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Setting up the scene

*UCL

» Two samples (X7,Y7) € R™*P x R™ and (X5,Y3) € R"2%P x R"2,
generated from the linear models:

{ Yi=Xi181+ea
Yo = X585 + €,

where €; ~ N,,,(0,021,,,) and €3 ~ N,,,(0,021L,,) are independent.

» Given (X1,Y7) and (X2, Y53), we want to test

Ho:B1 =02 vs Hy:pBi# Bo.
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Classical F'-test *UCL

» Classically, the generalised likelihood ratio test can be used to distinguish

HO and Hl.
RSSo = [|Y1 — X153 + ||Y2 — X28]3,
RSS1 = [[Y1 — X151]3 + Y2 — X253,

Fo— (RSSO — RSSl)/p

= ~F
RSS; /(n1 +n2 — p)

pnit+na—p under Hy.

» Works well when nq,ng > p.
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High-dimensional settings :UCL

» Existing works mostly assume sparsity of both ;1 and 32 (e.g. Xia, Cai and
Cai (2018))

» But parameter of interest is really

_B=p

0 : 5

and vy := (81 + B2)/2 is a possibly dense nuisance parameter.

» We would like to impose sparsity on § alone.

5/26




Problem setup in high-dimensions :UCL

» More precisely, define
Op(p) = {0 € BY : [[0]l2 > p, [0]]o < k},
we would like to test
Hy:0=0 vs Hy:0€0,i(p).

» Question: what is the smallest p such that we can ‘test apart’ Hy and H;.

Tengyao Wang 6/26



Problem setup in high-dimensions :UCL

» More precisely, define
Op(p) = {0 € BY : [[0]l2 > p, [0]]o < k},
we would like to test
Hy:0=0 vs Hy:0€0,i(p).

» Question: what is the smallest p such that we can ‘test apart’ Hy and H;.

» Remark. If we allow arbitrary =, it is necessary to assume that
n1 + ng > p. Otherwise, for any § € RP, the system of equations

X1 _ Y1
<X2) = (Yz - 2X29>

have at least 1 solution 31, which together with 85 := 31 — 26, gives
perfect fit to Y1 = X351 and Y3 = X5/s.
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Related literature :UCL

» Two sample testing of high-dimensional means against a sparse alternative
(Cai, Liu and Xia, 2014; Chen, Li and Zhong, 2019)

» One sample testing of global null of a high-dimensional regression
coefficient against sparse alternative (Ingster, Tsybakov and Verzelen, 2010 and
Arias-Castro, Candés and Plan, 2011)

» Testing equality of two sparse regression coefficients (Stadler and Mukherjee,
2012; Xia, Cai and Cai, 2018; Xia, Cai and Sun, 2020)

» Testing equality of two dense high-dimensional regression coefficients
against a sparse alternative (Charbonnier, Verzelen and Villers, 2015; Zhu and
Bradic, 2016)
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Our method: complementary sketching
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A complimentary sketching
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Complementary sketching :UCL

» Notation: n :=nj + noe, m :=n — p.
» Procedure: Given data X1, X5, Y7, Y5,
1. Construct A; € R™"*™ and Ay € R™2*™ such that (ﬁ;) has

orthonormal columns orthogonal to the column space of (g)

2. Compute
X
Wim (AT —A2T)< 1)6me,
X2 ny X,
Y,
Z = (Al AJ R™.
ot a0 (1) ¢

» Similar to orthogonal sketching, but sketches the covariate matrix and the
response vector in opposite ways in the second block.
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A key reduction :UCL

» Observe that

Z=AY1+AJYs = Al X181 + Aj XofBo + Arer + Azes
= A X10 + ALXTy — AJ Xo0 + Aj Xy +

=Wo+¢,

where £ ~ N,,(0,021,,).

» We have reduced the two-sample testing problem to a one-sample problem
of sample size m without the nuisance parameter.
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Test construction from the sketch :UCL

» Let W be W with columns normalised to have f5 norm 1.

— sparse case i’?frse = 1{||hard(W " Z,))|3 > 7}
— dense case 1/1261156 = ]l{||Z||§ > n},

where hard(-, \) is the entrywise hard-thresholding function with
threshold A.

> Note that both tests ¢)}">"*° and 1/126“36 depends on Aj, Ay only through
the column span of (ﬁ;)
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Theoretical results
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Assumptions

*UCL

» We assume that
(C1) All entries of X7, X are independent
N(0,1) distributed.
(C2) Asymptotic regime: n1,ng,p — 00

such that ny /ny — r and p/m — s.

N2

Tengyao Wang

X

Xz

14/26



Assumptions

*UCL

» We assume that

(C1) All entries of X7, X are independent
N(0,1) distributed.

(C2) Asymptotic regime: n1,ng,p — 00 i
such that ny /ny — r and p/m — s.

nm

N2

X

» Results are asymptotic in nature due to the use of limiting spectral

distribution results from random matrix theory.

Xz

» The entrywise normality assumption can be replaced with a restricted
isometry assumption on the transformed matrix W.

Tengyao Wang
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Upper and lower bounds, sparse case :UCL

> Let ng,ﬁz be the distribution of Y7, Y5 conditional on X1, X5 and for
parameter 31, Ba.

» Minimax risk

Mx (k,p ::inf{sup P¥,(¥#0)+  sup PX . (W+#1 },
(hop) = int{sup PX,(0 £ 00+ s P (0 £ D)
(B1—B2)/2€0Op,kx(p)
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Upper and lower bounds, sparse case :UCL

> Let ng,ﬁz be the distribution of Y7, Y5 conditional on X1, X5 and for
parameter 31, Ba.
» Minimax risk
Mx (k. p) = igf{;uﬂg Pisw#0)+ s PXa@#D},
e P

B1,B2€RP
(B1—B2)/2€0y 1 (p)

Theorem. Assume (C1) and (C2). If &ngp —0andp >

K1 = m, then Mx (k, p) =25 0. Moreover, this asymptotic zero risk

can be achieved by ¢{"1 with A = 2y/logp and 7 € (0, 2k log p).
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Upper and lower bounds, sparse case :UCL

> Let ng,ﬁz be the distribution of Y7, Y5 conditional on X1, X5 and for
parameter 31, Ba.

» Minimax risk
Mxc(k, p) = inf{ sup P56 £0)+  sup P 5 (6 £ 1)},
WP BERP

B1,B2€RP
(B1—B2)/2€0y 1 (p)

Theorem. Assume (C1) and (C2). If % —0andp >,/ 81‘”1:g” for

K1 = m, then Mx (k, p) =25 0. Moreover, this asymptotic zero risk

can be achieved by z/;i{’frse with A = 2y/logp and 7 € (0, 2k log p).

Theorem. Assume (C1) and (C2). If k& < p® for some o < 1/2 and

p < «/02(’”7;)“0?’]) then Mx (k, p) 225 1.
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Upper and lower bounds, sparse case :UCL

» For any a < 1/2, the /5 radius of separation condition on p matches that in
the upper bound (up to constants depending only on «).

» Thus )" is essentially minimax optimal — the complementary

sketchin7g eliminates the nuisance parameter without throwing away too
much information.
» The quantity nk; is in some sense the effective sample size in this problem:

nr m

(1-|—7")2(1 +s) ~ ’rLl/?’LQ +n2/n1 +2°

nKky, =
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Proof sketch :UCL

1. Columns of W has f5 norms ~ \/4nr; and W satisfies k-RIP with

constant Cs klflﬁ. To show this, we use the following decomposition

WIW = 4(X] X)) (X[ X1+ Xy Xo) 1 (Xy Xo) =4T " B(I — B)T,

where T' L B and B has a matrix-variate Beta distribution.
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1. Columns of W has f5 norms ~ \/4nr; and W satisfies k-RIP with
constant Cs M;’Lﬁ. To show this, we use the following decomposition
WIW = 4(X] X)) (X[ X1+ Xy Xo) 1 (Xy Xo) =4T " B(I — B)T,

where T' L B and B has a matrix-variate Beta distribution.
2. Size control under Hy: hard(W T Z, \) has most entries 0.
3. Power control under Hi: let Wo = W0, we have
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Proof sketch :UCL

1. Columns of W has f5 norms ~ \/4nr; and W satisfies k-RIP with
constant Cs M;’Lﬁ. To show this, we use the following decomposition
WIW = 4(X] X)) (X[ X1+ Xy Xo) 1 (Xy Xo) =4T " B(I — B)T,

where T' L B and B has a matrix-variate Beta distribution.
2. Size control under Hy: hard(W T Z, \) has most entries 0.
3. Power control under Hi: let Wo = W0, we have
W Z|ly = [|[WT W6+ Wel|
~ W TWO2 ~ [|0]2 = VAns||0]2 > v/4nk1p?.

4. Lower bound: constructing a mixture of the alternative that is close in
chi-squared divergence to a null distribution.
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Upper and lower bounds, dense case :UCL

Theorem. Assume (C1) and (C2). If %ﬂ —0andp > %, then
1

z/),d]ense with 7 := m + /8mlog p 4+ 4log p has asymptotic size 0 and power 1
almost surely.

Theorem. Assume (C1) and (C2). If p'/2 < k < p® for some « € [1/2,1] and
p=o(p~/*log™*/* p), then Mx(k, p) =25 1.

» The upper and lower bounds are only matched up to logarithmic factors
and constants depending on s and t.

» k= p'/? is the boundary between the sparse and the dense cases.

Tengyao Wang
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Numerical studies
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Simulation settings :UCL

> Generate X1, X with independent N(0, 1) entries and 81 ~ N, (0, I,,).

» Given k and p, draw 32 — (31 uniformly at random from the set of k-sparse
vectors with ¢5 norm p.

» Noise variance o2 estimated by a method-of-moment estimator (Dicker,
2014).

» Tuning parameters A = y/4logp, 7 = 3log p and
n=m++/8mlogp + 4logp.
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Effective sample size

*UCL

» Define

mp

2

"~ (ny/ng + ng/ny + 2)klogp
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Figure: Power function of i

against v in various parameter settings. Left panel: ny = na = 500,
p € {100,200,...,900}, k = 10, p € {0,0.2,...,2}. Right panel:

sparse
AT

6

, estimated over 100 Monte Carlo repetitions, plotted

n1 € {100,200, ...,900}, na = 1000 — ny, p = 400, k = 10, p € {0,0.2,...,2}.
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Comparison with existing procedures :UCL

» Classical likelihood ratio test (requires min{ny, na} > p)
» Test proposed by Charbonnier, Verzelen and Villers (2015)
» Test proposed by Zhu and Bradic (2016) (requires 71 = na)
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Comparison with existing procedures :UCL

» Classical likelihood ratio test (requires min{ny, na} > p)
» Test proposed by Charbonnier, Verzelen and Villers (2015)
» Test proposed by Zhu and Bradic (2016) (requires n1 = na)
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Figure: Power comparison of different methods at different sparsity levels
k€ {1,10, [p'/?],0.1p, p} and different signal £2 norm p on a logarithmic grid. Left
panel: n1 = na = 1200, p = 1000; right panel: n1 = na = 500, p = 800.
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Model misspecification ‘UCL

» What if design or noise assumptions are violated:
(a) Correlated design: assume rows of X7 and Xs are independently

drawn from N(0,%) with © = (2711=72l), . oo,

(b) Rademacher design: assume entries of X; and X5 are independent
Rademacher random variables.

(c) One way balanced ANOVA design: assume d; := n;/p and
dy := no/p are integers and X7 and X5 are block diagonal matrices

1d1 1d2
Xl - X2 = )
ldg 1d2

(d) Heavy tailed noise: we generate both €; and ez with independent

t4/\/§ entries.
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Model misspecification ‘UCL
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Figure: Power functions against signal £2 norm p on a logarithmic grid.
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Summary ‘UCL

» It is possible to test for a sparse difference between two high-dimensional
regression coefficients, even if both coefficients are dense.

» Complementary sketching eliminates the nuisance parameter and tests
built upon it has an essentially optimal testing radius.

» Main reference:
Gao, F. and Wang, T. (2020+) Two-sample testing of high-dimensional linear
regression coefficients via complementary sketching. arXiv preprint,
arxiv:2011.13624.
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