < ¢5.
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Towards an upper bound

The function t — Esupge pr, n),\|9790||2§t<6, 0 — 0p) — t2/2 is strictly

concave and tends to —oo.
t2
,0 — 6g) — —
(e 0) 2

sup
n)s[10—00]l2<t

t
ty

S p————
S

Hence R(0,,,0y) < n~'t, for any t, satisfying

w‘*“t::z

E sup (6,0 — o) <

0EM(La,n)|[0—00ll2<t.
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Towards an upper bound

We manipulate the left hand side to obtain

LHS =E sup {<€7 0 — 0o) + (c. 0y — 9()>}
0eM(Lg,n),|[0—00l2<t«
<E sup (6,0 — o)
0EM(La,n),|0—00|2<t.+n'/?
=E sup (e,0)
0EM (La,n)NB(0,t+nl/2)
= {t, +n'2\E sup (6,0) < {t. +n'/2}62(M(Lay)),

0€M(La,)NB(0,1)
where 6(M(Lq,.)) = Esupge pmr, . )nB(0,1) (€ 6)? is the statistical dimension
of the cone M(LLg,,,) (cf. Amelunxen et al. (2014)). Therefore, it suffices to choose

1/2

te = 0" (M(Lan)) + {0(M(Lan)) + 2017262 (M(Lan)) }

Tengyao Wang 15/32



The statistical dimension

Inductively reduce the problem to computing the stat. dim. of the bivariate
monotone cone:

5(M(]Ld,n)) S nld(M(Ldil)n{li—l)) S < ’l’Ll 5(./\/1(]]_427"%))

But 6(/\/! (Lo, %)) is approximately the square of the Gaussian complexity of
M(Ly,,2) N B(0,1), which can be controlled via Dudley’s entropy integral.

Proposition. For d > 2, we have

nl=2/d < 5(M(Ld’n)) <nl 2jel log® n.
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.
Worst case bounds

Putting it together, we get the following worst case upper bound.

Theorem. Let d > 2. There exists a universal constant C' > 0 such that

sup R(0,,00) < Cn~?log* n.
Oo€EM(La,n)NBoo (1)

We also establish a matching minimax lower bound up to poly-log factors.

Proposition. There exists a constant ¢4 > 0, depending only on d, such that
ford > 2, B

inf sup R(0,,60) > can~ /4.

On 00EM(La,n)NBoo (1)

Tengyao Wang 17/32



Lower bound construction

» L, has a large antichain A of cardinality at least cgn'~1/<.

» Consider all binary vectors § € M(LLg,,)
that are 1 above A and 0 below A.

» There are ~ ¢4l such s whose
pairwise Hamming distance > |A|/2.

{
;
{
{

» Apply Fano’s/Assouad’s Lemma.
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Minimax optimality

» Compare to known results for d < 2:

dimension ‘ 1 2 3 4

rate | ©(n%) O(n~12) O3 On Y

—2/(d+2) 1/d

low dimensions: n high dimensions: n™
» Two competing factors drive the rate: block monotonic functions are ‘no
smoother’ than bounded Lipschitz functions, and that existence of a large

antichain prevents efficient estimation.

» This is the first example showing that empirical risk minimisation can be
minimax optimal (up to poly-log factors) in such classes where the
-entropy grows faster than e =279 (cf. Birgé and Massart (1993)).

Tengyao Wang 19/32



i

Sharp oracle inequalities U

Let k(6) be the minimal number of hyperrectangles to partition L ,, such that ¢
is piecewise constant w.r.t. the partition.

Theorem. Let d > 2. There exists a universal constant C' > 0 such that for
every 0y € Rla.n,

R(0,,00) < inf {MJrc*(@)Mlogi(%)}.

T 0eM(La,n) n n

d

The adaptation rate of n~2/¢ cannot be improved.

Proposition. There exists ¢4 > 0, depending only on d, such that

A n~tlogin ifd=2
R(6,,0) >
et 2 {n—2/d ifd> 3.
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Sharp oracle inequalities

» Compare to known results for d < 2:

dimension ‘ 1 2 3 4

adaptationrate‘@(n_l) O(n~1) 6(n23) e 1/?)

low dimensions: parametric high dimensions: n.~2/4¢

» First example of adaptation at a non-parametric rate.

» Minimax optimal worst case rate, but minimax suboptimal adaptation.
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Random designs
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Random designs U

Uniform random design in [0, 1]¢:

iid

X1,..., X, ~ Unif([0, 1]%).

~+0.0
1.0

Risk function R(fn, fo) = E||f — f0||%2(ﬂj,n), where P, :=n~! 2?21 0x,.
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Worst case and adaptation bounds

Theorem. Let d > 2. There exists Cy > 0 depending only on d such that

sup R(fna fO) < Cdnil/d log’Yd n,
foG.FdﬂBoo(l)

where v = 9/2 and v4 = (d®> + d + 1)/2 for d > 3.

Theorem. Let d > 2. There exists a constant Cy > 0 depending only on d such
that for any measurable function f; : [0, 1]¢ — R, we have

: (1) 2/4
R(fn, fo) < fiél;d{nf_foniz(P)Jrcd( (f)) log?d<%>}.

n
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Technical challenges

» Even the result for d = 2 was not known.

» For d > 3, the size of F,; has c-entropy e ~2(?~1), Standard chaining
argument via entropy integrals only gives a rate of n~*/(2(¢=1) for the risk.

» In the fixed design case, we circumvent the problem by decomposing the
d-dimensional lattice into unions of lower-dimensional lattices. Such
geometric structure is not available in the random design.
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Sketch of proofs Eg

> Both theorems rely on proving the following sharp bound of the adaptation
risk when fo = 0:

R(fn,0) = E|| fullZ,,) < Can™*/?1og™ n.

> If we assume || f||lso < Cv/logn, then E||an2Lz(Pn> ~ EanH%Q(P).

» To bound ||fn||2L2(P) = Pf2, we start from the basic inequality

le = fallZo@. < leli,@.) = 206 fa)La@,) = IFallT,@.) =0
= |2<67fn>L2(IPn)| + |Pnf72z - Pf’r%’ > Pfr%
> Write M := M(Lg.,) N Boo(0,1). Thus, Pf2 € (r2,4r2) implies
sup ‘(e,fﬁz(pn)’ >7r?/4 or sup |anz‘ > nt/2r2 /2.
FEMNB(0,2r) FEMNB(0,2r)

can be controlled by the first process!
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Sketch of proofs

> By a peeling argument, it suffices to control

n
sup (€, [, = sup Zéif(Xi)-
femMnB(0,r) FEMNB(0,r) ;4
0.0 ,Of.r-v’—r"’if“~
00 D».lt?f_"” e Ve e

» Partition [0, 1]¢ into slices of
the form [0,1]%"1 x [&2, £,

ny ' ny

» The envelope function within
the /" slice has Lo (P) norm
O(re=1/2).

=3
o

o
2

» Contribution from each slice is
bounded via chaining.
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Lower bounds g

Minimax lower bound:

Proposition. Let d > 2. There exists a constant ¢4 > 0, depending only on d,
such that, R

inf  sup  R(fu, fo) = can” V"

fn fo€FaNBoo (1)

Remark. curious connection with the Erdés—Szekeres theorem.

Adaptive lower bound:

Proposition. Let d > 2. There exists a constant ¢4 > 0, depending only on d,
such that A
R(fn,0) > cqn~ /4,

Remark. A version of Assouad’s lemma for random loss functions was developed.
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Summary

In this work
» lIsotonic regression behaves differently for d < 2 and d > 3.

» Worst case rate @(nd+2 d) adaptative rate @((k/n)l/\ ).
» Same behaviour under the random design.

Future directions
» Isotonic regression on a general DAG (e.g . fixed, non-lattice designs)?
» Other global loss functions (e.g. Lo (P) loss)?
» Pointwise rates and adaptation results?
» Other shape constraints in general dimensions?
» Any other problems where ERM achieves the minimax rate?

More details in Han, W., Chatterjee and Samworth (2017).
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