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Se�ing up the scene

I Two samples (X1, Y1) ∈ Rn1×p × Rn1 and (X2, Y2) ∈ Rn2×p × Rn2 ,
generated from the linear models:{

Y1 = X1β1 + ε1

Y2 = X2β2 + ε2,

where ε1 ∼ Nn1(0, σ2In1) and ε2 ∼ Nn2(0, σ2In2) are independent.

I Given (X1, Y1) and (X2, Y2), we want to test

H0 : β1 = β2 vs H1 : β1 6= β2.
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Classical F -test

I Classically, the generalised likelihood ratio test can be used to distinguish
H0 and H1.

RSS0 := ‖Y1 −X1β̂‖22 + ‖Y2 −X2β̂‖22,

RSS1 := ‖Y1 −X1β̂1‖22 + ‖Y2 −X2β̂2‖22,

F :=
(RSS0 − RSS1)/p

RSS1/(n1 + n2 − p)
∼ Fp,n1+n2−p under H0.

I Works well when n1, n2 � p.
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High-dimensional se�ings

I Existing works mostly assume sparsity of both β1 and β2 (e.g. Xia, Cai and
Cai (2018))

I But parameter of interest is really

θ :=
β1 − β2

2

and γ := (β1 + β2)/2 is a possibly dense nuisance parameter.
I We would like to impose sparsity on θ alone.
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Problem setup in high-dimensions

I More precisely, define

Θp,k(ρ) := {θ ∈ Rp : ‖θ‖2 ≥ ρ, ‖θ‖0 ≤ k},

we would like to test

H0 : θ = 0 vs H1 : θ ∈ Θp,k(ρ).

I �estion: what is the smallest ρ such that we can ‘test apart’ H0 and H1.

I Remark. If we allow arbitrary γ, it is necessary to assume that
n1 + n2 > p. Otherwise, for any θ ∈ Rp, the system of equations(

X1

X2

)
β1 =

(
Y1

Y2 − 2X2θ

)
have at least 1 solution β1, which together with β2 := β1 − 2θ, gives
perfect fit to Y1 = X1β1 and Y2 = X2β2.
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Related literature

I Two sample testing of high-dimensional means against a sparse alternative
(Cai, Liu and Xia, 2014; Chen, Li and Zhong, 2019)

I One sample testing of global null of a high-dimensional regression
coe�icient against sparse alternative (Ingster, Tsybakov and Verzelen, 2010 and
Arias-Castro, Candés and Plan, 2011)

I Testing equality of two sparse regression coe�icients (Städler and Mukherjee,
2012; Xia, Cai and Cai, 2018; Xia, Cai and Sun, 2020)

I Testing equality of two dense high-dimensional regression coe�icients
against a sparse alternative (Charbonnier, Verzelen and Villers, 2015; Zhu and
Bradic, 2016)
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Our method: complementary sketching



A complimentary sketching



Complementary sketching

I Notation: n := n1 + n2, m := n− p.
I Procedure: Given data X1, X2, Y1, Y2,

1. Construct A1 ∈ Rn1×m and A2 ∈ Rn2×m such that
(
A1

A2

)
has

orthonormal columns orthogonal to the column space of
(
X1

X2

)
.

2. Compute

W :=
(
A>1 −A>2

)(X1

X2

)
∈ Rm×p,

Z :=
(
A>1 A>2

)(Y1

Y2

)
∈ Rm.

I Similar to orthogonal sketching, but sketches the covariate matrix and the
response vector in opposite ways in the second block.
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A key reduction

I Observe that

Z = A>1 Y1 +A>2 Y2 = A>1 X1β1 +A>2 X2β2 +A1ε1 +A2ε2

= A>1 X1θ +����A>1 X1γ −A>2 X2θ +����A>2 X2γ +A1ε1 +A2ε2

= Wθ + ξ,

where ξ ∼ Nm(0, σ2Im).

I We have reduced the two-sample testing problem to a one-sample problem
of sample size m without the nuisance parameter.
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Test construction from the sketch

I Let W̃ be W with columns normalised to have `2 norm 1.

— sparse case ψsparse
λ,τ := 1{‖hard(W̃>Z, λ)‖22 ≥ τ}

— dense case ψdense
η := 1{‖Z‖22 ≥ η},

where hard(·, λ) is the entrywise hard-thresholding function with
threshold λ.

I Note that both tests ψsparse
λ,τ and ψdense

η depends on A1, A2 only through

the column span of
(
A1

A2

)
.
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Theoretical results



Assumptions

I We assume that

(C1) All entries of X1, X2 are independent
N(0, 1) distributed.

(C2) Asymptotic regime: n1, n2, p→∞
such that n1/n2 → r and p/m→ s.

I Results are asymptotic in nature due to the use of limiting spectral
distribution results from random matrix theory.

I The entrywise normality assumption can be replaced with a restricted
isometry assumption on the transformed matrix W .
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Upper and lower bounds, sparse case

I Let PXβ1,β2
be the distribution of Y1, Y2 conditional on X1, X2 and for

parameter β1, β2.
I Minimax risk

MX(k, ρ) := inf
ψ

{
sup
β∈Rp

PXβ,β(ψ 6= 0) + sup
β1,β2∈Rp

(β1−β2)/2∈Θp,k(ρ)

PXβ1,β2
(ψ 6= 1)

}
,

Theorem. Assume (C1) and (C2). If k log p
n → 0 and ρ ≥

√
8k log p
nκ1

for

κ1 := r
(1+r)2(1+s) , thenMX(k, ρ)

a.s.−−→ 0. Moreover, this asymptotic zero risk

can be achieved by ψsparse
λ,τ with λ = 2

√
log p and τ ∈ (0, 2k log p].

Theorem. Assume (C1) and (C2). If k ≤ pα for some α < 1/2 and

ρ ≤
√

(1−2α−ε)k log p
nκ1

, thenMX(k, ρ)
a.s.−−→ 1.
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Upper and lower bounds, sparse case

I For any α < 1/2, the `2 radius of separation condition on ρ matches that in
the upper bound (up to constants depending only on α).

I Thus ψsparse
λ,τ is essentially minimax optimal — the complementary

sketching eliminates the nuisance parameter without throwing away too
much information.

I The quantity nκ1 is in some sense the e�ective sample size in this problem:

nκ1 =
nr

(1 + r)2(1 + s)
∼ m

n1/n2 + n2/n1 + 2
.
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Proof sketch

1. Columns of W has `2 norms ∼
√

4nκ1 and W̃ satisfies k-RIP with

constant Cs,r
√

k log p
n . To show this, we use the following decomposition

W>W = 4(X>1 X1)(X>1 X1 +X>2 X2)−1(X>2 X2) = 4T>B(I −B)T,

where T ⊥⊥ B and B has a matrix-variate Beta distribution.

2. Size control under H0: hard(W̃>Z, λ) has most entries 0.

3. Power control under H1: let W̃ θ̃ = Wθ, we have

‖W̃>Z‖2 = ‖W̃>W̃ θ̃ + W̃ ξ‖2
≈ ‖W̃>W̃ θ̃‖2 ≈ ‖θ̃‖2 ≈

√
4nκ1‖θ‖2 ≥

√
4nκ1ρ2.

4. Lower bound: constructing a mixture of the alternative that is close in
chi-squared divergence to a null distribution.
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Upper and lower bounds, dense case

Theorem. Assume (C1) and (C2). If k log p
n → 0 and ρ ≥

√
2m1/2 log1/2 p

nκ1
, then

ψdense
η with η := m+

√
8m log p+ 4 log p has asymptotic size 0 and power 1

almost surely.

Theorem. Assume (C1) and (C2). If p1/2 ≤ k ≤ pα for some α ∈ [1/2, 1] and
ρ = o(p−1/4 log−3/4 p), thenMX(k, ρ)

a.s.−−→ 1.

I The upper and lower bounds are only matched up to logarithmic factors
and constants depending on s and t.

I k � p1/2 is the boundary between the sparse and the dense cases.
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Numerical studies



Simulation se�ings

I Generate X1, X2 with independent N(0, 1) entries and β1 ∼ Np(0, Ip).
I Given k and ρ, draw β2 − β1 uniformly at random from the set of k-sparse

vectors with `2 norm ρ.
I Noise variance σ2 estimated by a method-of-moment estimator (Dicker,

2014).
I Tuning parameters λ =

√
4 log p, τ = 3 log p and

η = m+
√

8m log p+ 4 log p.
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E�ective sample size

I Define

ν :=
mρ2

(n1/n2 + n2/n1 + 2)k log p
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Figure: Power function of ψsparse
λ,τ , estimated over 100 Monte Carlo repetitions, plo�ed

against ν in various parameter se�ings. Le� panel: n1 = n2 = 500,
p ∈ {100, 200, . . . , 900}, k = 10, ρ ∈ {0, 0.2, . . . , 2}. Right panel:
n1 ∈ {100, 200, . . . , 900}, n2 = 1000− n1, p = 400, k = 10, ρ ∈ {0, 0.2, . . . , 2}.
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Comparison with existing procedures

I Classical likelihood ratio test (requires min{n1, n2} > p)
I Test proposed by Charbonnier, Verzelen and Villers (2015)

I Test proposed by Zhu and Bradic (2016) (requires n1 = n2)
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panel: n1 = n2 = 1200, p = 1000; right panel: n1 = n2 = 500, p = 800.
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Model misspecification

I What if design or noise assumptions are violated:
(a) Correlated design: assume rows of X1 and X2 are independently

drawn from N(0,Σ) with Σ = (2−|j1−j2|)j1,j2∈[p].
(b) Rademacher design: assume entries of X1 and X2 are independent

Rademacher random variables.
(c) One way balanced ANOVA design: assume d1 := n1/p and

d2 := n2/p are integers and X1 and X2 are block diagonal matrices

X1 =

1d1
. . .

1d2

 X2 =

1d2
. . .

1d2

 ,

(d) Heavy tailed noise: we generate both ε1 and ε2 with independent
t4/
√

2 entries.
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Model misspecification

(a) (b)
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Figure: Power functions against signal `2 norm ρ on a logarithmic grid.
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Summary

I It is possible to test for a sparse di�erence between two high-dimensional
regression coe�icients, even if both coe�icients are dense.

I Complementary sketching eliminates the nuisance parameter and tests
built upon it has an essentially optimal testing radius.

I Main reference:

Gao, F. and Wang, T. (2020+) Two-sample testing of high-dimensional linear
regression coe�icients via complementary sketching. arXiv preprint,
arxiv:2011.13624.
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