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Abstract

Change-points are a routine feature of ‘big data’ observed in the
form of high-dimensional data streams. In many such data streams,
the component series possess group structures and it is natural to as-
sume that changes only occur in a small number of all groups. We
propose a new change point procedure, called groupInspect, that ex-
ploits the group sparsity structure to estimate a projection direction
so as to aggregate information across the component series to success-
fully estimate the change-point in the mean structure of the series.
We prove that the estimated projection direction is minimax optimal,
up to logarithmic factors, when all group sizes are of comparable or-
der. Moreover, our theory provide strong guarantees on the rate of
convergence of the change-point location estimator. Numerical stud-
ies demonstrates the competitive performance of groupInspect in a
wide range of settings and a real data example confirms the practical
usefulness of our procedure.

1 Introduction

Modern applications routinely generate time-ordered high-dimensional datasets,
where many covariates are simultaneously measured over time. Examples in-
clude wearable technologies recording the health state of individuals from
multi-sensor feedbacks (Hanlon and Anderson, 2009), internet traffic data
collected by tens of thousands of routers (Peng, Leckie and Ramamohanarao,
2004) and functional Magnetic Resonance Imaging (fMRI) scans that record

∗Research supported by EPSRC grant EP/T02772X/1.

1



the time evolution of blood oxygen level dependent (BOLD) chemical con-
trast in different areas of the brain (Aston and Kirch, 2012). The explosion
in number of such high-dimensional data streams calls for methodological
advances for their analysis.

Change-point analysis is an essential statistical technique used in iden-
tifying abrupt changes in a time series. Time points at which such abrupt
change occurs are called ‘change-points’. Through estimating the location of
change-points, we can divide the time series into shorter segments that can
be analysed using methods designed for stationary time series. Moreover, in
many applications, the estimated change-points indicate specific events that
are themselves of great interest. In the examples mentioned in the previous
paragraph, they can be used to raise alarms about abnormal health events,
detect distributed denial of service attacks on the network and pinpoint the
onset of certain brain activities.

Classical change-point analysis focuses on univariate time series. The
current state-of-art methods including Killick, Fearnhead and Eckley (2012);
Frick, Munk and Sieling (2014); Fryzlewicz (2014). However, classical uni-
variate change-point methods are often inadequate for high-dimensional datasets
that are routinely encountered in modern applications. When applied compo-
nentwise, they are often sub-optimal as signals can spread over many compo-
nents. As a result, several new methodologies have been proposed to test and
estimate change-points in the high-dimensional settings. These include meth-
ods that apply a simple `2 or `∞ aggregation of test statistics across different
components (Horváth and Hušková, 2012; Jirak, 2015), and more complex
methods such as a scan-statistics based approach by Enikeeva and Harchaoui
(2019), the Sparsified Binary Segmentation algorithm by Cho and Fryzlewicz
(2015), the double CUSUM algorithm of Cho (2016) and a projection-based
approach by Wang and Samworth (2018).

To get around the issue of the curse of dimensionality, existing high-
dimensional change-point methods often assume that the signal of change
possesses some form of sparsity. For example, in the high-dimensional mean
change setting studied in Jirak (2015); Cho and Fryzlewicz (2015); Wang
and Samworth (2018); Enikeeva and Harchaoui (2019), it is assumed that
the difference in mean before and after a change-point is nonzero only in a
small subset of coordinates. While the sparsity assumption greatly reduces
the complexity of the original high-dimensional problem, it often does not
capture the the full extent of the structure in the vector of change available in
real data applications. For instance, in many applications, the coordinates of
the high-dimensional vectors are naturally clustered into groups and coordi-
nates within the same group tend to change together. At each change-point,
only a small number of groups will undergo a change. Such a group sparsity
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change-point structure is useful in modelling many practical applications.
Examples include financial data stream where changes are often grouped by
industry sectors and a small number of sectors may experience virtually si-
multaneous market shocks. Also, in functional magnetic resonance imaging
data, voxels belonging to the same brain functional regions tend to change si-
multaneously over time. Similar group sparsity assumptions have been made
in other statistical problems including Yuan and Lin (2006); Wang and Leng
(2008); Simon et al. (2020).

In this work, we provide a new high-dimensional change-point methodol-
ogy that exploits the group sparsity structure of the changes. More precisely,
given pre-specified grouping information of all the coordinates, our algo-
rithm, named groupInspect (standing for group-based informative sparse
projection estimator of change-points), will first estimate a vector of pro-
jection that is closely aligned with the true vector of change at each change-
point. It will then project the high-dimensional data series along this esti-
mated direction and apply a univariate change-point method on the projected
series to identify the location of the change. The above procedure can be
combined with a wild binary-segmentation algorithm (Fryzlewicz, 2014) to
recursively identify multiple change-points. We show that, in a single change-
point setting, the projection direction estimator employed in groupInspect

has a minimax optimal dependence, up to logarithmic factors, on both the
`0 sparsity parameter and the group-sparsity parameter, representing respec-
tively the number of nonzero elements and the number of nonzero groups in
the vector of change. Furthermore, groupInspect achieves a

√
log(n)/(nϑ2)

rate of convergence for the estimated location of a single change-point, where
ϑ denotes the `2 norm of the vector of change, which up to logarithmic factors
is minimax optimal.

The outline of the paper is as follows. In Section 2, we describe the formal
setup of our problem. The groupInspect methodology is then introduced in
Section 3, with its theoretical performance guarantees provided in Section 4.
We illustrate the empirical performance of groupInspect via simulatinos and
a real-data example in Section 5. Proofs of all theoretical results are deferred
to Section 6, and ancillary results and their proofs are given in Section 7.

1.1 Notation

For any positive integer n, we write [n] = {1, . . . , n}. For a vector v =
(v1, . . . , vn)> ∈ Rn, we define ‖v‖0 =

∑n
i=1 1{vi 6=0}, ‖v‖∞ = maxi∈[n] |vi| and

‖v‖q =
{∑n

i=1(vi)
q
}1/q

for any positive integer q, and let Sn−1 = {v ∈ Rn :
‖v‖2 = 1}. For a matrix A ∈ Rp×n, we write ‖A‖∗ for its nuclear norm and
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write ‖A‖F for its Frobenius norm.
For any S ⊆ [n], we write vS for the |S|-dimensional vector obtained by

extracting coordinates of v in S. For a matrix A ∈ Rp×n, J ∈ [p] and S ∈ [n],
we write AJ,S for the submatrix obtained by extracting rows and columns of
A indexed by J and S respectively. When S = [n], we abbreviate AJ,[n] by
AJ . When S = {t} is a single element set, we slightly abuse notation and
write AJ,t instead of AJ,{t}.

Given two sequences (an)n∈N and (bn)n∈N such that an, bn > 0 for all n,
we write an . bn (or equivalently bn & an) if an ≤ Cbn for some universal
constant C.

2 Problem description

Let X1, . . . , Xn be independent random vectors with distribution:

Xt ∼ Np(µt, σ
2Ip), 1 ≤ t ≤ n, (1)

which we can combine into a single data matrix X ∈ Rp×n. We assume
that the sequence of mean vectors (µt)

n
t=1 undergoes changes at times zi ∈

{1, . . . , n− 1} for i ∈ {1, . . . , ν}, in the sense that

µzi+1 = · · · = µzi+1
=: µ(i), ∀ i ∈ {0, . . . , ν}, (2)

where we use the convention that z0 = 0 and zν+1 = n. We assume that
consecutive change-points are sufficiently separated in the sense that

min{zi+1 − zi : 0 ≤ i ≤ ν} ≥ nτ.

Suppose further that each of the p coordinates belong to (at least) one of G
groups. Specifically, let Jg denotes the set of indices associated with the gth
group for g ∈ {1, . . . , G}, we have that

G⋃
g=1

Jg = [p]. (3)

We assume that coordinates in the same group will tend to change together.
We will consider both the case of overlapping and non-overlapping groups. In
the latter scenario, each coordinate belongs to a unique group and (Jg)g∈[G]

forms a partition of [p].
Our goal is to estimate the locations of change z1, . . . , zν from the data

matrix X and the pre-specified grouping information (Jg)g∈[G]. Motivated

4



by Wang and Samworth (2018), the best way to aggregate the component
series so as to maximise the signal-to-noise ratio around the ith change-
point is to project the data along a direction close to the vector of change
θ(i) = µ(i) − µ(i−1). Let v(i) be the unit vector parallel to θ(i):

v(i) = θ(i)/‖θ(i)‖2,

which we will call the oracle direction for the ith change-point. We measure
the quality of any estimated projection direction v̂ with the Davis–Kahan sin
θ loss (Davis and Kahan, 1970)

L(v̂, v(i)) =
√

1− (v̂>v(i))2

and measure the quality of the subsequent location estimator ẑi by E|ẑi−zi|.
The difficulty of the estimation task depends on both the noise level σ

and the vector of change θ(i) = µ(i) − µ(i−1). More precisely, we assume that
the change is localised in a small number of the G groups as defined in (3).
Define φ : Rp → RG such that φ(x) = (‖xJ1‖2, ‖xJ2‖2, . . . , ‖xJG‖2)>, we
assume that

‖θ(i)‖0 ≤ k, ‖φ(θ(i))‖0 ≤ s and ‖θ(i)‖2 ≥ ϑ. (4)

3 Methodology

3.1 Single change-point estimation

Initially, we will consider estimation of a single change-point, where ν = 1.
This can be extended to estimate multiple change-points in conjunction with
top-down approaches such as wild binary segmentation, which we will discuss
in Section 3.2.

We define the CUSUM transformation T : Rp×n → Rp×(n−1) by

T (M)j,t =

√
t(n− t)

n

(
1

n− t

n∑
r=t+1

Mj,r −
t∑

r=1

1

t
Mj,r

)
, (5)

and compute the CUSUM matrix T = T (X). As discussed in Section 2, our
general strategy is to use the matrix T to estimate a projection direction that
is well-aligned with the direction of change, and then project the data along
this direction to estimate the change-point location from the univariated
projected series. More precisely, we would like to solve for

v̂ ∈ arg max
u∈Sp−1,‖φ(u)‖0≤s

‖u>T‖2, (6)
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where, Sp−1 = {x ∈ R
p : ‖x‖2 = 1}. However, the above optimisation

problem is non-convex due to the group-sparsity constraint. Consequently,
we perform the following convex relaxation of the above problem. We first
note that the set of optimisers of (6) is equal to the set of leading left singular
vectors of

arg max
M∈Rp×(n−1):‖M‖∗=1,rank(M)=1∑

g∈[G] 1{‖MJg ‖F 6=0}≤s

〈M,T 〉,

We relax the above matrix-variate optimisation problem by dropping the
combinatorial rank constraint, and replacing the nuclear norm constraint set
by the larger Frobenius norm set of S = {M ∈ Rp×(n−1) : ‖M‖F ≤ 1}. The
constraint that M has at most s groups of non-zero rows can be written as
an `0 constraint on the vector of Frobenius norms of such submatrices, i.e.
‖(‖MJg‖F : g ∈ {1, . . . , G})‖0 ≤ s. Motivated by the group lasso penalty
(Yuan and Lin, 2006), we replace this group sparsity constraint with a group
norm penalty, where the group norm for a matrix M ∈ Rp×(n−1) is defined
as

‖M‖grp =
G∑
g=1

p1/2g ‖MJg‖2,1,

where ‖MJg‖2,1 is the sum of column `2 norms of the submatrix MJg and
pg = |Jg|. Overall, we obtain the following optimisation problem:

M̂ ∈ arg max
M∈S

{
〈T,M〉 − λ‖M‖grp

}
, (7)

where λ ∈ [0,∞) is a regularization parameter.
If the groups are non-overlapping, in the sense that Jg ∩ Jg′ = ∅ for all

g 6= g′, then we see from Proposition 5 that (7) has a closed form solution

M̂ =
T −R∗

‖T −R∗‖F
, (8)

where R∗Jg ,t = TJg ,t min
{ λp

1/2
g

‖TJg,t‖2
, 1
}

.

For overlapping groups, (7) can be optimised using Frank–Wolfe algo-
rithm (Frank and Wolfe, 1956), as described in Algorithm 1. We first com-
pute the gradient of the objective function which is the step 4 in Algorithm 1.
We then project the M̂ back onto S.

After solving the optimization problem, we can obtain the estimated pro-
jection direction v̂ by computing the leading left singular vector of M̂ . Then,
we project the data along v̂ to obtain a univariate series for which exist-
ing one-dimensional change-point estimation methods apply. Specifically, we
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perform the CUSUM transformation over the projected data series, and lo-
cate the change-point by the maximum absolute value of the CUSUM vector.
The full procedure is described in Algorithm 2.

Algorithm 1: Frank–Wolfe algorithm for optimising (7)

Input: T ∈ Rp×(n−1), grouping (Jg)g∈[G], λ > 0 and ε > 0.

1 Initialise M̂ [0] = T/‖T‖F and t = 0.
2 repeat
3 t← t+ 1

4 Compute G[t] = (G
[t]
1 , . . . , G

[t]
p )> ∈ Rp×(n−1) such that

G
[t]
j,t ← Tj,t −

∑
g:j∈Jg

λg
M

[t−1]
j,t

‖M [t−1]
Jg,t ‖F

,

where λg = p
1/2
g λ

5 if G[t] = 0 then break
6 Compute

M̃ [t] =
t

t+ 2
M [t−1] +

2

t+ 2

G[t]

‖G[t]‖F
,

7 Normalise M̂ [t] ← M̃ [t]/‖M̃ [t]‖F
8 until ‖M̂ [t+1] − M̂ [t]‖F ≤ ε;

Output: M̂ [t]

3.2 Multiple change-point estimation

When the data matrix possess multiple change-points, we may combine Al-
gorithm 2 with a top-down approach, such as the wild binary segmentation
(Fryzlewicz, 2014), to recursively identify all the change-points. Specifically,
we start by drawing a large number of random intervals [s1, e1], . . . , [sQ, eQ]
and apply Algorithm 2 to the data matrix X restricted to each of these time
intervals to obtain Q candidate change-point locations. We then aggregate
Q candidate change-point locations to choose the one with the maximum
projected CUSUM statistics. If the value of the CUSUM statistic at the best
candidate location is above a threshold ξ, we will admit this candidate loca-
tion as a change-point and repeat the above process on the data submatrix to
the left and right of this change-point. The pseudocode for the full procedure
is given in Algorithm 3.
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Algorithm 2: Single change-point estimation procedure for data
with group structure

Input: X ∈ Rp×n, (Jg)g∈[G], and λ > 0
1 Compute T ← T (X) as in (5).
2 Solve

M̂ ∈ arg max
M∈S

{
〈T,M〉 − λ‖M‖grp

}
using either the closed-form solution in (8) if groups are
non-overlapping, or Algorithm 1.

3 Let v̂ be the leading left singular vector of M̂ .
4 Estimate z by ẑ = arg max1≤t≤n−1 |v̂>Tt|, where Tt is the tth column

of T .
Output: ẑ, T̄max = v̂>Tz

Algorithm 3: Multiple change-point estimation procedure

Input: X ∈ Rp×n, (Jg)g∈[G], λ > 0, ξ > 0, Q ∈ N
1 Set Ẑ ← ∅
2 Draw Q pairs of integers (s1, e1), . . . , (sQ, eQ) uniformly at random

from the set {(`, r) ∈ Z2 : 0 ≤ ` < r ≤ n}
3 Function wbs(s, e)
4 Set Qs,e = {q : s ≤ sq < eq ≤ e}
5 for q ∈ Qs,e do

6 (ẑ[q], T̄
[q]
max)← output of Algorithm 2 with inputs

(Xj,t)j∈[p],t∈(s,e] and λ

7 Find q0 ∈ arg maxq∈Qs,e
T̄

[q]
max and set b← sq0 + ẑ[q0]

8 if T̄
[q0]
max ≥ ξ then

9 Ẑ ← Ẑ ∪ {b}
10 Run recursively wbs(s, b) and wbs(b, e)

Output: Ẑ
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4 Theoretical guarantees

In this section, we provide theoretical guarantees to the performance of the
groupInspect algorithm. As we have noted in Section 2, a key to the suc-
cessful change-point estimation in the current problem is a good estimator
of the oracle projection direction v = θ/‖θ‖2.

The following theorem controls the sine angle risk of the estimated projec-
tion direction v̂ in Step 3 of Algorithm 2. We define Pn,p(s, k, τ, ϑ, σ2, (Jg)g∈[G])
to be the set of data distributions satisfying (1), (2), (3) and (4). For any
P ∈ P , we write v(P ) = θ/‖θ‖2 where θ is the difference between post-change
and pre-change means.

Theorem 1. For a given grouping (Jg)g∈[G], let p∗ = ming∈[G] |Jg| and
suppose further that there exists a universal constant C1 > 0, such that
maxj∈[p] |{g : j ∈ Jg}| ≤ C1. Let X ∼ P ∈ Pn,p(s, k, τ, ϑ, σ2, (Jg)g∈[G])
be a p×n data matrix, let θ be the vector of change and let v̂ be as in Step 3
of Algorithm 2 with input X, (Jg)g∈[G] and λ ≥ σ(1+

√
4 log(Gn)/p∗). Then

there exists C > 0, depending only on C1, such that

sup
P∈Pn,p(s,k,τ,ϑ,σ2,(Jg)g∈[G])

PP
{

sin∠(v̂, v) ≤ Cλk1/2

n1/2τϑ

}
≤ 1

nG
. (9)

We remark that the condition maxj∈[p] |{g : j ∈ Jg}| ≤ C1 is to control
the extent of overlapping between different groups. Specifically, it requires
that each coordinate can belong to at most C1 groups. In the special case
when all groups Jg are disjoint, which is often true in practical applications,
then it suffices to take C1 = 1.

We note that, when λ = σ(1 +
√

4 log(Gn)/p∗), with high probabil-
ity, the sine angle loss in (9) has an upper bound that is proportional to
σk1/2n−1/2τ−1ϑ−1, similar to what has been previously observed in Wang
and Samworth (2018, Proposition 1). However, Theorem 1 reveals an inter-
esting interaction between the `0 sparsity k and the group sparsity s when
all groups are of comparable size. Specifically, for λ = σ(1 +

√
4 log(Gn)/p∗)

and assuming that maxg∈[G] pg . p∗, then we can simplify (9) to obtain that

E{sin∠(v̂, v)} .
√
σ2{k + s log(Gn)}

nτ 2ϑ2
.

In other words, the risk upper bound undergoes a phase transition as the
number of coordinates per group increases above a log(Gn) level. Simi-
lar phase transitions have been previously observed in the context of high-
dimensional linear model where the regression coefficients satisfy a group
sparsity assumption (see, e.g. Cai et al., 2019, Theorem 3).
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We now turn our attention to a minimax lower bound of the estimation
risk of the oracle projection direction. Theorem 2 below shows that the phase
transition observed in Theorem 1 is not due to the specific proof techniques
employed but rather an intrinsic feature of the problem.

Theorem 2. Suppose s > 0, k > 0 and a grouping (Jg)g∈[G] satisfy that Jg∩
Jg′ = ∅ for all g 6= g′ , min{k, (s− 1) log(G/s)} ≥ 20, and

∑s
r=1 p(G−r+1) ≥

k/2, where p(1) ≤ p(2) ≤ · · · ≤ p(G) are order statistics of p1, . . . , pG. Then
for some universal constant c > 0, we have

inf
ṽ

sup
P∈Pn,p(s,k,τ,ϑ,σ2,(Jg)g∈[G])

EPL(ṽ(X), v(P )) ≥ c

√
σ2{k + s log(G/s)}

nτϑ2
,

where the infimum is taken over the set of all measurable functions ṽ of the
data X.

The condition that
∑s

r=1 p(G−r+1) ≥ k/2 is to ensure that the upper
bound k on the `0-sparsity is not too loose in the sense that k is not too
much larger than the cardinality of the union of the largest s groups. If we
assume that log(G/s) � log(n), τ � 1 and maxg∈[G] pg . p∗, then the lower
bound in Theorem 2 matches the upper bound of Theorem 1 up to universal
constants, when all groups are non-overlapping.

After obtaining guarantees on the quality of the projection direction es-
timator, we now provide theoretical guarantees of the overall change-point
procedure. We note that the projection direction estimator v̂ is dependent
on the CUSUM panel T . While this dependence is observed to be very weak
in practice, it creates difficulties in analysing the projected CUSUM series
v̂>T in Step 4 of Algorithm 2. As such, for theoretical convenience, we will
instead analyse a sample-splitting version of the algorithm. Specifically, we
split the data into X(1) and X(2), consisting of odd and even time points
respectively, as described in Algorithm 4. We use X(1) to estimate the pro-
jected direction v̂(1) and then project X(2) along this direction to locate the
change-point. Theorem 3 below provides a performance guarantee for the
estimated location of the change-point of this sample-splitting version of our
procedure.

Theorem 3. Given data matrix X ∼ P ∈ Pn,p(s, k, τ, ϑ, σ2, (Jg)g∈[G]), let ẑ

be the output from the Algorithm 4 with input X and λ = σ(1+
√
p−1∗ 4 log(nG)).

There exist universal constants C, C ′ > 0 such that, if n ≥ 12 is even, z is
even, and

Cσ
√
k

ϑτ
√
n

(
1 +

√
4 log(Gn)

p∗

)
≤ 1,
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Algorithm 4: Change-point estimation procedure: sample splitting
version

Input: X ∈ Rp×n and λ > 0
1 Define X(1) as X

(1)
j,t = Xj,2t−1 and X(2) as X

(2)
j,t = Xj,2t.

2 Compute T (1) ← T (X(1)) and T (2) ← T (X(2)) as in (5).
3 Solve

M̂ (1) ∈ arg max
M∈S

{
〈T (1),M〉 − λ‖M‖grp

}
using either the closed-form solution in (8) if groups are
non-overlapping, or Algorithm 1.

4 Let v̂ be the leading left singular vector of M̂ (1).

5 Estimate z by ẑ = 2 arg max1≤t≤n1−1 |(v̂
(1))>T

(2)
t |, where T

(2)
t is the

tth column of T (2).
Output: ẑ

then,

P
{

1

n
|ẑ − z| ≤

C ′σ2(1 +
√

4 log(n))

nϑ2

}
≥ 1− 20 log n

n
.

5 Numerical studies

In this section, we provide some simulation results to demonstrate the empir-
ical performance of the groupInspect method. In all our numerical studies,
unless otherwise specified, we will assume that data are generated according
to (1), (2), (3) and (4), with σ = 1. In all simulations, we do not assume that
σ is known, or even equal across rows. Instead, we estimate the variance in
each row using the mean absolute deviation of successive differences of the
observations. We then standardise the data by the estimated row standard
deviation. The groupInspect procedure is then applied to the standardised
data with σ = 1.

5.1 Theory validation

We first show that the practical performance of the groupInspect procedure
is well captured by the theoretical results in Theorems 1 and 2. There are
two related measures of the signal sparsity in our problem, which are the
total number of coordinates of change k and the total number of groups with
a change s. We conduct two sets of simulation experiments fixing one of
these sparsity measures and varying the other. Specifically, for n = 1000,
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p ∈ {600, 1200, 2400} and ϑ ∈ {1, 2, 4, 8, 16}, we split the p coordinates into
disjoint groups of p∗ coordinates per group, where p∗ is allowed to vary over all
divisors of 60. In the first set of experiments, we fix k = 60 so that s = k/p∗
varies with p∗, whereas in the second set of experiments, we fix s = 3 so
that k = sp∗ varies with p∗. The vector of change is constructed so that the
magnitude of change is equal across all coordinates of change. We will use the
theoretical choice of tuning parameter λ for both sets of experiments here.
Figure 1 shows how the sin θ loss, averaged over 100 Monte Carlo repetitions,
varies with p∗, for different choices of p and ϑ in both settings.

In the left panel of Figure 1, where the number of signal coordinates k is
fixed, we see that the average loss decreases as p∗ increases. Furthermore, at
a log-log scale, and for relatively large signal sizes of ϑ ∈ {4, 8, 16}, we see
the loss curves follow an initial linear decreasing trend as p∗ increases before
plateauing eventually. This is in agreement with the two terms contributing
to the loss described in Theorem 1. Specifically, for small p∗, we expect the
second term of (9) to dominate and the loss decreases at a rate approximately
proportional to 1/

√
p∗ initially. For large p∗, we expect the first term of (9)

to dominate and the loss will have minimal dependence on p∗. In the right
panel of Figure 1, where the number of signal groups s is fixed, the average
loss increases with p∗, as expected from our theory. It appears that for s = 3
studied here, the first term of (9) is dominant and the average loss increases
linearly at the log-log scale with respect to p∗.

We further remark that in both panels of Figure 1, the average loss for
large p∗ shows equally spaced separation for the signal size ϑ in the dyadic
grid {1, 2, 4, 8, 16}. This is in good agreement with the 1/θ dependence of
expected loss given in Theorem 1. Finally, we note that the ambient dimen-
sion p has minimal effect on the loss curves, for all signal strengths studied
here. Again, this is predicted by our theory as the dimension p enters the
mean loss in (9) only through the log(Gn) = log(pn/p∗) expression in the
second term.

5.2 Practical choice of tuning parameter

The theoretical choice of λ turns out to be conservative in practical use. In
this subsection, we will perform numerical simulations to suggest a suitable
practical tuning parameter choice. We fix n = 1000, z = 400, s = 3, G ∈
{10, 25}. The signal size ϑ is varied in {1, 2, 4, 8, 16} and p is chosen from
{500, 1000}. All groups are set to have equal size. For the choice of tuning
parameters, we first form a logarithmic sequence of values between 0.1 and
3 with length 7 and then times each value with the theoretically suggested
value of 1 +

√
4p−1∗ log(nG) to form the sequence of the tuning parameter.
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Figure 1: Average loss (over 100 repetitions) of groupInspect for varying
elements per group p∗, plotted on a log-log scale. Left panel: k = 60 and
s = k/p∗. Right panel: s = 3 and k = sp∗. Other parameter: n = 1000.

For each setting of the signal size, we will run algorithm with all the λ values
and record the sine angle loss.

We plot sin θ loss against λ in Figure 2. The x-axis is the log sequence.
In most cases, the loss is minimized when tuning parameter value is half of
the theoretical value. However, when the minimum loss is achieved by other
values of λ, this lambda value can still achieve the loss which is close to
optimal value. Therefore, we suggest that using λ = 1/2(1+

√
4p−1∗ log(nG))

in practical is less conservative.

5.3 Comparison between different methods

Now, we would like to compare our method with other existing change-point
estimation procedures. As groupInspect is a two-stage procedure that first
estimates a projection direction before localising the change-point on the
projected series, we will investigate its performance both in terms of its ac-
curacy in estimating the projection direction and the quality of the final
change-point location estimator. For the former, we compare the estimated
projection direction from groupInspect with that from the inspect algo-
rithm. We measure the accuracy in terms of the sine angle loss introduced
in Section 2. We use the recommended values for tuning parameters in both
methods, i.e.,

√
2−1 log{p log n} in inspect as in Wang and Samworth (2018)

and 1/2(1 +
√

4p−1∗ log(nG)) for groupInspect as suggested in Section 5.2.
We fix n = 1000, p = 1000 and vary ϑ in {1, 2, 4, 8, 16}. We consider

settings with both non-overlapping groups and overlapping groups. For the
non-overlapping setting, we have G = 10 groups of equal size p∗ = 100,
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Figure 2: Average loss (over 100 repetitions) of groupInspect for varying
tuning parameter λ. Left panel: G = 10. Right panel: G = 25. Other
parameter: n = 1000, s = 3.

whereas for the overlapping setting, we have G = 19 groups of size 100 each,
where neighbouring groups overlap in exactly 50 coordinates. Both methods
have access to exactly the same data sets and the performance is averaged
over 100 Monte Carlo repetitions.

Figure 3 shows the comparison of the average sine angle loss between
groupInspect and inspect over all signal sizes on a logarithmic scale, in
both the non-overlapping and overlapping settings. In both cases, groupInspect
outperforms the inspect algorithm. From the left panel, we can see that
the estimation accuracy of the projection direction using groupInspect is
substantially better even when the signal is small.

We now turn our attention to the overall change-point localisation ac-
curacy of the groupInspect procedure. To this end, we compare the mean
absolute deviation of various high-dimensional change-point procedures over
100 Monte Carlo repetitions using the same data sets. In addition to inspect,
we also compare against the `2 aggregation procedures of Horváth and Hušková
(2012), the `∞ aggregation procedure of Jirak (2015) and the double CUSUM
procedure of Cho (2016). We set n = 1000, p ∈ {500, 1000, 2000}, ϑ ∈
{0.25, 0.5, 1, 2, 4}. The simulation results are presented in Table 1. For sim-
plicity, we have only shown the results for 10 equal-sized non-overlapping
groups here, but qualitatively similar results were obtained in other settings
as well. We see that groupInspect is very competitive over a wide range of
dimensions and signal-to-noise ratio settings, though the benefit of using the
group sparsity structure via groupInspect is most apparent in low signal-
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to-noise ratio settings where the change-point estimation problem is more
difficult.
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Figure 3: Average loss (over 100 repetitions) comparison between
groupInspect and Inspect. Left panel: non-overlap setting. Right panel:
overlap setting

5.4 Multiple change-points simulation

The numerical studies so far have focused mainly on the single change-point
estimation problem. In this subsection, we investigate the empirical per-
formance of groupInspect in multiple change-point estimation tasks. We
will compare its performance as implemented in Algorithm 3 to that of the
inspect algorithms for estimating multiple change-points under different
settings. We choose n = 1200, p ∈ {500, 1000}, s ∈ {3, 10}, G ∈ {50, 100}.
Each data series contains three true change-points located at 300, 600 and
900 with the `2 norm of the change equal to ϑ, 1.5ϑ and 2ϑ respectively.
We vary ϑ in {0.6, 0.8, 1, 1.2, 1.4}. For simplicity, we further assume that the
same s coordinates undergo change in all three change-points and that all
groups have 10 elements. We use the λ tuning parameter choice suggested in
Section 5.2 for the groupInspect method and that suggested in Wang and
Samworth (2018) for the inspect algorithm. For the thresholding parame-
ter ξ of the wild binary segmentation recursion used in both groupInspect

and inspect, we choose via Monte Carlo simulation. More precisely, we ran-
domly generate 1000 data sets from the null model with no change-points and
take the maximum absolute CUSUM statistics from Algorithm 3 and Wang
and Samworth (2018, Algorithm 4) as ξg and ξi respectively. We compare the
performance of two algorithms using the Adjusted Rand index (ARI) of the
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p ϑ groupInspect inspect `2-aggregate `∞-aggregate double cusum
500 0.25 127 143 336 337 347
500 0.5 59.8 93.4 231 305 262
500 1 3.83 8.83 9.84 94.2 40.6
500 2 0.670 0.982 0.875 16.0 4.16
500 4 0.045 0.018 0.045 4.04 0.179
1000 0.25 108 138 347 348 363
1000 0.5 81.8 107 269 326 297
1000 1 15.6 34.6 22.1 204 57.9
1000 2 0.920 1.51 0.973 28.3 3.91
1000 4 0.081 0.117 0.099 6.70 0.387
2000 0.25 101 139 358 365 364
2000 0.5 91.2 127 305 353 321
2000 1 36.3 58.1 71.6 305 127
2000 2 1.88 2.76 2.32 52.6 6.27
2000 4 0.134 0.161 0.134 7.97 0.696

Table 1: Average mean absolute deviation (over 100 repetitions) comparison
between different methods. Other parameters used: n = 1000 with G = 10

estimated segmentation against the truth (Rand, 1971; Hubert and Arabie,
1985).

From Figure 4, we see that the groupInspect algorithm generally per-
forms much better than the inspect algorithm in the multiple change-point
localisation tasks. The advantage of groupInspect is more pronounced when
the signal is sparser and when the dimension of the data is higher.

To further visualise the output of the two procedures, we plot the es-
timated change-point locations for one specific setting (s = 3 and ϑ = 1)
of each of the two panels in Figure 4. The resulting histograms in Fig-
ure 5 shows that when p = 500, groupInspect was better at picking out all
three change-points with higher accuracies. When p = 1000, inspect was
only able to pick out the change at t = 600 in most of the trials, whereas
groupInspect was still able to identify even the weakest change signal at
t = 300 in a substantial fraction of all trials.

5.5 Real data analysis

In this section, we apply groupInspect to a stock price data. The data con-
sists of the logarithmic daily returns (computed from the adjusted closing
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Figure 5: Histograms of estimated locations by groupInspect and inspect

under two settings when P = 500, G = 50 and p = 1000, G = 100. Other
parameter used: s = 3, ϑ = 1 are fixed in both settings.
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prices) of S&P 500 stocks during the period 1 January 2007 to 31 Decem-
ber 2011. Since not all companies remained in the S&P 500 list and some
companies have missing data at a few time points, we eventually selected
256 companies which have continuously traded throughout this this period
to construct a multivariate time series of dimension p = 256 and length
n = 1259. We then divide the 256 companies into G = 11 non-overlapping
groups according to respective Global Industry Classification Standard sec-
tor memberships. We then rescale rows of the data matrix by their estimated
standard deviation as in Section 5. We use the same procedure in Section 5.4
to choose thresholding parameter ξ.

The groupInspect algorithm identifies the following change points t =
147, 148, 298, 386, 427, 441, 448, 460, 477, 522, 524, 549, 559, 1158, 1189, as
illustrated in Figure 6. We see a large number of changes being identified in
the period between September and October 2008, which corresponds to the
period when the financial crisis reaches a climax, and when the stock market
is most volatile.
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Figure 6: Estimated change point locations (red dashed lines) by
groupInspect applied to the stock return data. For ease of illustration,
we have plotted the `2 norm of the returns of all stocks within each of the 11
groups over time.

6 Proofs of main results

In this section, we will give the proof of our results in section 4.
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6.1 Proof of Theorem 1

Proof. By Wang and Samworth (2018, equation (9)), we can explicitly write
the matrix A = (Aj,t)j∈[p],t∈[n−1] by

Aj,t =


√

t
n(n−t)(n− z)θj if 1 ≤ t ≤ z,√
n−t
nt
zθj if z < t ≤ n− 1.

Thus, we have
A = θγ>,

where γ = 1√
n

(√
1

n−1(n−z),
√

2
n−2(n−z), · · ·

√
z(n− z),

√
n−z−1
z+1

z, · · · ,
√

1
n−1z

)>
.

In particular, by By Wang and Samworth (2018, Lemma 3), A is a rank 1
matrix with ‖A‖op = ‖θ‖2‖γ‖2 ≥ nτϑ/4. By Proposition 9 with δ = (nG)−2,
we have

P(‖T − A‖grp∗ > λ) <
1

Gn
.

By Proposition 8, on the event {‖T − A‖grp∗ ≤ λ}, we have

max
{

sin∠(v, v̂), sin∠(u, û)
}
≤ 32λ(C1k)1/2

n1/2τϑ
,

as desired.

6.2 Proof of Theorem 2

Proof. We will use two different constructions to derive separate lower bounds
of order

√
σ2s log(G/s)/(nτϑ2) and

√
σ2k/(nτϑ2) respectively. Without loss

of generality, we may assume that z < n/2.
For the first bound, let s0 = s − 1, G0 = G − 1, then in RG. By the

Gilbert–Varshamov lemma as stated in Massart (2007, Lemma 4.10) (ap-
plied with α = 3/4 and β = 1/3), we can construct a set U0 of s0-sparse
vectors in {0, 1}G0 , with cardinality at least (G0/s0)

s0/5, such that the pair-
wise Hamming distance between any pair of vectors in U0 is at least s0/2.
Let ε ∈ (0, 1) to be chosen later, we can define a set

U =

{( √
1− ε2

s
−1/2
0 εu0

)
: u0 ∈ U0

}
⊆ SG−1.

We remark that for any pair of distinct u, u′ ∈ U , we have by construction
that ε/

√
2 ≤ ‖u′ − u‖2 ≤ ε. We then define a map ψ : RG → Rp such

that for any u ∈ U and j ∈ Jg, we have ψ(u)j = ugp
−1/2
g . Finally, let
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V = {ψ(u) : u ∈ U}. We note that ‖ψ(u′)− ψ(u)‖2 = ‖u′ − u‖2. Therefore,
for distinct v, v′ ∈ V , we have

L(v′, v) =
√

1− (v>v′)2 =
‖v′ − v‖2√

2
≥ ε

2
. (10)

Now, for each v ∈ V , we can define a distribution Pv ∈ Pn,p(s, k, τ, ϑ, σ2, (Jg)g∈[G]),
such that the pre-change mean is −ϑv and the post-change mean is 0 (we
check that Pv indeed satisfies the conditions of Pn,p(s, k, τ, ϑ, σ2, (Jg)g∈[G])).
Then for any distinct v, v′ ∈ V , we have

D(Pv‖Pv′) = zD(Np(−vϑ, σ2Ip)‖Np(−v′ϑ, σ2Ip)) =
zϑ2

2
‖v − v′‖22 ≤

zϑ2ε2

2σ2
.

(11)
By (10) and (11), we can apply Fano’s lemma (Yu, 1997, Lemma 3) to obtain
that

inf
ṽ

sup
P∈Pn,p(s,k,τ,ϑ,σ2,(Jg)g∈[G])

EPL(ṽ(X), v(P )) ≥ inf
ṽ

sup
v∈V

EPvL(ṽ(X), v)

≥ ε

4

{
1− zϑ2ε2/2σ2 + log 2

(s0/5) log(G0/s0)

}
.

By the condition (s−1) log(G/s) ≥ 20 in the theorem, we have (s0/5) log(G0/s0) ≥
2 log 2. Moreover, the choice of

ε =

√
σ2s0 log(G0/s0)

10zϑ2

ensures that (s0/5) log(G0/s0) ≥ 2zϑ2ε2/σ2. Therefore,

inf
ṽ

sup
P∈Pn,p(s,k,τ,ϑ,σ2,(Jg)g∈[G])

EPL(ṽ(X), v(P )) ≥ ε

16
≥ 1

72

√
σ2s log(G/s)

zϑ2
.

(12)
For the second lower bound, let g1, . . . , gs be the indices of the s groups

with largest cardinalities. By the given condition of the Theorem, we have
that k̃ =

∑s
r=1 pgr =

∑s
r=1 p(G−r+1) ≥ k/2. Let S = ∪sr=1Jgr , so |S| = k̃.

By Massart (2007, Lemma 4.7), we can construct a subset V0 of {−1, 1}k̃0 of

cardinality at least ek̃/8, such that any two points in the set are separated in
Hamming distance by at least k̃/4. Construct

V =

{
v : vS =

(√
1− ε2

k̃
−1/2
0 εv0

)
for some v0 ∈ V0 and vSc = 0

}
.
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Therefore, for distinct v, v′ ∈ V , we have ε ≤ ‖v′ − v‖2 ≤ 2ε,then,

L(v′, v) =
√

1− (v>v′)2 =
‖v′ − v‖2√

2
≥ ε√

2
.

Following the same derivation as in (11), we have that

D(Pv‖Pv′) = zD(Np(−vϑ, σ2Ip)‖Np(−v′ϑ, σ2Ip)) =
zϑ2

2σ2
‖v−v′‖22 ≤ 2zϑ2ε2/σ2.

Again, we can use Fano’s lemma (Yu, 1997, Lemma 3) to obtain that

inf
ṽ

sup
v∈V

EPvL(ṽ(X), v) ≥ ε√
2

{
1− 2zϑ2ε2/σ2 + log 2

k̃/8

}
≥ ε√

2

{
1− 2zϑ2ε2/σ2 + log 2

k/16

}
.

Now, choose ε = σk1/2z−1/2ϑ−1/4
√

6. Since k ≥ 20, we have k/16 ≥
9 log(2)/5, so that

inf
ṽ

sup
P∈Pn,p(s,k,τ,ϑ,σ2,(Jg)g∈[G])

EPL(ṽ(X), v(P )) ≥ inf
ṽ

sup
v∈V

EPvL(ṽ(X), v)

≥ ε

9
√

2
≥ 1

72
√

3

√
σ2k

zθ2
. (13)

The desired result follows by combining (12) with (13), and noting that
z ≥ nτ .

6.3 Proof of Theorem 3

Proof. Recall the definition of X(2) and let T (2) = T (X(2)). Define similarly

µ(2) = (µ
(2)
1 , . . . , µ

(2)
n1 ) ∈ Rp×n1 and a random W (2) = (W

(2)
1 , . . . ,W

(2)
n1 ) taking

values in Rp×n1 by µ
(2)
t = µ2t and W

(2)
t = W2t. Now, let A(2) = T (µ(2))

and E(2) = T (W (2)). We also write X̄ = (v̂(1))>X(2),µ̄ = (v̂(1))>µ(2),W̄ =
(v̂(1))>W (2),Ā = (v̂(1))>A(2), Ē = (v̂(1))>E(2) and T̄ = (v̂(1))>T (2) for the one-
dimensional projected images. Note that by linearity, we have T̄ = T (X̄),
Ā = T (µ̄) and Ē = T (W̄ ),

Now, conditional on v̂(1), the random variables X̄1, . . . , X̄n1 are indepen-
dent with

X̄t | v̂(1) ∼ N(µ̄t, σ
2)

and the row vector µ̄ undergoes a single change at z(2) = z/2 with magnitude
of change

θ̄ = µ̄z(2)+1 − µ̄z(2) = v̂(1)>θ.
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Finally, let ẑ(2) ∈ arg max1≤t≤n1−1 |T̄t|, so the first component of the output

of the algorithm is ẑ = 2ẑ(2). Consider the set

Υ = {u ∈ Sp−1 : ∠(u, v) ≤ π/6}.

By Condition (3) and Theorem 1, we have that

P(v̂(1) ∈ Υ) ≥ 1− 1

n1G
. (14)

Moreover, on the event {v̂(1) ∈ Υ}, we have that θ̄ ≥
√

3ϑ/2. Set λ1 =
σ(1 +

√
4 log n), we have by Proposition 9 that

P(‖Ē‖∞ ≥ λ1) = P(‖Ē‖grp∗ ≥ λ) ≤ 1

n1

. (15)

Since T̄ = Ā + Ē and (Āt)t and (T̄t)t are respectively maximized at t = z(2)

and t = ẑ(2), we have on the event Ω0 = {v̂1 ∈ Υ, ‖Ē‖∞ ≥ λ1} that

Āz(2) − Āẑ(2) = (Āz(2) − T̄ẑ(2)) + (T̄z(2) − T̄ẑ(2)) + (T̄ẑ(2) − Āẑ(2))
≤ |Āz(2) − Āẑ(2)|+ |T̄ẑ(2) − Āẑ(2)| ≤ 2λ1.

Hence, by Wang and Samworth (2018, Lemma 7 in the online supplement),
on the event Ω0, we have that

|ẑ(2) − z(2)|
n1τ

≤ 3
√

6λ1
θ̄(n1τ)1/2

≤ 6
√

2σ(1 +
√

4 log n1)

ϑ
√
nτ

.

Now we define the event

Ω1 =

{∣∣∣∣ s∑
r=1

W̄t−
t∑

r=1

W̄

∣∣∣∣ ≤ λ1
√
|s− t|, for all 0 ≤ t ≤ n1, s ∈ {0, z(2), n1}

}
.

By Wang and Samworth (2018, Lemma 5), we have that

P(Ωc
1) ≤ 4e−λ

2
1/4{2 log n1+log z(2)+log(n1−z(2)} ≤ 16 log ne−λ

2
1/4 ≤ 16 log n

n
.

(16)
Following the proof of Theorem 1 of Wang and Samworth (2018), we have
on Ω0 ∩ Ω1 that

1 ≤ 6
√

3λ1
θ̄|ẑ(2) − z(2)|1/2

+
12
√

6λ1
θ̄(n1τ)1/2

≤ 12
√

2σ(1 +
√

4 log n)

ϑ
√
|z − ẑ|

+
48σ(1 +

√
4 log n)

ϑ
√
nτ
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From (3) for C ≥ 96, we have on Ω0 ∩ Ω1 that

|ẑ − z| ≤ C ′ϑ−2σ2(1 +
√

4 log n).

Finally, by (14), (15) and (16) we have that

P(Ω0 ∩ Ω1) ≥ 1− 1

n1G
− 1

n1

− 16 log n

n
≥ 1− 20 log n

n
,

as desired.

7 Ancillary results

We collect in this section all ancillary propositions and lemmas used in the
paper. For all results in this section, we assume that we are given a grouping
(Jg)g∈[G] of [p] and the associated group norm ‖·‖grp. It is useful to define the
following counterpart to the group norm. For any R ∈ Rp×n and a grouping
(Jg)g∈[G] of [p], we define

‖R‖grp∗ = p−1/2g max
g∈[G]

max
t∈[n]
‖RJg ,t‖2. (17)

Lemma 4. The norm ‖ · ‖grp∗ is a dual to ‖ · ‖grp with respect to the inner
product 〈·, ·〉 on Rp×n.

Proof. To prove the lemma, it suffices to show that ‖M‖grp = sup
‖R‖grp∗≤1

〈R,M〉

for all M ∈ Rp×(n−1). First, for any M ∈ Rp×(n−1), let MJg ,t be the tth column

of MJg . Define R̃ = R̃(M) such that

R̃Jg ,t =
p
1/2
g MJg ,t

max
{
‖MJg ,t‖2, 1

} .
Then, ‖R̃‖grp∗ ≤ maxg∈[G] maxt∈[n−1] p

−1/2
g p

1/2
g
‖MJg,t‖2
‖MJg,t‖2

= 1. Hence,

sup
‖R‖grp∗≤1

〈R,M〉 ≥ 〈R̃,M〉 =
G∑
g=1

n−1∑
t=1

p1/2g

〈MJg ,t,MJg ,t〉
‖MJg ,t‖2

=
G∑
g=1

n−1∑
t=1

p1/2g ‖MJg ,t‖2 = ‖M‖grp.
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On the other hand, for any R such that ‖R‖grp∗ ≤ 1, we have ‖RJg ,t‖2 ≤ p
1/2
g

for all g and t. Consequently, by the Cauchy–Schwarz inequality,

〈R,M〉 =
∑
g∈[G]

∑
t∈[n−1]

〈RJg ,t,MJg ,t〉 ≤
∑
g∈[G]

∑
t∈[n−1]

‖RJg ,t‖2‖MJg ,t‖2

≤
∑
g∈[G]

∑
t∈[n−1]

p1/2g ‖MJg ,t‖2 = ‖M‖grp,

thus establishing the result.

Proposition 5. Let S = {M ∈ Rp×(n−1) : ‖M‖F ≤ 1}. For T ∈ Rp×(n−1),
λ > 0, we have

arg max
M∈S

{
〈T,M〉 − λ‖M‖grp

}
=

T −R∗

‖T −R∗‖F
,

where R∗ satisfies R∗Jg ,t = TJg ,t min
{ λp

1/2
g

‖TJg,t‖F
, 1
}

.

Proof. Define functions h : Rp×(n−1) × Rp×(n−1) → R and f, g : Rp×(n−1) →
R such that for M,R ∈ Rp×(n−1), h(M,R) = 〈T − λR,M〉 and f(M) =
inf‖R‖grp∗≤1 h(M,R) and g(R) = supM∈S h(M,R). By (17) and Lemma 4, we
have that

〈T,M〉−λ‖M‖grp = 〈T,M〉−λ sup
‖R‖grp∗≤1

〈R,M〉 = inf
‖R‖grp∗≤1

〈T−λR,M〉 = f(M).

By the minimax equality theorem (Fan, 1953, Theorem 1), we obtain that

sup
M∈S

f(M) = sup
M∈S

inf
‖R‖grp∗≤1

h(M,R) = inf
‖R‖grp∗≤1

sup
M∈S

h(M,R) = inf
‖R‖grp∗≤1

g(R).

Observe that g(R) = ‖T−λR‖F. To find the optimiserR∗ ∈ arg min‖R‖grp∗≤1 ‖T−
λR‖F, we consider the G groups individually. For each group g, and in the

tth column, if ‖TJg ,t‖2 ≤ λp
1/2
g , then R∗Jg ,t = TJg ,t/λ; and if ‖TJg ,t‖2 > λp

1/2
g ,

then R∗Jg ,t = p
1/2
g TJg ,t/‖TJg ,t‖2. Since the minimizer of g(R) is unique, we

have that

arg max
M∈S

f(M) = arg max
M∈S

h(M,R∗) =
T − λR∗

‖T − λR∗‖F
,

as desired.

Lemma 6. For any A,B ∈ Rp×n, we have 〈A,B〉 ≤ ‖A‖grp‖B‖grp∗.
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Proof. By Cauchy–Schwarz inequality, we have that

〈A,B〉 =
∑
g,t

〈AJg ,t, BJg ,t〉 ≤
∑

g∈[G],t∈[n]

‖AJg ,t‖F‖BJg ,t‖F

≤
( ∑
g∈[G],t∈[n]

p1/2g ‖AJg ,t‖F
)(

max
g∈[G],t∈[n]

p−1/2g ‖BJg ,t‖F
)

= ‖A‖grp‖B‖grp∗.

as desired.

Lemma 7. Let pg = |Jg| and suppose further that there exists a universal
constant C1 > 0, such that maxj∈[p] |{g : j ∈ Jg}| ≤ C1. Then, for any
M ∈ Rp×n, we have ‖M‖grp ≤ (C1n

∑
g pg)

1/2‖M‖F.

Proof. Define m with mJg ,t = ‖MJg ,t‖F. Then by applying the Cauchy–
Schwarz inequality twice, we have

‖M‖grp =
∑
g∈[G]

p1/2g

n∑
t=1

‖MJg ,t‖2 ≤
∑
g∈[G]

(npg)
1/2‖MJg‖F

≤
√
n

(∑
g∈[G]

pg

)1/2(∑
g∈[G]

‖MJg‖2F
)1/2

≤
(
C1n

∑
g∈[G]

pg

)1/2

‖M‖F,

as desired.

Proposition 8. Let pg = |Jg| and suppose further that there exists a univer-
sal constant C1 > 0, such that maxj∈[p] |{g : j ∈ Jg}| ≤ C1. Let A be a rank
one matrix with A = δvu> for δ > 0, ‖v‖2 = ‖u‖2 = 1 and

∑
g:vJg 6=0 pg ≤ k.

Suppose T ∈ Rp×(n−1) satisfies ‖T − A‖grp∗ ≤ λ for some λ > 0, and let
S = {M ∈ Rp×(n−1) : ‖M‖F ≤ 1}. Then, for any

M̂ ∈ arg max
M∈S

{
〈T,M〉 − λ‖M‖grp

}
,

we have

‖vu> − M̂‖F ≤
4λ(C1nk)1/2

δ
,

and

max{sin∠(v, v̂), sin∠(u, û)} ≤ 8λ(C1nk)1/2

δ
.

Proof. Define G0 = {g : vJg 6= 0}. Since vu> ∈ S, from the basic inequality,
we have

〈T, vu>〉 − λ‖vu>‖grp ≤ 〈T, M̂〉 − λ‖M̂‖grp. (18)
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When ‖A − T‖grp∗ ≤ λ, or equivalently, p
−1/2
g ‖AJg ,t − TJg ,t‖2 ≤ λ for all

g ∈ [G] and t ∈ [n − 1], we have by Wang and Samworth (2018, Lemma 2)
and (18) that

‖vu> − M̂‖2F ≤
2

δ
〈A, vu> − M̂〉 ≤ 2

δ

(
〈T, vu> − M̂〉+ 〈A− T, vu> − M̂〉

)
≤ 2λ

δ

(
‖vu>‖grp − ‖M̂‖grp + ‖vu> − M̂‖grp

)
=

4λ

δ

∑
g∈G0

∑
t∈[n−1]

‖(vu> − M̂)Jg ,t‖2 ≤
4λ(C1nk)1/2

δ
‖vu> − M̂‖F,

where we used Lemma 6 in the penultimate inequality and Lemma 7 in the
final bound. This proves the first claim of the proposition, and the second
claim follows from the first by the same argument as used in Wang and
Samworth (2018, online supplement (18) and (19)).

Proposition 9. Let W be an p×n random matrix with independent N(0, σ2)
entries and set E = T (W ). Let pg = |Jg| with p∗ = ming∈[G] pg. For any

δ ∈ (0, 1) and λ = σ(1 +
√

2p−1∗ log(1/δ)), we have that

P(‖E‖grp∗ > λ) ≤ (n− 1)Gδ.

Proof. By the definition of the CUSUM transformation T in (5), we have that
EJg ,t ∼ N(0, σ2Ipg), and ‖EJg ,t/σ‖22 ∼ χ2

pg for every g ∈ [G] and t ∈ [n− 1].
Consequently, by a union bound, we have

P(‖E‖grp∗ > λ) ≤
∑
g∈[G]

∑
t∈[n−1]

P(‖EJg ,t‖22 > pgλ
2)

=
∑
g∈[G]

∑
t∈[n−1]

P
{
‖EJg ,t‖22
σ2pg

>
(

1 +
√

2p−1∗ log(1/δ)
)2}

≤
∑
g∈[G]

∑
t∈[n−1]

P
{
‖EJg ,t‖22
σ2pg

> 1 + 2

√
log(1/δ)

pg
+

2(log 1/δ)

pg

}
≤ (n− 1)Gδ,

as desired, where we used Laurent and Massart (2000, Lemma 1) in the final
inequality.
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