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Abstract

We introduce a new method for sparse principal component analysis, based on

the aggregation of eigenvector information from carefully-selected random projections

of the sample covariance matrix. Unlike most alternative approaches, our algorithm

is non-iterative, so is not vulnerable to a bad choice of initialisation. Our theory

provides great detail on the statistical and computational trade-off in our procedure,

revealing a subtle interplay between the effective sample size and the number of random

projections that are required to achieve the minimax optimal rate. Numerical studies

provide further insight into the procedure and confirm its highly competitive finite-

sample performance.

1 Introduction

Principal component analysis (PCA) is one of the most widely-used techniques for dimen-

sionality reduction in Statistics, Image Processing and many other fields. The aim is to

project the data along directions that explain the greatest proportion of the variance in the

population. In the simplest setting where we seek a single, univariate projection of our data,

we may estimate this optimal direction by computing the leading eigenvector of the sample

covariance matrix.

Despite its successes and enormous popularity, it has been well-known for a decade or

more that PCA breaks down as soon as the dimensionality p of the data is of the same order

as the sample size n. More precisely, suppose that X1, . . . , Xn
iid∼ Np(0,Σ) are observations

from a Gaussian distribution with a spiked covariance matrix Σ = Ip + v1v
>
1 whose leading

eigenvector is v1 ∈ Sp−1 := {v ∈ Rp : ‖v‖ = 1}, and let v̂1 denote the leading unit-length

eigenvector of the sample covariance matrix Σ̂ := n−1
∑n

i=1 XiX
>
i . Then Johnstone and Lu
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(2009) and Paul (2007) showed that v̂1 is a consistent estimator of v1, i.e. |v̂>1 v1|
p→ 1, if

and only if p = pn satisfies p/n → 0 as n → ∞. It is also worth noting that the principal

component v1 may be a linear combination of all elements of the canonical basis in Rp,

which can often make it difficult to interpret the estimated projected directions (Jolliffe,

Trendafilov and Uddin, 2003).

To remedy this situation, and to provide additional interpretability to the principal com-

ponents in high-dimensional settings, Jolliffe, Trendafilov and Uddin (2003) and Zou, Hastie

and Tibshirani (2006) proposed Sparse Principal Component Analysis (SPCA). Here it is

assumed that the leading population eigenvectors belong to the k-sparse unit ball

Bp−1
0 (k) :=

{
v = (v(1), . . . , v(p))> ∈ Sp−1 :

p∑
j=1

1{v(j) 6=0} ≤ k

}
for some k ∈ {1, . . . , p}. In addition to the easier interpretability, a great deal of research

effort has shown that such an assumption facilitates improved estimation performance (e.g.

Johnstone and Lu, 2009; Paul and Johnstone, 2012; Vu and Lei, 2013; Cai, Ma and Wu,

2013; Ma, 2013; Wang, Berthet and Samworth, 2016a). To give a flavour of these results,

let Vn denote the set of all estimators of v1, i.e. the class of Borel measurable functions from

Rn×p to Sp−1. Vu and Lei (2013) introduce a class Q of sub-Gaussian distributions whose

first principal component v1 belongs to Bp−1
0 (k) and show that1

inf
ṽ1∈Vn

sup
Q∈Q

EQ{1− (ṽ>1 v1)2} � k log p

n
. (1)

Thus, consistent estimation is possible in this framework provided only that k = kn and

p = pn satisfy (k log p)/n → 0. Vu and Lei (2013) show further that this estimation rate is

achieved by the natural estimator

v̂1 ∈ argmax
v∈Bp−1

0 (k)

v>Σ̂v. (2)

However, results such as (1) do not complete the story of SPCA. Indeed, computing the

estimator defined in (2) turns out to be an NP-hard problem (e.g. Tillmann and Pfetsch,

2014): the naive approach would require searching through all
(
p
k

)
of the k × k symmetric

submatrices of Σ̂, which takes exponential time in k. Therefore, in parallel to the theoret-

ical developments described above, numerous alternative algorithms for SPCA have been

proposed in recent years. For instance, several papers have introduced techniques based on

solving the non-convex optimisation problem in (2) by invoking an `1-penalty (e.g. Jolliffe,

Trendafilov and Uddin, 2003; Zou, Hastie and Tibshirani, 2006; Shen and Huang, 2008; Wit-

ten, Tibshirani and Hastie, 2009). Typically, these methods are fast, but lack theoretical

performance guarantees. On the other hand, d’Aspremont et al. (2007) propose to solve

1Here, an � bn means 0 < lim infn→∞ |an/bn| ≤ lim supn→∞ |an/bn| <∞.
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the optimisation problem in (2) via semidefinite relaxation. This approach and its variants

were analysed by Amini and Wainwright (2009), Vu et al. (2013), Wang, Lu and Liu (2014)

and Wang, Berthet and Samworth (2016a), and have been proved to achieve the minimax

rate of convergence under certain assumptions on the underlying distribution and asymp-

totic regime, but the algorithm is slow compared to other approaches. In a separate, recent

development, it is now understood that, conditional on a Planted Clique hypothesis from

theoretical computer science, there is an asymptotic regime in which no randomised poly-

nomial time algorithm can attain the minimax optimal rate (Wang, Berthet and Samworth,

2016a). Various fast, iterative algorithms were introduced by Johnstone and Lu (2009), Paul

and Johnstone (2012), and Ma (2013); the last of these was shown to attain the minimax

rate under a Gaussian spiked covariance model. We also mention the computationally-

efficient combinatorial approaches proposed by Moghaddam, Weiss and Avidan (2006) and

d’Aspremont, Bach and El Ghaoui (2008) that aim to find solutions to the optimisation

problem in (2) using greedy methods.

A common feature to all of the computationally efficient algorithms mentioned above is

that they are iterative, in the sense that, starting from an initial guess v̂[0] ∈ Rp, they refine

their guess by producing a finite sequence of iterates v̂[1], . . . , v̂[T ] ∈ Rp, with the estimator

defined to be the final iterate. A major drawback of such iterative methods is that a bad

initialisation may yield a disastrous final estimate. To illustrate this point, we ran a simple

simulation in which the underlying distribution is N100(0,Σ), with

Σ =

(
10J10

8.9J90 + I90

)
+ 0.01I100,

where Jq = 1q1
>
q /q ∈ Rq×q denotes the matrix with each entry equal to 1/q. In this example,

v1 = (1>10,0
>
90)>/

√
10, so k = 10. Figure 1 shows, for several different SPCA algorithms,

different sample sizes and different initialisation methods, the average values of the loss

function

L(u, v) := sin](u, v) = {1− (u>v)2}1/2, (3)

over 100 repetitions of the experiment. In the upper panels, the initialisation methods used

were the default recommendations of the respective authors, namely diagonal thresholding

(d’Aspremont, Bach and El Ghaoui, 2008; Ma, 2013), and vanilla PCA (Zou, Hastie and

Tibshirani, 2006; Shen and Huang, 2008; Witten, Tibshirani and Hastie, 2009). We note

that the consistency of diagonal thresholding relies on a spiked covariance structure, which

is violated in this example. In the lower panels, we ran the algorithms with 10 independent

initialisations chosen uniformly at random on the unit Euclidean sphere in Rp, and selected

the solution v̂ from these 10 that maximises v 7→ v>Σ̂v. The main observation is that

each of the previously proposed algorithms mentioned above produces very poor estimates,

with some almost orthogonal to the true principal component! The reason for this is that

all of the default initialisation procedures are unsuccessful in finding a good starting point,

and this problem is not fixed by using multiple random initialisations; cf. Section 4.3 for

3



further comparisons. For comparison, we also present the corresponding results for Wang,

Berthet and Samworth (2016a)’s variant of the semi-definite programming (SDP) algorithm

introduced by d’Aspremont et al. (2007). This method is guaranteed to converge from any

initialisation, so does not suffer the same drawbacks as mentioned above.
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Figure 1: Average loss (3) (left) and its logarithm (right) for different sample sizes n; default

initialisation methods (top) and best of 10 random initialisations (bottom). Blue: the SPCAvRP

algorithm proposed in this paper; purple: SDP; red: Ma (2013); orange: Witten, Tibshirani and

Hastie (2009); cyan: d’Aspremont, Bach and El Ghaoui (2008); magenta and green: Shen and

Huang (2008) with `1 and `0-thresholding respectively; black: Zou, Hastie and Tibshirani (2006).

In Section 2 of this paper, we propose a novel algorithm for SPCA that aggregates

estimates over carefully-chosen random projections of the data into a lower-dimensional

space. In contrast to the other algorithms mentioned above, it is non-iterative and does not

depend on a choice of initialisation, so it has no difficulty with the simulation example above.

Indeed, from the blue curve in Figure 1, we see that it considerably outperforms even the
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SDP algorithm, and moreover it was over 50 times faster to compute.

Our algorithm, which we refer to as SPCAvRP, turns out to be attractive for both

theoretical and computational reasons. Indeed our theory, developed in Section 3, provides a

detailed description of the statistical and computational trade-off involved in the SPCAvRP

algorithm. It reveals a subtle interaction between conditions on an effective sample size

parameter and the number of projections, under which our estimator attains the minimax

optimal rate. When the effective sample size is large, the minimax rate can be attained with

a number of projections that grows only slightly faster than linearly in p. This turns out not

to contradict the computational lower bound of Wang, Berthet and Samworth (2016a), which

applies to an intermediate effective sample size regime where the SPCAvRP algorithm would

require an exponential number of projections to attain the optimal rate. The computational

attractions of the proposed algorithm include the fact that it is highly scalable due to easy

parallelisation, and does not even require computation of Σ̂ ∈ Rp×p, since it suffices to

extract principal submatrices of Σ̂, which can be done by computing the sample covariance

matrices of the projected data. This may result in a significant computational saving if p is

very large. Several numerical aspects of the algorithm, including a finite-sample simulation

comparison with alternative methods on both simulated and real data, are considered in

Section 4. These reveal that our SPCAvRP algorithm has very competitive performance,

and enjoys robustness properties that iterative algorithms do not share. The proofs of all of

our results are given in Section 5.

Algorithms based on random projections have recently been shown to be highly effec-

tive for several different problems in high-dimensional statistical inference. For instance, in

the context of high-dimensional classification, Cannings and Samworth (2017) showed that

their random projection ensemble classifier that aggregates over projections that yield small

estimates of the test error can result in excellent performance. Marzetta, Tucci and Simon

(2011) employ an ensemble of random projections to construct an estimator of the popula-

tion covariance matrix and its inverse in the setting where n < p. Fowler (2009) introduced

a so-called compressive-projection PCA that reconstructs the sample principal components

from many low-dimensional projections of the data. Finally, to decrease the computational

burden of classical PCA, Qi and Hughes (2012) and Pourkamali-Anaraki and Hughes (2014)

propose estimating v1(Σ) by the leading eigenvector of n−1
∑n

i=1 PiXiX
>
i Pi, where P1, . . . , Pn

are random projections of a particular form.

Notation. We conclude this introduction with some notation used throughout the paper.

For a vector u ∈ Rp, we write u(j) for its jth component and let ‖u‖ :=
{∑p

j=1(u(j))2
}1/2

denote its Euclidean norm. For a real symmetric matrix U ∈ Rp×p, we let λ1(U) ≥ λ2(U) ≥
. . . ≥ λp(U) denote its eigenvalues, arranged in decreasing order. In addition, we define the

leading eigenvector of U by

v1(U) := sargmax
v∈Sp−1

v>Uv,
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where sargmax denotes the smallest element of the argmax in the lexicographic ordering.

In the special case where U = Σ, we drop the argument, and write the eigenvalues and

eigenvectors as λr = λr(Σ) and vr = vr(Σ), respectively. We also define U (j,j′) to be the

(j, j′)th entry of U , and write ‖U‖op := sup‖x‖=1 ‖Ux‖ for the operator norm of matrix U .

For r ∈ N, let [r] := {1, . . . , r}. Let

S1 = S1(v1) := {j ∈ [p] : v
(j)
1 6= 0}

denote the support of the vector v1 ∈ Rp. We write vmin
1 := minj∈S1 |v

(j)
1 | for the smallest

non-zero component of v1 in absolute value.

For any index subset S ⊆ [p] we write PS to denote the projection onto the span of

{ej : j ∈ S}, where e1, . . . , ep are the standard Euclidean basis vectors in Rp, so that PS is

a p × p diagonal matrix whose jth diagonal entry is 1{j∈S}. Finally, for a, b ∈ R, we write

a . b to mean that there exists a universal constant C > 0 such that a ≤ Cb.

2 SPCA via random projections

2.1 Single principal component estimation

In this section, we describe our algorithm for estimating a single principal component in

detail; more general estimation of multiple principal components and principal subspaces is

treated in Section 2.2 below. Let x1, . . . , xn be data points in Rp and let Σ̂ := n−1
∑n

i=1 xix
>
i .

We think of x1, . . . , xn as independent realisations of a mean-zero random vector X, so a

practitioner may choose to center each variable so that
∑n

i=1 x
(j)
i = 0 for each j ∈ [p]. For

d ∈ [p], let Pd := {PS : S ⊆ [p], |S| = d} denote the set of d-dimensional, axis-aligned

projections. For fixed A,B ∈ N, consider projections {Pa,b : a ∈ [A], b ∈ [B]} independently

and uniformly distributed on Pd. We think of these projections as consisting of A groups,

each of cardinality B. For each a ∈ [A], let

b∗(a) := sargmax
b∈[B]

λ1(Pa,bΣ̂Pa,b)

denote the index of the selected projection within the ath group. The idea is that the

non-zero entries of Pa,b∗(a)Σ̂Pa,b∗(a) form a principal submatrix of Σ̂ that should have a large

leading eigenvalue, so the non-zero entries of the corresponding leading eigenvector v̂a,b∗(a)

of Pa,b∗(a)Σ̂Pa,b∗(a) should have some overlap with those of v1. Observe that, if d = k and

{Pa,b : b ∈ [B]} contained all
(
p
k

)
projections, then the leading eigenvector of Pa,b∗(a)Σ̂Pa,b∗(a)

would yield the minimax optimal estimator in (2). Of course, it would typically be too

computationally expensive to compute all such projections, so instead we only consider B

randomly chosen ones.

The remaining challenge is to aggregate over the selected projections. To this end, for

each coordinate j ∈ [p], we compute the average ŵ(j) of the A absolute values of the jth
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components of the selected eigenvectors v̂a,b∗(a). This means that we take account not just of

the frequency with which each coordinate is chosen, but also their corresponding magnitudes

in the selected eigenvector. Finally, we select the ` indices Ŝ1 corresponding to the largest

values of ŵ(1), . . . , ŵ(p) and output our estimate v̂1 as the leading eigenvector of PŜ1
Σ̂PŜ1

.

Pseudo-code for our SPCAvRP algorithm is given in Algorithm 1.

Algorithm 1: Pseudo-code for the SPCAvRP algorithm

Input: x1, . . . , xn ∈ Rp, A,B ∈ N, d, ` ∈ [p].

Generate {Pa,b : a ∈ [A], b ∈ [B]} independently and uniformly from Pd.
Compute {Pa,bΣ̂Pa,b : a ∈ [A], b ∈ [B]}, where Σ̂ := n−1

∑n
i=1 xix

>
i .

for a = 1, . . . , A do

for b = 1, . . . , B do

Compute λ̂a,b := λ1(Pa,bΣ̂Pa,b) and v̂a,b ∈ v1(Pa,bΣ̂Pa,b).

end

Compute

b∗(a) := sargmax
b∈[B]

λ̂a,b. (4)

end

Compute ŵ = (ŵ(1), . . . , ŵ(p))>, where

ŵ(j) :=
1

A

A∑
a=1

∣∣v̂(j)
a,b∗(a)

∣∣, (5)

and let Ŝ1 ⊆ [p] be the index set of the ` largest components of ŵ.

Output: v̂1 := sargmaxv∈Sp−1 v>PŜ1
Σ̂PŜ1

v.

Besides the intuitive selection of the most important coordinates, the use of axis-aligned

projections in SPCAvRP algorithm facilitates faster computation as opposed to the use of

general orthogonal projections. Indeed, the multiplication of Σ̂ ∈ Rp×p by an axis-aligned

projection P ∈ Pd from the left (or right) can be recast as the selection of d rows (or columns)

of Σ̂ corresponding to the indices of the non-zero diagonal entries of P . Thus, instead of the

typical O(p2d) matrix multiplication complexity, only O(pd) operations are required. We

also remark that, instead of storing P , it suffices to store its non-zero indices.

More generally, the computational complexity of Algorithm 1 can be analysed as fol-

lows. Generating AB initial random projections takes O(ABd) operations. Next, we need

to compute Pa,bΣ̂Pa,b for all a and b, which can be done in two different ways. One op-

tion is to compute Σ̂, and then for each projection Pa,b select the corresponding d × d

principal submatrix of Σ̂, which requires O(np2 + ABd2) operations. Alternatively, we

can avoid computing Σ̂ by computing the sample covariance matrix of the projected data

{Pa,bx1, . . . , Pa,bxn : a ∈ [A], b ∈ [B]}, which has O(ABnd2) complexity. If p2 � ABd2, then
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the second option is preferable.

The rest of Algorithm 1 entails computing an eigendecomposition of each d× d matrix,

and computing b∗(a), ŵ, Ŝ1, and v̂1, which altogether amounts toO(ABd3+p+`3) operations.

Thus, assuming that n ≥ d, the overall computational complexity of the SPCAvRP algorithm

is

O(min{np2 + ABd3 + `3, ABnd2 + p+ `3}).

We also note that, due to the use of random projections, the algorithm is highly parallelisable.

In particular, both for-loops of Algorithm 1 can be parallelised, and the selection of good

projections can easily be carried out using different (up to A) machines.

Finally, we note that the numbers A and B of projections, the dimension d of those

projections and the sparsity ` of the final estimator, need to be provided as inputs to Algo-

rithm 1. The effect of these parameter choices on the theoretical guarantees of our SPCAvRP

algorithm is elucidated in Section 3, while their practical selection is discussed in Section 4.2.

Our main conclusion is that the algorithm is robust to the choice of A,B and d, so that `

plays the role of the main tuning parameter (analogously to other sparse PCA algorithms).

2.2 Multiple principal component estimation

The estimation of higher-order principal components is typically achieved via a deflation

scheme. Having computed estimates v̂1, . . . , v̂r−1 of the top r − 1 principal components,

the aim of such a procedure is to modify the observations x1, . . . , xn to remove corre-

lation with these previously-estimated components (e.g. Mackey, 2009). For any matrix

V ∈ Rp×r, we define the projection onto the orthogonal complement of the column space

of V by Proj⊥(V ) := Ip − V (V >V )−1V > if V 6= 0 and Ip otherwise. Then writing V̂r−1 :=

(v̂1, . . . , v̂r−1), one possibility to implement a deflation scheme is to set x̃i := Proj⊥(V̂r−1)xi
for i = 1, . . . , n. Note that, in contrast to classical PCA, in sparse PCA the estimated prin-

cipal components from such a deflation scheme are typically not orthogonal. In Algorithm 2,

we therefore propose a modified deflation scheme, which in combination with Algorithm 1

can be used to compute an arbitrary s ∈ [p] principal components that are orthogonal (as

well as sparse), as verified in Lemma 1 below.

Lemma 1. For any s ∈ [p], the outputs v̂1, . . . , v̂s of Algorithm 2 are mutually orthogonal.

We remark that, in fact, our proposed deflation method can be used in conjunction with

any SPCA algorithm.

Although Algorithm 2 can conveniently be used to compute sparse principal components

up to order s, it requires Algorithm 1 to be executed s times. Instead, we can modify

Algorithm 1 to estimate directly the leading eigenspace of dimension s at a considerably

reduced computational cost. To this end, we propose a generalisation of the SPCAvRP

algorithm for eigenspace estimation in Algorithm 3. In this generalisation, s×A projections
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Algorithm 2: Pseudo-code of the modified deflation scheme

Input: x1, . . . , xn ∈ Rp, A,B ∈ N, s, d, `1, . . . , `s ∈ [p].

Let v̂1 be output of Algorithm 1 with inputs x1, . . . , xn, A, B, d and `1.

for r = 2, . . . , s do

Let Hr := Proj⊥(V̂r−1), where V̂r−1 := (v̂1, . . . , v̂r−1).

Let ṽr be output of Algorithm 1 with inputs Hrx1, . . . , Hrxn, A, B, d and `r.

Let S̃r := {j ∈ [p] : ṽ
(j)
r 6= 0} and HS̃r

:= Proj⊥(PS̃r
V̂r−1).

Compute

v̂r := v1

(
HS̃r

PS̃r
Σ̂PS̃r

HS̃r

)
.

end

Output: v̂1, . . . , v̂s.

are selected from a total of A×B random projections, by computing

b∗r(a) := sargmax
b∈[B]

λr(Pa,bΣ̂Pa,b)

for each r ∈ [s] and a ∈ [A]. Moreover, the aggregation step is modified to account for the

sparsity and orthogonality of the components. Observe that for s = 1, Algorithm 3 reduces

to Algorithm 1. Furthermore, for any s, up to the step where b∗r(a) is computed, Algorithm 3

has the same complexity as Algorithm 1, with the total complexity of Algorithm 3 amounting

to O(min{np2 + ABd3 + s4`3, ABnd2 + sp + s4`3}) provided that n ≥ d, min(d3, Bd2) ≥ s

and `r = O(`).

3 Theoretical guarantees

In this section, we focus on Algorithm 1 and assume that X1, . . . , Xn are independently

sampled from a distribution Q satisfying a Restricted Covariance Concentration (RCC)

condition introduced in Wang, Berthet and Samworth (2016a). Recall that, for K > 0, we

say that a mean zero distribution Q on Rp satisfies an RCC condition with parameter K,

and write Q ∈ RCCp(K), if for all δ > 0, n ∈ N and r ∈ {1, . . . , p}, we have

P
{

sup
u∈Bp−1

0 (r)

∣∣u>(Σ̂− Σ)u
∣∣ ≥ K max

(√
r log(p/δ)

n
,
r log(p/δ)

n

)}
≤ δ. (6)

In particular, if Q = Np(0,Σ), then Q ∈ RCCp

(
8λ1(1 + 9/ log p)

)
; and if Q is sub-Gaussian

with parameter σ2, in the sense that
∫
Rp e

u>x dQ(x) ≤ eσ
2‖u‖2/2 for all u ∈ Rp, then

Q ∈ RCCp

(
16σ2(1 + 9/ log p)

)
(Wang, Berthet and Samworth, 2016a, Proposition 1). In

Section 3.1, we first derive theoretical guarantees in the special case where the covariance

matrix Σ has a single-spiked structure and its leading eigenvector is homogeneous in all
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Algorithm 3: Pseudo-code of the SPCAvRP algorithm for eigenspace estimation

Input: x1, . . . , xn ∈ Rp, A,B ∈ N, s, d, `1, . . . , `s ∈ [p].

Generate {Pa,b : a ∈ [A], b ∈ [B]} independently and uniformly from Pd.
Compute {Pa,bΣ̂Pa,b : a ∈ [A], b ∈ [B]}, where Σ̂ := n−1

∑n
i=1 xix

>
i .

for a = 1, . . . , A do

for b = 1, . . . , B do

for r = 1, . . . , s do

Compute λ̂a,b;r := λr(Pa,bΣ̂Pa,b) and the corresponding eigenvector v̂a,b;r.

end

end

for r = 1, . . . , s do

b∗r(a) := sargmaxb∈[B] λ̂a,b;r.

end

end

for r = 1, . . . , s do

Let ŵr = (ŵ
(1)
r , . . . , ŵ

(p)
r )> be such that ŵ

(j)
r := 1

A

∑A
a=1

∣∣v̂(j)
a,b∗r(a);r

∣∣ and let Ŝinit
r be

the index set of the
∑r

q=1 `q largest components in ŵr.

Let Hr := Proj⊥(V̂r−1), where V̂r−1 := (v̂1, . . . , v̂r−1), and let Ŝr be the index set of

the `r largest absolute values of the components of v1

(
PŜinit

r
HrΣ̂HrPŜinit

r

)
.

Let HŜr
:= Proj⊥(PŜr

V̂r−1) and compute

v̂r := v1

(
HŜr

PŜr
Σ̂PŜr

HŜr

)
.

end

Output: v̂1, . . . , v̂s.
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signal coordinates. The result in this special case already provides useful insights on how

different parameters affect the performance of estimator proposed in Algorithm 1. We then

extend our theory to more general distributions in Section 3.2.

3.1 Single-spiked model with homogeneous signal

Any permutation π of [p] acts naturally on Rp by π(x(1), . . . , x(p)) = (x(π(1)), . . . , x(π(p))). This

action maps any probability measure Q on Rp to another probability measure π∗Q on Rp,

where for any Borel set A ⊆ Rp, we define π∗Q(A) = Q(π(A)). In this section, we consider

a subclass of distributions

Q0 ⊆ RCCp(K)

such that any Q ∈ Q0 has covariance matrix Σ = Ip + θ1v1v
>
1 , for some θ1 > 0 and v1 :=

k−1/2(1>k ,0
>
p−k)

> ∈ Bp−1
0 (k) and such that Q = π∗Q for any π that stabilises {1, . . . , k},

that is {1, . . . , k} = {π(1), . . . , π(k)}. In particular, Q0 includes distributions of the form

Np(0, Ip + θ1v1v
>
1 ) when K ≥ 8(1 + θ1)(1 + 9/ log p) and v1 = k−1/2(1>k ,0

>
p−k)

>.

In what follows, we use FHG(·; d, k, p) to denote the distribution function of the hyper-

geometric distribution HyperGeom(d, k, p). Recall that this distribution models the number

of white balls obtained when drawing d balls uniformly and without replacement from an

urn containing p balls, k of which are white.

Theorem 2. Let X1, . . . , Xn
iid∼ Q ∈ Q0. Let v̂1 be the output of Algorithm 1 with input

X1, . . . , Xn, A, B, d and `. Assume that p ≥ max(4, 2k), n ≥ 4 max(d, `) log p, and that

there exists t ∈ {1, . . . , k} such that{
1− FHG(t− 1; d, k, p)

}
B ≥ 3 log p (7)

and

40K

√
k2d log p

t2nθ2
1

≤ min{1, (p− k)d−1/2k−1}. (8)

Then with probability at least 1− p−3 − pe−A/(32k2) we have

L(v̂1, v1) ≤ 4K

√
` log p

nθ2
1

max

(
1,
k

`

)
+

√
max

(
1− `

k
, 0

)
.

We note that for ` ≥ k, the loss is bounded by a constant multiple of
√
` log p/(nθ2

1),

which, as mentioned in the introduction, is minimax rate optimal when `/k is bounded by

a constant. On the other hand, when ` < k, an additional loss of order
√

1− `/k may be

incurred.

As t increases, conditions (7) and (8) are respectively strengthened and weakened. The

flexibility of t allows us to trade off these two conditions in the theorem. For example, when

11



t = 1, we have

FHG(0; d, k, p) =

(
p−k
d

)(
p
d

) ≤ 1− k/p,

so it suffices to choose B ≥ 3k−1p log p for (7) to hold. In this case, we can choose parame-

ters A and B, depending polynomially on p and k, so that Algorithm 1 is a polynomial time

algorithm that can achieve the minimax rate for θ1 ≤ 1 and appropriately chosen `. How-

ever, this does not contradict the computational lower bound established in Wang, Berthet

and Samworth (2016a, Theorem 6) because for t = 1, condition (8) implies a sample size

requirement of order n & K2k2dθ−2
1 log p, which belongs to the high effective sample size

regime discussed in Wang, Berthet and Samworth (2016a, Section 4.4). On the other hand,

for t � k, (8) is satisfied for a much smaller sample size n & K2dθ−2
1 log p, which includes

both the intermediate and high effective sample size regimes of Wang, Berthet and Sam-

worth (2016a) (these are the only regimes where consistent estimation is possible using any

algorithm). However, by Hoeffding (1963, Theorems 2 and 4), if t ≥ dk/p, then

1− FHG(t− 1; d, k, p) ≤ exp{−2d(t− dk/p)2},

which together with (7) entails choosing B exponentially large in the problem parameters.

Hence Algorithm 1 will not be polynomial time in this case. Therefore, in this single-

spiked homogeneous signal setting, Theorem 2 continuously interpolates between the high

and intermediate effective sample size regimes, and elucidates the phase transition for our

random projection ensemble estimator in a fairly precise way.

3.2 General distributions

We consider more general distributions in this section. To begin with, we provide a propo-

sition which controls the risk of estimator v̂1 defined in Algorithm 1 by the sum of a bias

term, based on its support recovery quality, and a variance term, which measures the risk

incurred in estimating the leading eigenvector after knowing its support.

Proposition 3. Let X1, . . . , Xn
iid∼ Q ∈ RCCp(K) with covariance matrix Σ ∈ Rp×p satisfy-

ing λ1 > λ2. Suppose that v1 ∈ Bp−1
0 (k) has support S1. Let Σ̂ := n−1

∑n
i=1 XiX

>
i and let

v̂1 = v1

(
PŜ1

Σ̂PŜ1

)
, where Ŝ1 = Ŝ1(X1, . . . , Xn) is a random subset of [p] of cardinality `. If

p ≥ 3 and n ≥ ` log p, then

EL(v̂1, v1) ≤ 4K

λ1 − λ2

√
` log p

n
+ P(S1 * Ŝ1).

Note that this result holds for any estimator of form v1

(
PŜ1

Σ̂PŜ1

)
where Ŝ1 is an index

subset of cardinality ` that depends on the data. In what follows, we bound P
(
S1 * Ŝ1

)
when Ŝ1 is defined as in Algorithm 1, thereby explicitly bounding the risk of estimator v̂1

computed therein. To achieve this, we show that with high probability, our selection criterion

12



(4) ensures that we aggregate over a certain set of ‘good’ projections, defined for τ ∈ (0, 1]

by

G = Gτ :=
{
P ∈ Pd : ‖Pv1‖ ≥ τ

}
.

Such projections capture at least a given proportion of the signal in the leading eigenvector

v1. Writing P1 := P1,b∗(1) for the selected projection from the first group of B projections in

Algorithm 1, we also define the event

Ω = Ωτ,B := {P1 ∈ G}.

Since we aim to bound P
(
S1 * Ŝ1

)
, and since signal coordinates may differ in magnitude, we

need to consider the probability that each signal coordinate j ∈ S1 is captured by a selected

good projection. To this end, we define

ρ := max
j∈S1

P
({
P

(j,j)
1 = 1

}
∩ Ω

)
−min

j∈S1

P
({
P

(j,j)
1 = 1

}
∩ Ω

)
. (9)

Observe that, under the setting of Section 3.1, we have ρ = 0. Moreover, whenever v1 ∈
B(p−1)

0 (k) and E(‖X1‖2) <∞, we have limn,B→∞ ρ = 0 provided d ≥ k. The theorem below

provides conditions under which we can control P
(
S1 * Ŝ1

)
, and therefore bound the risk of

our SPCAvRP estimator. In what follows, we order (v
(1)
1 )2, . . . , (v

(p)
1 )2 as v2

1,(1) ≥ · · · ≥ v2
1,(p).

Theorem 4. Let X1, . . . , Xn
iid∼ Q ∈ RCCp(K) with covariance matrix Σ ∈ Rp×p satisfying

λ1 > λ2 and v1 ∈ Bp−1
0 (k). Let v̂1 be the output of Algorithm 1 with input X1, . . . , Xn, A,

B, d and `, satisfying ` ≥ k and n ≥ 4 max(d, `) log p and p ≥ 3. Suppose there exists

τ ∈ (
√
λ2/λ1, 1] such that

ε :=

{(
1− 2

p3

)
τ 2 − ρ

}
vmin

1 − 8
√

2K

λ1τ 2 − λ2

√
d log p

n
− 4
√

2λ2

λ1τ 2
− 2p−3 > 0, (10)

and that B is large enough that there exists k′ ∈ [k] for which{
1− FHG

(
1

v2
1,(k′)

(
τ 2 +

4K

λ1

√
d log p

n
+
λ2

λ1

)
; d, k′, p

)}
B ≥ 3 log p. (11)

Then

EL(v̂1, v1) ≤ 4K

λ1 − λ2

√
` log p

n
+ pe−Aε

2/8.

Remark: In the case where Σ is a spiked covariance matrix of the form

Σ = Ip +
m∑
r=1

θrvrv
>
r , (12)

for some θ1 > θ2 ≥ · · · ≥ θm > 0 and orthonormal vectors v1 ∈ Bp−1
0 (k), v2, . . . , vm ∈ Sp−1,

the conditions of Theorem 4 can be weakened. In fact, noting the remarks following Lemma 6

13



and Lemma 7, λ1 and λ2 in the theorem may be replaced with θ1 and θ2 respectively (the

naive direct application of Theorem 4 would have set λr = 1 + θr for r = 1, 2).

We further remark that conditions (10) and (11) again exhibit a statistical and compu-

tational trade-off as discussed after Theorem 2. For τ close 1, (10) is satisfied with a mild

sample size requirement but (11) would require a choice of B exponentially large in the prob-

lem parameters. On the other hand, if λ2/λ1 is sufficiently small and τ is close to
√
λ2/λ1,

then (11) can be satisfied with B depending polynomially on the problem parameters, at

the price of a much larger sample size requirement implied by (10).

4 Numerical experiments

In this section we demonstrate the performance of our proposed method in different sim-

ulated settings and discuss the practical choice of the input parameters. We also compare

our method with several existing sparse principal component estimation algorithms. All

examples are computed using the R package ‘SPCAvRP’ (Gataric, Wang and Samworth,

2018).

4.1 Dependence of risk on problem parameters

Our first goal is to illustrate that our SPCAvRP algorithm achieves the estimation risk

bounds as derived in Section 3. To this end, we apply Algorithm 1 to observations indepen-

dently and identically sampled from a Np(0,Σ) distribution with a spiked covariance matrix

Σ defined as in (12). We define the effective sample size

neff :=
n

k log p
,

and in Figure 2, we plot the loss L(v̂1, v1), averaged over 100 repetitions for a range of values

of neff. In addition to the empirical loss, we also plot n
−1/2
eff and an empirical estimate of

P(S1 * Ŝ1), which, up to universal scaling constants, are the two terms in the risk bound

derived in Proposition 3. We observe that the curves of empirical losses for different values

of p align well with each other, showing that neff is indeed an effective sample size that

characterises the difficulty of the estimation problem. We also observe that the empirical

estimate for P(S1 * Ŝ1) exhibits a rapid phase transition in its behaviour as neff increases.

Thus, for moderately large neff, the loss L(v̂1, v1) is essentially controlled by n
−1/2
eff , which

is reflected by the linear decay of the loss curve with slope −1/2 under the log-log scaling

in Figure 2. In fact, since the left panel of Figure 2 corresponds to the single-spiked homo-

geneous signal setting, in this special case we can apply Theorem 2 to bound the risk by

64(1 + 9 log−1 p)n
−1/2
eff in the high effective sample size regime discussed after Theorem 2.

However, we note that the loss curves behave very similarly in both panels, indicating that

the algorithmic performance is robust to the presence of multiple spikes.
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Figure 2: Estimation rate of the SPCAvRP algorithm for the Gaussian spiked model. Left

panel: Σ = Ip + θ1v1v
>
1 for v1 = k−1/2(1>k ,0

>
p−k)

>; right panel: Σ = Ip + θ1v1v
>
1 + θ2v2v

>
2 for

v1 = k−1/2(1>k ,0
>
p−k)

> and v2 = k−1/2(0>k ,1
>
k ,0

>
p−2k)

>. Black: L(v̂1, v1) averaged over 100 experi-

ments; blue: P(S1 * Ŝ1) estimated over 100 experiments; green: n
−1/2
eff ; red: n

−1/2
eff + P(S1 * Ŝ1).

Light to dark colours are for the choice of (p,A,B) corresponding to (50, 200, 100), (100, 300, 150),

(200, 400, 200) and (300, 500, 250) respectively. In both panels, d = ` = k = b√pc.

The performance of the SPCAvRP algorithm is compared to several existing approaches

in Section 4.3 below, where in the first panel of Figure 8 the same model is used as in the

second panel of Figure 2, revealing a similar phase transition to other algorithms in this

example.

4.2 Choice of input parameters

4.2.1 Choice of A and B

In Figure 3, we demonstrate that choosing B > 1 and thereby making the selection step

within each group of projections is crucial to the success of the SPCAvRP algorithm. Specifi-

cally, we see that using the same total number of random projections, our two-stage procedure

has superior performance over the naive aggregation over all projections, which corresponds

to setting B = 1 in Algorithm 1. Interestingly, Figure 3 shows that simply increasing the

number of projections, without performing a selection step, does not noticeably improve the

performance of the basic aggregation. We note that even for the relatively small choices

A = 50 and B = 25, the SPCAvRP algorithm does significantly better than the naive

aggregation over 180000 projections.

Figure 4 demonstrates the effect of increasing either A or B while keeping the other fixed.

We can see from the left panel of Figure 4 that increasing A steadily improves the estimation
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Figure 3: Logarithm of the average losses against logarithm of sample size for different A and

B. Solid lines, light to dark grey: (A,B) is (50, 25), (100, 50), (200, 100), (300, 150), (400, 200),

(500, 250), (600, 300). Dashed lines, light to dark grey: B = 1 and A is 50×25, 100×50, 200×100,

300 × 150, 400 × 200, 500 × 250, 600 × 300. In both panels, the distribution is Np(0, Ip + v1v
>
1 ),

p = 50, d = l = k = b√pc = 7.

quality, especially in the medium effective sample size regime and when A is relatively small.

This agrees with the result in Theorem 4, where the risk bound improves as A increases.

Thus, in practice, we should choose A to be as large as possible subject to our computational

budget. The choice of B, however, is a little more delicate. In some settings, such as the

single-spiked, homogeneous model in the right panel of Figure 4 where the parameter ρ in (9)

is zero, the performance appears to improve steadily as B increases. On the other hand, we

can also construct examples where ρ appears to depend in a non-monotonic way on B, and

performance does not necessarily improve as B increases; see Figure 5.

In general, we find that A and B should increase with p and, based on our numerical

experiments, we suggest using B = A/3 with A = 300 when p ≈ 100, and A = 600 when

p ≈ 1000.

4.2.2 Choice of d

So far in our simulations we have assumed that the true sparsity level k is known and we

took the dimension of the random projections d = k, but in practice k may not be known

in advance. In Figure 6, however, we see that for a wide range of values of d, the loss curves

are close to each other, indicating the robustness of the SPCAvRP algorithm to the choice

of d. For the homogeneous signal case, the loss curves for different choices of d merge in the

high effective sample size regime, whereas in the intermediate effective sample size regime,

we may in fact see improved performance when d exceeds k. In the inhomogeneous case, the
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Figure 4: Average losses on the logarithmic scale as a function of the logarithm of the effective

sample size neff. In the left panel, B = 100 and A is varied; on the right, A = 200 and B is

varied. In both panels, the distribution is Np(0, Ip + v1v
>
1 ) with v1 = k−1/2(1>k ,0

>
p−k)

>, p = 50,

d = l = k = b√pc = 7.
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Figure 5: Trade-off in the choice of B. Left panel: the logarithm of average losses as a function of

log neff, where B is varied. Right panel: the logarithm of average losses as a function of B, where

n is varied. In both panels, A = 200 and the distribution is Np(0, Ip + 5v1v
>
1 + 4v2v

>
2 ) with v1 =

k−1/2(1>k ,0
>
p−k)

>, v2 = k−1/2(1>3 ,−1, 1,−1, 1,−1, 1, 1,0>p−k−3)>, p = 50, d = l = k = b√pc = 7.
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loss curves exhibit little dependence on d.

In practice, we suggest using d = k where k is known, but when k is not given in advance,

we would advocate a relatively small choice of d, for example d = 10 or 20, given that this

parameter has low effect on the statistical performance of our SPCAvRP algorithm, but a

high impact on the overall computational complexity.

4.2.3 Choice of `

The parameter ` corresponds to the sparsity of the computed estimator; large values of `

increase the chance that signal coordinates are discovered but also increase the probability

of including noise coordinates. This trade-off is also reflected in the bounds derived in our

theoretical results (e.g. Theorem 2) and, in fact, is typical for any algorithm that aims to

estimate the support of a sparse eigenvector. It is worth noting many of the sparse PCA

algorithms proposed in the literature have a tuning parameter corresponding to the sparsity

level, and thus cross-validation techniques have been proposed in earlier works (e.g. Witten,

Tibshirani and Hastie, 2009).

A particularly popular approach in the SPCA literature (e.g. Shen and Huang, 2008) is

to choose ` by inspecting the total variance. More precisely, for each ` on a grid of plausible

values, we can compute an estimate v̂1,` ∈ B0(`) using the SPCAvRP algorithm and its

explained variance V` := v̂>1,`Σ̂v̂1,`, and then plot V` against `. As can be seen from Figure 7,

the explained variance increases with `, but plateaus off for ` ≥ k. An attractive feature of

our method is that there is no need to re-run the entire algorithm for each value of `. Recall

that ŵ in (5) of Algorithm 1 ranks the coordinates by their importance. Therefore, we only

need to compute ŵ once and then calculate the explained variance by selecting the top `

coordinates in ŵ for each value of `.

In cases where higher-order principal components need to be computed, a practical choice

for `1, . . . , `s in Algorithms 2 and 3 is `1 = · · · = `s = `. However, it is also possible to

choose each individual `r differently by inspecting the total variance at each iteration r of

Algorithm 2.

4.3 Comparison with existing methods

In this subsection, we compare our method with several existing approaches for SPCA. We

first present two simulated examples where only the first principal component is computed,

followed by examples of higher-order principal component estimation and an illustration on

some genetic data.

4.3.1 First principal component

In addition to the example presented in Figure 1 of the introduction, we consider two further

examples with multivariate Gaussian data generated from a Np(0,Σ) distribution with p =
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Figure 6: Choosing different d for Gaussian single-spiked model with θ1 = 1, p = 100, k = 10,

A = 150, B = 50, and ` = k.
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Figure 7: Selecting `. Left: θ1 = 5, θ2 = 3, k = 15, d = 10, A = 300, B = 100. Right: θ1 = 5,

k = 15, d = 20, A = 500, B = 100.
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100 and p = 200, where Σ takes one of the two following forms:

Σ(1) =

2J10

J10

0

+ I100, Σ(2) =

10J10

9.9J30

I160

+ 0.01I200. (13)

Observe that in both examples v1 = k−1/2(1>k ,0
>
p−k)

> with k = 10. The covariance matrix

Σ(1) is double-spiked with θ1 = 2, θ2 = 1 and v2 = k−1/2(0>k ,1
>
k ,0

>
p−2k)

>. We compare the

empirical performance of our algorithm with methods proposed by Zou, Hastie and Tib-

shirani (2006); Shen and Huang (2008); d’Aspremont, Bach and El Ghaoui (2008); Witten,

Tibshirani and Hastie (2009) and Ma (2013), as well as the SDP method mentioned in the

introduction, by computing the average loss for each algorithm over 100 repetitions on the

same set of data. We note that these are all iterative methods, whose success, with the ex-

ception of the SDP method, depends on good initialisation, so we recall their default choices.

The methods by Zou, Hastie and Tibshirani (2006); Shen and Huang (2008) and Witten,

Tibshirani and Hastie (2009) use singular value decomposition of the sample covariance ma-

trix, i.e. classical PCA, to compute their initial point, while the methods by d’Aspremont,

Bach and El Ghaoui (2008) and Ma (2013) select their initialisation according to largest

diagonal entries of Σ̂.

In Figure 8, we see that while the average losses of all algorithms decay appropriately with

the sample size n in the double-spiked Σ(1) setting, most of them perform very poorly in the

setting of Σ(2), where the spiked structure is absent. Indeed, only the SPCAvRP and SDP

algorithms produce consistent estimators in both settings, but the empirical performance of

the SPCAvRP algorithm is much better in both cases.

4.3.2 Higher-order components

In Table 1 and Figure 9 we compare Algorithm 3 with existing SPCA algorithms for subspace

estimation, namely those proposed by Zou, Hastie and Tibshirani (2006), Witten, Tibshirani

and Hastie (2009) and Ma (2013). For this purpose we simulate observations from a normal

distribution with a covariance matrix which is two- and three-spiked, respectively. Besides

computing the loss function for individual components L(v̂r, vr), we also compute the error

incurred in estimating the subspace spanned by v1, . . . , vs as ‖PV̂s−PVs‖op, where PV̂s and PVs
denote the orthogonal projections onto span{v̂1, . . . , v̂s} and span{v1, . . . , vs} respectively.

Each evaluation of the loss function is averaged over 100 repetitions. From Table 1 and

Figure 9, we observe that our SPCAvRP performs very well with respect to both types of

loss function when compared with the alternative algorithms. From Table 1, we also see

that only our algorithm and the one proposed by Ma (2013) compute components that are

orthogonal in both cases S1 ∩ S2 = ∅ and S1 ∩ S2 6= ∅, where Sr := {j ∈ [p] : v
(j)
r 6= 0}.

Although in Figure 9 only the case S1 ∩ S2 ∩ S3 6= ∅ is presented, we observed similar

performance when the supports are disjoint.
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Figure 8: Logarithm of average loss against logarithm of sample size n using two different covariance

structures from (13). Blue: SPCAvRP with A = 300, B = 150, d = l = k; black: Zou, Hastie and

Tibshirani (2006) with given k; magenta and green: Shen and Huang (2008) with `1 and `0-

thresholding, respectively, both with given k; cyan: d’Aspremont, Bach and El Ghaoui (2008)

with given k; orange: Witten, Tibshirani and Hastie (2009) with parameters chosen by their cross-

validation; red: Ma (2013) with the default parameters; purple: SDP.

S1 ∩ S2 = ∅ ‖PV̂2 − PV2‖op L(v̂1, v1) L(v̂2, v2) |v̂>1 v̂2|
SPCAvRP 5.69× 10−2 4.50× 10−2 5.49× 10−2 < 10−15

Ma 8.47× 10−2 1.30× 10−1 1.37× 10−1 < 10−15

Witten et al. 8.13× 10−2 9.75× 10−2 9.60× 10−2 4.61× 10−3

Zou et al. 9.60× 10−2 7.11× 10−2 9.39× 10−2 < 10−15

S1 ∩ S2 6= ∅ ‖PV̂2 − PV2‖op L(v̂1, v1) L(v̂2, v2) |v̂>1 v̂2|
SPCAvRP 7.64× 10−2 7.97× 10−2 8.39× 10−2 < 10−15

Ma 7.85× 10−2 1.31× 10−1 1.42× 10−1 < 10−15

Witten et al. 9.20× 10−2 1.31× 10−1 1.33× 10−1 9.04× 10−4

Zou et al. 1.63× 10−1 1.84× 10−1 2.00× 10−1 5.84× 10−4

Table 1: Observations are generated from Np(0,Σ), Σ = Ip + θ1v1v
>
1 + θ2v2v

>
2 , θ1 = 50, θ2 = 30,

p = 200, n = 150, where v1 and v2 have homogeneous signal strengths with S1 = {1, . . . , 14}, and

S2 = {15, . . . , 28} (top), S2 = {7, . . . , 20} (bottom). The SPCAvRP algorithm given in Algorithm 3

with input A = 300, B = 150, s = 2, d = `1 = `2 = k, is compared with algorithms proposed by

Zou, Hastie and Tibshirani (2006), Witten, Tibshirani and Hastie (2009) and Ma (2013), which are

used with their default parameters.
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Figure 9: Observations are generated from Np(0,Σ), Σ = Ip + θ1v1v
>
1 + θ2v2v

>
2 + θ3v3v

>
3 , θ1 = 3,

θ2 = 2, θ3 = 1, p = 100, where v1, v2, v3 have homogeneous signals strengths with S1 = {1, . . . , 10},
S2 = {5, . . . , 14} and S3 = {9, . . . , 18}. The four figures correspond to loss functions ‖PV̂3−PV3‖op,

L(v̂1, v1), L(v̂2, v2) and L(v̂3, v3). SPCAvRP algorithm given in Algorithm 3 with input A = 400,

B = 200, s = 3, d = `1 = `2 = `3 = k, is compared with algorithms for subspace estimation

proposed by Zou, Hastie and Tibshirani (2006), Witten, Tibshirani and Hastie (2009) and Ma

(2013), which are used with their default parameters.
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4.3.3 Microarray data

We test our SPCAvRP algorithm on the Alon et al. (1999) gene expression data set, which

contains 40 colon tumour and 22 normal observations. A preprocessed data set can be

downloaded from the R package ‘datamicroarray’ (Ramey, 2016), with a total of p = 2000

features and n = 62 observations. For comparison with alternative SPCA approaches, we use

algorithms that accept the output sparsity ` as an input parameter, namely those proposed

by Zou, Hastie and Tibshirani (2006), d’Aspremont, Bach and El Ghaoui (2008) and Shen

and Huang (2008). For each ` considered, we computed the estimator v̂1,` of the first principal

component, and in Figure 10 we plot the explained variance V` := v̂>1,`Σ̂v̂1,` as well as two

different metrics for the separability of the two classes of observations projected along first

principal component v̂1,`, namely the Wasserstein distance W` of order one and the p-value

of Welch’s t-test (Welch, 1947). Furthermore, in Figure 11, we display their corresponding

values for ` = 20 together with the box plots of the observations from the two classes

projected along v̂1,20. From Figures 10 and 11, we observe that the SPCAvRP algorithm

performs similarly to those proposed by d’Aspremont, Bach and El Ghaoui (2008) and Shen

and Huang (2008), all of which are superior in this instance to the SPCA algorithm of Zou,

Hastie and Tibshirani (2006). In particular, for small values of `, we observe a steep slope of

the blue Wasserstein and p-value curves corresponding to SPCAvRP algorithm in Figure 10,

indicating that the two classes are well separated by projecting the observations along the

estimated principal component which contains expression levels of only a few different genes.
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Figure 10: Left panel: V`; middle panel: Wasserstein distance W` between the empirical distribu-

tions of the two classes projected along v̂1,`; right panel: p-value of Welch’s t-test for the two classes

projected along v̂1,`, where v̂1,` is the estimator of v1 for varied sparsity level `. For estimation we

use SPCAvRP (d = 30, A = 1200, B = 200), Zou, Hastie and Tibshirani (2006), d’Aspremont,

Bach and El Ghaoui (2008) and Shen and Huang (2008) with `0-thresholding.
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Figure 11: Variance V`, Wasserstein distance W`, p-value of the Welch’s t-test and the corresponding

box plots of the observations from the two classes projected along estimator v̂1,` of the first principal

component computed by five different approaches: classical PCA, Zou, Hastie and Tibshirani

(2006), d’Aspremont, Bach and El Ghaoui (2008), Shen and Huang (2008) with `0-thresholding,

and SPCAvRP . The desired sparsity level in all SPCA algorithms is set to ` = 20.

5 Proofs of theoretical results

Proof of Lemma 1. To verify that v̂r is orthogonal to v̂1, . . . , v̂r−1, observe that since the

support of v̂r is contained in S̃r, we have

v̂>r V̂r−1 = v̂>r PS̃r
V̂r−1 + v̂>r PS̃c

r
V̂r−1 =

v̂>r HS̃r
PS̃r

Σ̂PS̃r
HS̃r

PS̃r
V̂r−1

λ1(HS̃r
PS̃r

Σ̂PS̃r
HS̃r

)
= 0,

where the final equality follows from the fact that HS̃r
is a projection onto the orthogonal

complement of the column space of PS̃r
V̂r−1, so HS̃r

PS̃r
V̂r−1 = 0.

Proof of Theorem 2. For each r ∈ [p], we define an event

Ω0,r :=

{
‖PS(Σ̂− Σ)PS‖op ≤ 2K

√
r log p

n
for all S ⊆ [p] and |S| = r

}
.

Since Q ∈ RCCp(K), by choosing δ = p−3 in (6) and using the fact that 4 max(d, `) log p ≤ n,

we have P(Ω0,d) ≥ 1− p−3 and P(Ω0,`) ≥ 1− p−3.

For each a ∈ [A] and b ∈ [B], let Sa,b denote the set of indices corresponding to ones on

the diagonal of projection Pa,b. If sa,b := |Sa,b∩ [k]| ≥ 1, then we have λa,b := λ1(Pa,bΣPa,b) =

1+sa,bθ1/k and va,b := v1(Pa,bΣPa,b) = s
−1/2
a,b (1{j∈Sa,b∩[k]})j∈[p] (up to sign). We similarly define

λ̂a,b := λ1(Pa,bΣ̂Pa,b) and v̂a,b := v1(Pa,bΣ̂Pa,b) (with signs chosen such that v>a,bv̂a,b ≥ 0).

Recall that by definition b∗(a) = sargmaxb∈[B] λ̂a,b. On Ω0,d, by Weyl’s inequality (Weyl,

1912; Stewart and Sun, 1990, Corollary IV.4.9) and (8), we have that

max
a∈[A],b∈[B]

∣∣λ̂a,b − λa,b∣∣ ≤ max
a∈[A],b∈[B]

‖PSa,b
(Σ̂− Σ)PSa,b

‖op ≤ 2K

√
d log p

n
≤ tθ1

20k
.
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Thus, if b̄(a) ∈ argmaxb∈[B] sa,b, then on Ω0,d, we have

sa,b∗(a) =
k

θ1

(λa,b∗(a) − 1) ≥ k

θ1

(λ̂a,b∗(a) − 1)− t

20
≥ k

θ1

(λ̂a,b̄(a) − 1)− t

20

≥ k

θ1

(λa,b̄(a) − 1)− t

10
= sa,b̄(a) −

t

10
.

For each a ∈ [A], define Ωa := Ω0,d ∩ {sa,b̄(a) ≥ t}. Then by (7), we have

P(Ωc
a) ≤ p−3 + FHG(t− 1; d, k, p)B ≤ p−3 +

(
1− 3

B
log p

)B
≤ 2p−3.

The first and second eigenvalues of Pa,b∗(a)ΣPa,b∗(a) are separated by sa,b∗(a)θ1/k. Hence, by a

variant of the Davis–Kahan theorem (Yu, Wang and Samworth, 2015, Corollary 1) (restated

for convenience as Lemma 5 below), on Ωa we have

∥∥v̂a,b∗(a) − va,b∗(a)

∥∥ ≤ 25/2K

√
dk2 log p

nθ2
1s

2
a,b∗(a)

≤ 7K

√
dk2 log p

t2nθ2
1

.

By the triangle inequality, we obtain that

k∑
j=1

∣∣v̂(j)
a,b∗(a)

∣∣ ≥ { k∑
j=1

(
v̂

(j)
a,b∗(a)

)2
}1/2

≥
(

1− 7K

√
dk2 log p

t2nθ2
1

)
1Ωa ,

and

p∑
j=k+1

∣∣v̂(j)
a,b∗(a)

∣∣ ≤ d1/2

{ ∑
j∈Sa,b∗(a)∩{k+1,...,p}

(
v̂

(j)
a,b∗(a)

)2
}1/2

≤ 7K

√
d2k2 log p

t2nθ2
1

1Ωa + d1/2
1Ωc

a
.

By symmetry of Q in coordinates {1, . . . , k} and coordinates {k+1, . . . , p} and the fact that

p ≥ 4, we have that for j ∈ [k] and any a ∈ [A],

E
∣∣v̂(j)
a,b∗(a)

∣∣ ≥ (1

k
− 7K

√
d log p

t2nθ2
1

)
P(Ωa) ≥

33

40k
(1− 2p−3) >

3

4k
. (14)

Moreover, since we also have p ≥ 2k, we deduce that for j ∈ {k+ 1, . . . , p} and any a ∈ [A],

E
∣∣v̂(j)
a,b∗(a)

∣∣ ≤ 7K

p− k

√
d2k2 log p

t2nθ2
1

+
d1/2

p− k
P(Ωc

a) ≤
7

40k
+

2d1/2

(p− k)p3
<

1

4k
, (15)

where the first inequality uses Assumption (8) and the final inequality uses the fact that

p ≥ 2k.

Recall the definitions of ŵ(j) and Ŝ1 from Algorithm 1. Let Ω := {minj≤k ŵ
(j) >

maxj>k ŵ
(j)}. By (14), (15), a union bound and Hoeffding’s inequality, we have that

P(Ωc) ≤ P
(
∃ j ∈ [p] s.t. |ŵ(j) − Eŵ(j)| > 1

4k

)
≤ pe−A/(32k2).
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Define ṽ1 ∈ Rp by ṽ1 = v1(PŜ1
ΣPŜ1

). On Ω, we have Ŝ1 ⊆ [k] = S1 if ` ≤ k and Ŝ1 ⊇ [k] if

` ≥ k. Thus, on the event Ω ∩ Ω0,`, which has probability at least 1− p−3 − pe−A/(32k2), we

have by Lemma 5 that

L(v̂1, v1) ≤ L(v̂1, ṽ1) + L(ṽ1, v1) ≤
2‖PŜ1

(Σ̂− Σ)PŜ1
‖op

min(`, k)θ1/k
+

√
k −min(`, k)

k

≤ 4K

√
` log p

nθ2
1

max

(
1,
k

`

)
+

√
max

(
1− `

k
, 0

)
,

as desired.

The following lemma, which is used several times in our proofs, is a special case of the

variant of the Davis–Kahan theorem given in Yu, Wang and Samworth (2015, Corollary 1).

Lemma 5. Let p ≥ 2, and let Σ, Σ̂ ∈ Rp×p be symmetric, with eigenvalues λ1 > λ2 ≥ · · · ≥
λp and λ̂1 ≥ · · · ≥ λ̂p respectively. If v1, v̂1 ∈ Rp satisfy Σv1 = λ1v1 and Σ̂v̂1 = λ̂1v̂1, then

L(v̂1, v1) ≤ 2‖Σ̂− Σ‖op

λ1 − λ2

.

Moreover, if v̂>1 v1 ≥ 0, then

‖v̂1 − v1‖ ≤
23/2‖Σ̂− Σ‖op

λ1 − λ2

.

Proof of Proposition 3. We observe that

L(v̂1, v1) ≤ L(v̂1, v1)1{S1⊆Ŝ1} + 1{S1*Ŝ1}

≤ 2

λ1 − λ2

‖PŜ1
Σ̂PŜ1

− PŜ1
ΣPŜ1

‖op1{S1⊆Ŝ1} + 1{S1*Ŝ1}, (16)

where the second inequality follows from Lemma 5 and the fact that for any S such that

S1 ⊆ S we have v1 = v1(PSΣPS), λ1 = λ1(PSΣPS), and also λ1(PSΣPS) − λ2(PSΣPS) ≥
λ1 − λ2 > 0. Next, for the first term in (16), we have

‖PŜ1
Σ̂PŜ1

− PŜ1
ΣPŜ1

‖op = sup
v∈Sp−1

v>PŜ1
(Σ̂− Σ)PŜ1

v ≤ sup
v∈Bp−1

0 (`)

∣∣v>(Σ̂− Σ)v
∣∣.

Thus, by the definition of the RCC condition in (6) and Wang, Berthet and Samworth

(2016b, Proposition 1), after taking expectation on both sides of (16) we obtain the desired

bound.

The following two lemmas are used in the proof of Theorem 4. The first shows the

implications of having a projection P in the set of good projections G.

26



Lemma 6. Let P ∈ Pd and let Σ ∈ Rp×p be positive semidefinite with leading eigenvalues

λ1 ≥ λ2. If ‖Pv1‖ ≥ τ > 0, then L
(
v1(PΣP ), Pv1/‖Pv1‖

)
≤ 2λ2/(λ1τ

2) and λ1(PΣP ) −
λ2(PΣP ) ≥ λ1τ

2 − λ2.

Remark: In the case where Σ is a spiked covariance matrix of the form (12), the conclusions

of the lemma are that L
(
v1(PΣP ), Pv1/‖Pv1‖

)
≤ 2θ2/(θ1τ

2) and λ1(PΣP ) − λ2(PΣP ) ≥
θ1τ

2 − θ2; cf. the discussion following Theorem 4.

Proof of Lemma 6. By eigendecomposition, we may write Σ =
∑p

r=1 λrvrv
>
r , where λ1 ≥

· · · ≥ λp ≥ 0 and where v1, . . . , vp ∈ Rp are orthonormal. Writing S := λ1Pv1v
>
1 P and

E :=
∑p

r=2 λrPvrv
>
r P , we have PΣP = S + E. Observe that v1(S) = Pv1/‖Pv1‖ and

λ1(S)− λ2(S) = λ1‖Pv1‖2 ≥ λ1τ
2. On the other hand,

‖E‖op ≤
∥∥∥∥ m∑
r=2

λrvrv
>
r

∥∥∥∥
op

= λ2. (17)

Thus, by Lemma 5, we have

L

(
v1(PΣP ),

Pv1

‖Pv1‖

)
≤ 2‖E‖op

λ1(S)− λ2(S)
≤ 2λ2

λ1τ 2
,

which establishes the first claim. For the second claim, by Weyl’s inequality (Weyl, 1912;

Stewart and Sun, 1990, Corollary IV.4.9), for every r ∈ [p], we have λr(S) + λp(E) ≤
λr(PΣP ) ≤ λr(S) + λ1(E). Since E is positive semidefinite, we deduce that

λ1(PΣP )− λ2(PΣP ) ≥ λ1(S)− λ2(S)− λ1(E) ≥ λ1τ
2 − λ2,

as desired.

The next lemma shows that, when B is sufficiently large, we have ‖P1v1‖ ≥ τ > 0 with

high probability, where P1 is selected from a group of B random projections via our selection

criteria (4) in Algorithm 1.

Lemma 7. Let P1 := P1,b∗(1) be selected as in Algorithm 1 with input X1, . . . , Xn, B and d.

Assume further that X1, . . . , Xn
iid∼ Q ∈ RCCp(K) with covariance matrix Σ ∈ Rp×p. If

n ≥ 4d log p and p ≥ 3, then for any k′ ∈ [k] and τ > 0,

P(‖P1v1‖ < τ) ≤ p−3 + FHG

(
1

v2
1,(k′)

{
τ 2 +

4K

λ1

√
d log p

n
+
λ2

λ1

}
; d, k′, p

)B
.

Remark: Similarly as in Lemma 6 , in the case where Σ is a spiked covariance matrix of

the form (12), λr in the claim of this lemma can be replaced by θr, r = 1, 2.
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Proof of Lemma 7. Taking δ = p−3 in (6), there is an event Ω with probability at least

1− p−3 on which for all b ∈ [B],

∣∣λ1

(
P1,bΣ̂P1,b

)
− λ1

(
P1,bΣP1,b

)∣∣ ≤ ∥∥P1,bΣ̂P1,b − P1,bΣP1,b

∥∥
op
≤ 2K

√
d log p

n
. (18)

By Weyl’s inequality as in the proof of Lemma 6, we have for any b ∈ [B] that

λ1‖P1,bv1‖2 ≤ λ1(P1,bΣP1,b) ≤ λ1‖P1,bv1‖2 + λ2. (19)

Recall that P1 = P1,b∗ , where b∗ = sargmaxb∈[B] λ1

(
P1,bΣ̂P1,b

)
. In addition, we define b̃ :=

sargmaxb∈[B] ‖P1,bv1‖. Then by (18) and (19), we have on Ω that

λ1‖P1v1‖2 ≥ λ1(P1Σ̂P1)− 2K

√
d log p

n
− λ2 ≥ λ1(P1,b̃Σ̂P1,b̃)− 2K

√
d log p

n
− λ2

≥ λ1(P1,b̃ΣP1,b̃)− 4K

√
d log p

n
− λ2 ≥ λ1‖P1,b̃v1‖2 − 4K

√
d log p

n
− λ2.

Consequently, writing R := 4K
λ1

√
d log p
n

+ λ2
λ1

, we have for any k′ ∈ [k] that

P
(
‖P1v1‖ < τ

)
≤ P(Ωc) + P

(
‖P1,b̃v1‖2 < τ 2 +R

)
≤ p−3 +

∏
b∈[B]

P
(
‖P1,bv1‖2 < τ 2 +R

)
≤ p−3 + FHG

(
v−2

1,(k′)(τ
2 +R); d, k′, p

)B
,

as desired.

Proof of Theorem 4. Recall that P1 = P1,b∗(1) and that Ω = {P1 ∈ G}. By Lemma 7 and (11),

we have that

P(Ωc) ≤ p−3 + exp

[
−B
{

1− FHG

(
1

v2
1,(k′)

(
τ 2 +

4K

λ1

√
d log p

n
+
λ2

λ1

)
; d, k′, p

)}]
≤ 2p−3.

(20)

Moreover, on Ω, we have by Lemma 6 that L
(
v1(PΣP ), Pv1/‖Pv1‖

)
≤ 2λ2/(λ1τ

2) =: µ and

λ1(PΣP )− λ2(PΣP ) ≥ λ1τ
2 − λ2 =: κ. Now let

ξ :=
4
√

2K

κ

√
d log p

n
+
√

2µ

and u1 := P1v1/‖P1v1‖. Since d log p ≤ n, by Lemma 5 and Wang, Berthet and Samworth

(2016b, Proposition 1), we have

E
(
L(v̂1,b∗(1), u1)1Ω

)
≤ E

(
L(v̂1,b∗(1), v1(P1ΣP1))1Ω

)
+ E

(
L(v1(P1ΣP1), u1)1Ω

)
≤ 2

κ
E
(
‖P1Σ̂P1 − P1ΣP1‖op1Ω

)
+ µ ≤ ξ√

2
.
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Thus, using the fact that ‖u− sgn(u>v)v‖ ≤
√

2L(u, v) for u, v ∈ Sp−1, we have∣∣E(|v̂(j)
1,b∗(1)|1Ω

)
−E
(
|u(j)

1 |1Ω

)∣∣ ≤ E
{∣∣|v̂(j)

1,b∗(1)|−|u
(j)
1 |
∣∣1Ω

}
≤
√

2E
{
L(v̂1,b∗(1), u1)1Ω

}
≤ ξ. (21)

Write Ω(j) := {P (j,j)
1 = 1}, for j ∈ [p]. Then for j ∈ S1, we have that

E|v̂(j)
1,b∗(1)| ≥ E

(
|u(j)

1 |1Ω

)
− ξ ≥ |v(j)

1 |P(Ω ∩ Ω(j))− ξ

≥ vmin
1

{
max
j′∈S1

P(Ω ∩ Ω(j′))− ρ
}
− ξ ≥ vmin

1

{
τ 2

(
1− 2

p3

)
− ρ
}
− ξ, (22)

where we used (21), the definition of ρ in (9), the fact that

τ 2P(Ω) ≤ E
(
‖P1v1‖2

1Ω

)
=
∑
j′∈S1

(v
(j′)
1 )2P(Ω ∩ Ω(j′)) ≤ max

j′∈S1

P(Ω ∩ Ω(j′))

and (20). For j /∈ S1, we have by (21) and (20) that

E|v̂(j)
1,b∗(1)| ≤ E

(
|v̂(j)

1,b∗(1)|1Ω

)
+ P(Ωc) ≤ ξ + 2p−3. (23)

Recall that ŵ(j) = A−1
∑

a∈[A] |v̂
(j)
a,b∗(a)|, which, conditional on X1, . . . , Xn, is a sample average

of independent and identically distributed random variables. It follows from (22), (23), a

union bound and Hoeffding’s inequality for ` ≥ k that

P(S1 6⊆ Ŝ1) ≤ P
(

min
j∈S1

ŵ(j) ≤ max
j /∈S1

ŵ(j)
)
≤ P

( p⋃
j=1

{
|ŵ(j) − Eŵ(j)| ≥ ε/2

})
≤ pe−Aε

2/8.

The result therefore follows from Proposition 3.
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