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Motivation

» Many modern applications involve time-ordered high-dimensional data.

» Heterogeneity is a common feature of high-dimensional data, which is
typically manifested through non-stationarity for data streams.

» Change point analysis can be used as a first step towards handling such
heterogeneity.
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Landscape of change point literature

» Change point analysis dates back at least to Page (1955).

» In the univariate setting, the state-of-the-art methods include PELT (Killick,
Fearnhead and Eckley, 2012), WBS (Fryzlewicz, 2014) and SMUCE (Frick,
Munk and Sieling, 2014).

» Some of the univariate change point methodologies have been extended to
multivariate settings. (Horvath, Kokoszka and Steinebach, 1999; Ombao,
Von Sachs and Guo, 2005; Aue et al., 2009; Kirch, Mushal and Ombao, 2014).

» Increasing interest in high-dimensional settings. (Aston and Kirch, 2014;
Enikeeva and Harchaoui, 2014; Jirak, 2015; Cho and Fryzlewicz, 2015; Cho,
2016).

» We propose a new method, inspect, based on convex optimisation.
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Basic model

> Data generating mechanism: X = (X;,..., X,,) € RP*" with
independent X1,..., X, suchthatfor1 <t <mn,

X; ~ Np(ps, 0*L,).

» Change points: 1 <23 <--- <2z, <n—1.(2:=0and z,4+1 :=n)

» Piecewise constant mean structure
Pzl = 0 = Kz = /J/(Z)) 0<i<w

Vectors of change () := (1) — ;,(=1),
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Basic model

» Additional assumptions:

Spatial sparsity of changes

16D <k, V1<i<uw.
Minimal signal strength

10D >0, V1<i<w
Stationary run lengths satisfy

Zi41 — % > NT, VOo<i<uvw.
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Basic model

» Additional assumptions:

Spatial sparsity of changes

16D <k, V1<i<uw.
Minimal signal strength

10D >0, V1<i<w
Stationary run lengths satisfy

Zi41 — % > NT, VOo<i<uvw.

> Let P(n,p, k,v,9,7,02) be the set of distributions satisfying the above
assumptions.
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Estimating a single change point
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Estimating a single change point

> Letrv =1, write 2 := 21,0 := 0 and 7 :=n~ ! min{z,n — z}.

el g

= X

» Optimal projection direction is 6/]|0]|2 =: v.
» (Sparse) principal component analysis? Inefficient use of temporal
information.
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Temporal aggregation

» Use CUSUM transformation 7 : RP*"™ — RP*("=1) for temporal
aggregation:

t

Tk = (S X - o)
r=1

r=t+1

= R iy

= X
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» Use CUSUM transformation 7 : RP*"™ — RP*("=1) for temporal
aggregation:

Tk = (S X - o)

r=t+1 r=1
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Temporal aggregation

» Use CUSUM transformation 7 : RP*"™ — RP*("=1) for temporal
aggregation:

[T(M)]j = =t (L i Mj — %ZMJ',T)-

n

Denote A:=T(p), E:=T(W)and T := T(X).
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Estimating the oracle projection direction

» For a single change point, we can write A := T (u) explicitly as

1/ﬁ(nfz)ﬁj, ift <z
A]‘,t =
\/ 2t 205, ift > z.

Oracle projection direction v is the leading left singular vector of A.

» We could therefore estimate v by

Umax,k; € argmax ||uTTH2.
ueSP—1(k)
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Estimating the oracle projection direction

» For a single change point, we can write A := T (u) explicitly as

1/ﬁ(nfz)ﬁj, ift <z
Aj,t - p .
\/ 20, ift > z.

Oracle projection direction v is the leading left singular vector of A.

» We could therefore estimate v by

Umax,k; € argmax ||uTTH2.
uesSP—1 (k)

Proposition. When n > 6, with probability at least 1 — 4(plog n)~1/2

16v/20 [klog(plog n)

T n

Siné(’f)max,ka )_
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Estimating the oracle projection direction

» For a single change point, we can write A := T (u) explicitly as

1/ﬁ(nfz)ﬁj, ift <z
Aj,t =
\/ 2t 205, ift > z.

Oracle projection direction v is the leading left singular vector of A.

» We could therefore estimate v by

Umax,k; € argmax ||uTTH2.
uesSP—1 (k)

Proposition. When n > 6, with probability at least 1 — 4(plog n)~1/2,

16v2 I I
i L (B, 0) < 6v20 |[klog(plogn)
79 n

But computing Omax,x is NP-hard! (Tillmann and Pfetsch, 2014)
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Convex relaxation

» How to make the non-convex problem convex? First, lift the original
problem into a matrix optimisation problem.

max ||uTT||2 = max uw Tw
wesr 1 (k) wesP =1 (k) wesn >
= max (uw", T) = max (M, T),
ueSP—1(k),weSn—2 MeM

where M := {M : || M||« = 1,vk(M) = 1, nnzr(M) < k}. and
(A, B) := tr(AT B) is the trace inner product.
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Convex relaxation

» How to make the non-convex problem convex? First, lift the original
problem into a matrix optimisation problem.

max ||uTT||2 = max uw Tw
uesSP=1(k) uesP—(k),wesn =2

(uwT,T> = max (M, T),

max X
ueSP—1(k),weSn—2 MeM
where M := {M : || M||« = 1,vk(M) = 1, nnzr(M) < k}. and
(A, B) := tr(AT B) is the trace inner product.
» Find a convex relaxation of the above matrix problem

M € argmax{(M,T) — \| M|},
MeS,

where Sy := {M € R~V | M|, < 1}.
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Further relaxation

> The optimiser M € argmaxy;es, {(M,T) — A|[M||; } can be computed
via alternating direction method of multipliers (ADMM).

» Polynomial time computable, but still slow for large datasets.
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» Polynomial time computable, but still slow for large datasets.

» Further enlarge the admissible set to

Sy = {M e RP*("=1) 1 || M ||, < 1}.

» Much easier to compute:
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» But the relaxed problem is further away from the original non-convex
problem.
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Further relaxation

> The optimiser M € argmaxy;es, {(M,T) — A|[M||; } can be computed
via alternating direction method of multipliers (ADMM).

» Polynomial time computable, but still slow for large datasets.

» Further enlarge the admissible set to
Sy = {M e RP*("=1) 1 || M ||, < 1}.

» Much easier to compute:

- soft(T, \)
M= ————— cargmax{ (T, M) — \||M||1}-
fsofe(T Wl © "L LT A =AML

» But the relaxed problem is further away from the original non-convex
problem. ...Statistical and computational trade-off.
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Estimating the oracle projection direction

In both relaxations (S; or S3), we estimate the oracle projection direction by

¥ := leading left singular vector of M.

Proposition. If n > 6 and A = 20/log(plogn), then with probability at least

1—4(plogn)~'/2,
4 k1 1
sin £(5,v) < 222, [Flog(plogn)
T n
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Estimating a single change point

Algorithm for a single change point
Input X € RP*™ X\ > 0
Step 1 CUSUM transformation T + T (X)
Step 2 Find

M € argmax{(T, M) = N[M|;}  (S=S810rSy)
MeS
Step 3 Set ¥ < the leading left singular vector of M

Step 4 Let T < 9" T, set 2 < argmax; |T3| and Tiyax < max; [T},
Output 2 and Tiax.
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Theoretical guarantees

Theoretical performance of a sample-splitting version of the algorithm:

Theorem. Suppose o is known and X ~ P € P(n,p, k,1,9,7,02). Let 2 be
the output of the sample-splitting algorithm with input X, o and

= 20+/log(plogn). If n > 12 and C"\/ klogplogn) < 1, then

1 '0? log 1
p(|2_ _CogQOgn)Zl_?
n nd log(n/2)

e.g. consider the setting: logp = O(logn), ¥ < n=% 7 xn~b k < n°. If
a+b+c/2 < 1/2, then rate of convergence is o(n~"+2¢%9) for all § > 0.
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Theoretical guarantees

Theoretical performance of a sample-splitting version of the algorithm:

Theorem. Suppose o is known and X ~ P € P(n,p, k,1,9,7,02). Let 2 be
the output of the sample-splitting algorithm with input X, o and

= 20+/log(plogn). If n > 12 and C"\/ klogplogn) < 1, then

1 '0? log 1
p(|2_ _C<>g20gn)21_7
n n log(n/2)

e.g. consider the setting: logp = O(logn), ¥ <n~% 7 < n=b k=nc If
a+b+c/2 < 1/2, then rate of convergence is o(n~"+2¢%9) for all § > 0.

Minimax optimal up to log log n.
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Estimating multiple change points
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Binary segmentation

A top-down approach:
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Binary segmentation

A top-down approach:
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Binary segmentation

A top-down approach:

But... multiple change points may offset each other.

Misaligned change coordinates result in bad projection direction estimator.
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Wild binary segmentation

Wild binary segmentation scheme (Fryzlewicz, 2014)

high-dimensional change point estimation 17/29



Wild binary segmentation

Wild binary segmentation scheme (Fryzlewicz, 2014)
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Wild binary segmentation

Wild binary segmentation scheme (Fryzlewicz, 2014)
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Estimating multiple change points

Algorithm inspect (‘InspectChangepoint’ R package)
Input X e RP*" X >0,£>0,6>0,Q €N
Step 1 Sample @) random intervals [s1,e1],...,[sq, eg]
Step 2 Run wbs(0, n), where function wbs(s, e) is defined by

> Qs < {q:[sq,eq] C[s+nB,e—npl}
» For each g € Q, ¢, run single change point algorithm with input

Xlsa:¢a] and A to obtain 219 and T\%,.
> Find qp € argmax, Tl and set b+ S0 + 21901,
> If TIE?QL > £, then add b to the set of estimated change points, and run
wbs(s,b) and wbs(b, ¢).
Output ordered estimated change points 21, ..., 2.
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Estimating multiple change points

An example: inspect in action

x T ® 1001

1497

peak of projected CUSUM

projected CUSUM statistics
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candidate changepoint location nodes in binary segmentation algorithm
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Theoretical guarantees

Theoretical performance of a sample-splitting version of inspect:

Theorem. Suppose o is known and X ~ P € P(2n,p,k, 1,9, 7,0?). Let
21 < --- < Z; be the output of the sample-splitting algorithm with input X, o,

X :=4a+/log(np), £ := A, B and Q. Define p = p,, := \’n ' 27 7 If
nt > 14,2p < B < %7’ and Cpk73 < 1, then

e TR 3 logn
T np*

1
Pp{ﬁ =vand —|% — 2| <C'p Vi} >1-—
n

e.g. consider the setting logp = O(logn), ¥ < n=% 7 < n=b k=nc If
a+b+c/2<1/2anda+3b< 1/2, then p, = o(n~1+2a+55+9) for all § > 0.
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Numerical studies
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Numerical studies

We compare inspect algorithm with other recently proposed methods

>

>
>
>
>

Sparsified Binary Segmentation (sbs) (Cho and Fryzlewicz, 2015)

the Double CUSUM algorithm (dc) (Cho, 2016)

a scan statistic-based algorithm (scan) (Enikeeva and Harchaoui, 2014)

an fo, CUSUM aggregation algorithm (agg__) (Jirak, 2015)

an £ CUSUM aggregation algorithm (agg,) (Horvath and Huskova, 2012)
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Single change point estimation

n p k z Y inspect dc sbs scan agg, agg
1000 1000 3 400 0.8 9.5 14.6  117.2 9.0 154.9 15.0
1000 1000 32 400 0.8 20.7 61.1 83.6 26.4 150.1 57.2
1000 1000 100 400 0.8 33.1 101.0 122.0 59.2 158.3 106.4
1000 1000 1000 400 0.8 57.7 159.9 186.3 145.2 152.7 195.2
1000 2000 3 400 0.8 10.8 154 1329 10.3 2328 15.5
1000 2000 45 400 0.8 29.6 121.0 1370 39.1 2375 73.4
1000 2000 200 400 0.8 47.4 176.8 187.7 123.6 2354  158.2
1000 2000 2000 400 0.8 67.2 219.6 240.0 210.3 2334 245.8
2000 1000 3 800 0.8 8.1 14.2  178.3 8.3 42.6 14.4
2000 1000 32 800 0.8 12.5 36.1 58.7 16.9 40.6 38.2
2000 1000 100 800 0.8 17.0 46.7 75.8 24.6 40.0 47.3
2000 1000 1000 800 0.8 31.0 89.0 111.2 454 39.9 91.0
2000 2000 3 800 0.8 9.3 159  215.7 9.0 143.6 16.1
2000 2000 45 800 0.8 16.7 35.8 100.7 21.3 1525  39.2
2000 2000 200 800 0.8 25.6 56.7 126.5 32.0 151.8  59.1
2000 2000 2000 800 0.8 48.4 1079 208.0 66.1 150.6 153.5

Table: Root mean squared error in single change point estimation by different algorithms.
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Single change point estimation

Distribution of estimated change point location
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Figure: Estimated densities of location of change point estimates by different algorithms.
Left panel: (n,p, k, 2,9, a%) = (2000, 1000, 32, 800, 0.5, 1);
right panel: (n,p, k, z,9, %) = (2000, 1000, 32,800, 1, 1).
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Multiple change points estimation

Three change points at 500, 1000, 1500. Writing 9(*) := ||9C )||2/||9(1)||1/2,
(WM, 92 9By = (19,219,319).
1) 9@ 9@ v .
(0, 9'%,9)) | method o 1 2 3 4 s ARl % best
inspect 0 0 20 70 10 0 0.90 51
dc 0 0 24 58 17 1 0.87 27
sbs 0 0 17 61 17 5 0.85 11
.6, 1. .
(06,1.2,1.8) scan 0 0 74 26 0 0 078 15
agg, 0 0 30 67 2 1 08 3
agg . 0 0 32 58 9 1 0.85 15
inspect 0 0 65 31 4 0 0.73 44
dc 0O 0 73 25 2 0 0.70 18
sbs 0 0 65 29 6 0 0.68 16
(0.47 0.8, 1.2) scan 0 2 96 2 0 0 0.70 29
agg, 0 0 8 14 3 0 071 5
agg .. o 0 8 17 1 0 069 12

Table: Multiple change point simulation results. Other simulation parameters: n = 2000,
p = 200, k = 40, z = (500, 1000, 1500) and o2 = 1.
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Multiple change point estimation

Distribution of estimated chang-epoint locations
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Figure: Histograms of estimated change point locations by inspect, dc, sbs and scan.
Parameters: n = 2000, p = 200, k = 40, z = (500, 1000, 1500),
WM, 93 9®) =(0.6,1.2,1.8),0% = 1.
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Model misspecification

Robustness of our algorithm:

Model inspect dc sbs scan agg, agg._
Munit 2.7 9.6 17.1 4.9 4.3 10.2
Mexp 2.6 9.6 42.6 5.0 4.7 9.6
Mes 1oc (0.2) 3.5 97 192 70 54 9.8
Mes,1oc(0.5) 5.8 97 246 87 93 9.6
Mcs(0.5) 1.5 7.7 149 3.0 3.6 6.7
Ms(0.9) 2.7 9.9 18.6 4.7 4.7 9.6
Miemp (0.1) 6.1 203 1028 94 109 202
Mtemp (0.3) 30.1 324 2764 388 382 34.8
Masyne (10) 5.8 115 185 78 7.0 1.3

Table: Root mean squared error for different algorithms in single change point
estimation, under different forms of model misspecification. Simulation parameters:

n = 2000, p = 1000, k = 32, z = 800, ¥ = 1.5.
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Real data application

Copy number variation abnormality detection
Microarray dataset: 43 bladder cancer patients and 2215 loci.

Shared copy number abnormality regions likely disease related.

patient number
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Summary

In this work
» We propose a new method for high-dimensional change point estimation.
» The key idea is optimal spatial aggregation via convex optimisation.

» R package InspectChangepoint is available on CRAN.
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Summary

In this work
» We propose a new method for high-dimensional change point estimation.
» The key idea is optimal spatial aggregation via convex optimisation.

» R package InspectChangepoint is available on CRAN.
Future directions
» Handling non-trivial unknown spatial correlation

» Incorporating additional spatial structure in the signal

» Online method for high-dimensional change point esitmation

Thank you!
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