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Abstract

We introduce a new method for two-sample testing of high-dimensional linear
regression coefficients without assuming that those coefficients are individually es-
timable. The procedure works by first projecting the matrices of covariates and
response vectors along directions that are complementary in sign in a subset of the
coordinates, a process which we call ‘complementary sketching’. The resulting pro-
jected covariates and responses are aggregated to form two test statistics, which
are shown to have essentially optimal asymptotic power under a Gaussian design
when the difference between the two regression coefficients is sparse and dense re-
spectively. Simulations confirm that our methods perform well in a broad class of
settings.

1 Introduction
Two-sample testing problems are commonplace in statistical applications across different
scientific fields, wherever researchers want to compare observations from different samples.
In its most basic form, a two-sample Gaussian mean testing problem is formulated as
follows: upon observing two samples 𝑋1, . . . 𝑋𝑛1

iid∼ 𝑁(𝜇1, 𝜎
2) and 𝑌1, . . . , 𝑌𝑛2

iid∼ 𝑁(𝜇2, 𝜎
2),

we wish to test
𝐻0 : 𝜇1 = 𝜇2 versus 𝐻1 : 𝜇1 ̸= 𝜇2. (1)

This leads to the introduction of the famous two-sample Student’s 𝑡-test. In a slightly more
involved form in the parametric setting, we observe 𝑋1, . . . , 𝑋𝑛1

iid∼ 𝐹𝜃1,𝛾1 and 𝑌1, . . . , 𝑌𝑛2
iid∼

𝐹𝜃2,𝛾2 and would like to test 𝐻0 : 𝜃1 = 𝜃2 versus 𝐻1 : 𝜃1 ̸= 𝜃2, where 𝛾1 and 𝛾2 are nuisance
parameters.

Linear regression models have been one of the staples of statistics. A two-sample
testing problem in linear regression arises in the following classical setting: fix 𝑝 ≪
min{𝑛1, 𝑛2}, we observe an 𝑛1-dimensional response vector 𝑌1 with an associated design
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matrix 𝑋1 ∈ R𝑛1×𝑝 in the first sample, and an 𝑛2-dimensional response 𝑌2 with design
matrix 𝑋2 ∈ R𝑛2×𝑝 in the second sample. We assume in both samples the responses are
generated from standard linear models⎧⎨⎩𝑌1 = 𝑋1𝛽1 + 𝜖1,

𝑌2 = 𝑋2𝛽2 + 𝜖2,
(2)

for some unknown regression coefficients 𝛽1, 𝛽2 ∈ R𝑝 and independent homoscedastic noise
vectors 𝜖1 | (𝑋1, 𝑋2) ∼ 𝑁𝑛1(0, 𝜎2𝐼𝑛1) and 𝜖2 | (𝑋1, 𝑋2) ∼ 𝑁𝑛2(0, 𝜎2𝐼𝑛2). The purpose is
to test 𝐻0 : 𝛽1 = 𝛽2 versus 𝐻1 : 𝛽1 ̸= 𝛽2. Suppose that 𝛽 is the least square estimate of
𝛽 = 𝛽1 = 𝛽2 under the null hypothesis and 𝛽1, 𝛽2 are the least square estimates of 𝛽1 and
𝛽2 respectively under the alternative hypothesis. Define the residual sum of squares as

RSS1 = ‖𝑌1 −𝑋1𝛽1‖2
2 + ‖𝑌2 −𝑋2𝛽2‖2

2,

RSS0 = ‖𝑌1 −𝑋1𝛽‖2
2 + ‖𝑌2 −𝑋2𝛽‖2

2.
(3)

The classical generalised likelihood ratio test (Chow, 1960) compares the 𝐹 -statistic

𝐹 = (RSS0−RSS1)/𝑝
RSS1 /(𝑛1 + 𝑛2 − 2𝑝) ∼ 𝐹𝑝, 𝑛1+𝑛2−2𝑝 (4)

against upper quantiles of the 𝐹𝑝, 𝑛1+𝑛2−2𝑝 distribution. It is well-known that in the clas-
sical asymptotic regime where 𝑝 is fixed and 𝑛1, 𝑛2 →∞, the above generalised likelihood
ratio test is asymptotically optimal.

High-dimensional datasets are ubiquitous in the contemporary era of Big Data. As
dimensions of modern data 𝑝 in genetics, signal processing, econometrics and other fields
are often comparable to sample sizes 𝑛, the most significant challenge in high-dimensional
data is that the fixed-𝑝-large-𝑛 setup prevalent in classical statistical inference is no longer
valid. Yet the philosophy remains true that statistical inference is only possible when the
sample size relative to the true parameter size is sufficiently large. Most advances in high-
dimensional statistical inference so far have been made under some ‘sparsity’ conditions,
i.e., all but a small (often vanishing) fraction of the 𝑝-dimensional model parameters are
zero. The assumption in effect reduces the parameter size to an estimable level and it
makes sense in many applications because often only few covariates are really responsible
for the response, though identification of these few covariates is still a nontrivial task. In
the high-dimensional regression setting 𝑌 = 𝑋𝛽 + 𝜖 where 𝑌 ∈ R𝑛, 𝑋 ∈ R𝑛×𝑝, 𝛽 ∈ R𝑝

with 𝑝, 𝑛 → ∞ simultaneously, a common assumption to make is 𝑘 log 𝑝/𝑛 → 0 with
𝑘 = ‖𝛽‖0 := ∑︀𝑝

𝑗=1 1{𝛽𝑗 ̸=0}. Therefore, 𝑘 is the true parameter size, which vanishes relative
to the sample size 𝑛, and log 𝑝 is understood as the penalty to pay for not knowing where
the 𝑘 true parameters are.

Aiming to take a step in studying the fundamental aspect of two-sample hypothesis
testing in high dimensions, this paper is primarily concerned with the following testing
problem: we need to decide whether or not the responses in the two samples have different
linear dependencies on the covariates. More specifically, under the same regression setting
as in (2) with min{𝑝, 𝑛} → ∞, we wish to test the global null hypothesis

𝐻0 : 𝛽1 = 𝛽2 (5)
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against the composite alternative

𝐻1 : ‖𝛽1 − 𝛽2‖2 ≥ 2𝜌, ‖𝛽1 − 𝛽2‖0 ≤ 𝑘. (6)

In other words, we assume that under the alternative hypothesis, the difference between
the two regression coefficients is a 𝑘-sparse vector with ℓ2 norm at least 2𝜌 (the additional
factor of 2 here exists to simplify relevant statements under the reparametrisation we will
introduce later in Section 2). Throughout this paper, we do not assume the sparsity of
𝛽1 or 𝛽2 under the alternative.

Classical 𝐹 -tests no longer work well on the above testing problem, for the simple
reason that it is not possible to get good estimates of 𝛽’s through naive least square
estimators, which are necessary in establishing RSS in (3) to measure the model’s goodness
of fit. A standard way out is to impose certain kinds of sparsity on both 𝛽1 and 𝛽2 to
ensure that both quantities are estimable. To our best knowledge, this is the out-of-shelf
approach taken by most literature, see, for instance, Städler and Mukherjee (2012); Xia,
Cai and Cai (2015). Nevertheless, it is both more interesting and relevant in applications
to study the testing problem where neither 𝛽1 nor 𝛽2 is estimable but only 𝛽1 − 𝛽2 is
sparse.

As an example of applications where such assumptions come about natrually, consider
the area of differential networks. Here, researchers are interested in whether two biological
networks formulated as Gaussian graphical models, such as ‘brain connectivity network’
and gene-gene interaction network (Xia, Cai and Cai, 2015; Charbonnier, Verzelen and
Villers, 2015), are different in two subgroups of population. Such complex networks are
mostly of high-dimensional nature, in the sense that the number of nodes or features in
the networks are large, relative to the number of observations. Such networks are often
dense as interactions within different brain parts or genes are omnipresent, but because
they are subject to the about same physiology, the differences between networks from two
subpopulations are small, i.e., there are only a few different edges from one network to
another. In the above case of dense coefficients, sparsity assumption makes no sense and it
is impossible to obtain reasonable estimates of either regression coefficient 𝛽1 or 𝛽2 when
𝑝 is of the same magnitude as 𝑛. For this reason, any approach to detect the difference
between 𝛽1 and 𝛽2, which is built upon comparing estimates of 𝛽1 and 𝛽2 in some ways,
fails. In fact, any inference on 𝛽1 or 𝛽2 is not possible unless we make some other strin-
gent structural assumptions on the model. However, certain inference on the coefficient
difference 𝛽1 − 𝛽2, such as testing the zero null with the sparse alternative, is feasible by
exploiting sparse difference between different networks without much assumptions.

1.1 Related Works
The two-sample testing problem in its most general form is not well-understood in high
dimensions. Most of the existing literature has focused on testing the equality of means,
namely the high-dimensional equivalence of (1), see, e.g. Cai, Liu and Xia (2014); Chen,
Li and Zhong (2019). Similar to our setup, in the mean testing problems, we may allow
for non-sparse means in each sample and test only for sparse differences between the two
population means (Cai, Liu and Xia, 2014). The intuitive approach for testing equality
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of means is to eliminate the dense nuisance parameter by taking the difference in means
of the two samples and thus reducing it to a one-sample problem of testing a sparse mean
against a global zero null, which is also known as the ‘needle in the haystack’ problem
well studied previously by e.g. Ingster (1997); Donoho and Jin (2004). Such reduction,
however, is more intricate in the regression problem, as a result of different design matrices
for the two samples.

Literature is scarce for two-sample testing under high-dimensional regression setting.
Städler and Mukherjee (2012), Xia, Cai and Cai (2018), Xia, Cai and Sun (2020) have
proposed methods that work under the additional assumption so that both 𝛽1 and 𝛽2
can be consistently estimated. Charbonnier, Verzelen and Villers (2015) and Zhu and
Bradic (2016) are the only existing works in the literature we are aware of that allow
for non-sparse regression coefficients 𝛽1 and 𝛽2. Specifically, Charbonnier, Verzelen and
Villers (2015) look at a sequence of possible supports of 𝛽1 and 𝛽2 on a Lasso-type solution
path and then apply a variant of the classical 𝐹 -tests to the lower-dimensional problems
restricted on these supports, with the test 𝑝-values adjusted by a Bonferonni correction.
Zhu and Bradic (2016) (after some elementary transformation) uses a Dantzig-type se-
lector to obtain an estimate for (𝛽1 + 𝛽2)/2 and then use it to construct a test statistic
based on a specific moment condition satisfied under the null hypothesis. As both tests
depend on the estimation of nuisance parameters, their power can be compromised if such
nuisance parameters are dense.

1.2 Our contributions
Our contributions are four-fold.

1. We propose a novel method to solve the testing problems formulated in (5) and (6)
for model (2). Through complementary sketching, a delicate linear transformation
on both the designs and responses, our method turns the testing problem with
two different designs into one with the same design of dimension 𝑚 × 𝑝 where
𝑚 = 𝑛1+𝑛2−𝑝. After taking the difference in two regression coefficients, the problem
is reduced to testing whether the coefficient in the reduced one-sample regression is
zero against sparse alternatives. The transformation is carefully chosen such that
the error distribution in the reduced one-sample regression is homoscedastic. This
paves the way for constructing test statistics using the transformed covariates and
responses. Our method is easy to implement and does not involve any complications
arising from solving computationally expensive optimisation problems. Moreover,
when complementary sketching is combined with any methods designed for one-
sample problems, our proposal substantially supplies a novel class of testing and
estimation procedures for the corresponding two-sample problems.

2. In the sparse regime, where the sparsity parameter 𝑘 ∼ 𝑝𝛼 in the alternative (6) for
any fixed 𝛼 ∈ (0, 1/2), we show that the detection limit of our procedure, defined
as the minimal ‖𝛽1 − 𝛽2‖2 necessary for asymptotic almost sure separation of the
alternative from the null, is minimax optimal up to a multiplicative constant under
a Gaussian design. More precisely, we show that in the asymptotic regime where
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𝑛1, 𝑛2, 𝑝 diverge at a fixed ratio, if 𝜌 ≥
√︁

8𝑘 log 𝑝
𝑛𝜅1

, where 𝜅1 is a constant depending
on 𝑛1/𝑛2 and 𝑝/𝑚 only, then our test has asymptotic power 1 almost surely. On the
other hand, in the same asymptotic regime, if 𝜌 ≤

√︁
𝑐𝛼𝑘 log 𝑝
𝑛𝜅1

for some 𝑐𝛼 depending
on 𝛼 only, then almost surely no test has asymptotic size 0 and power 1 .

3. Our results reveal the effective sample size of the two-sample testing problem. Here,
by effective sample size, we mean the sample size for a corresponding one-sample
testing problem (i.e. testing 𝛽 = 0 in a linear model 𝑌 = 𝑋𝛽 + 𝜖 with rows of 𝑋
following the same distribution as rows of 𝑋1 and 𝑋2) that has an asymptotically
equal detection limit; see the discussion after Theorem 5 for a detailed definition. At
first glance, one might think that the effective sample size is 𝑚, which is the number
of rows in the reduced design. This hints that the reduction to the one-sample
problem has made the original two-sample problem obsolete. However, on deeper
thoughts, as an imbalance in the numbers of observations in 𝑋1 and 𝑋2 clearly makes
testing more difficult, the effective sample size has to also incorporate this effect. We
see from the previous point that uniformly for any 𝛼 less than and bounded away
from 1/2, the detection boundary is of order 𝜌2 ≍ 𝑘 log 𝑝/(𝑛𝜅1), with the precise
definition of 𝜅1 given in Lemma 12. Writing 𝑛1/𝑛2 = 𝑟 and 𝑝/𝑚 = 𝑠, our results on
the sparse case implies that the two-sample testing problem has the same order of
detection limit as in a one-sample problem with sample size 𝑛𝜅1 = 𝑚(𝑟−1 +𝑟+2)−1.
We note that this effective sample size is proportional to 𝑚, and for each fixed 𝑚,
maximised when 𝑟 = 1 (i.e. 𝑛1 = 𝑛2) and approaches 𝑚/𝑛 in the most imbalanced
design. This is in agreement with the intuition that testing is easiest when 𝑛1 = 𝑛2
and impossible when 𝑛1 and 𝑛2 are too imbalanced. Our study, thus, sheds light on
the intrinsic difference between two-sample and one-sample testing problems and
characterises the precise dependence of the difficulty of the two-sample problem on
the sample size and dimensionality parameters.

4. We observe a phase transition phenomena of how the minimax detection limit de-
pends on the sparsity parameter 𝑘. In addition to establishing minimax rate optimal
detection limit of our procedure in the sparse case when 𝑘 ≍ 𝑝𝛼 for 𝛼 ∈ [0, 1/2), we
also prove that a modified version of our procedure, suited for denser signals, is able
to achieve minimax optimal detection limit up to logarithmic factors in the dense
regime 𝑘 ≍ 𝑝𝛼 for 𝛼 ∈ (1/2, 1). However, the detection limit is of order 𝜌 ≍

√︁
𝑘 log 𝑝
𝑛𝜅1

in the sparse regime, but of order 𝜌 ≍ 𝑝−1/4 up to logarithmic factors in the dense
regime. Such a phase transition phenomenon is qualitatively similar to results pre-
viously reported in the one-sample testing problem (see, e.g. Ingster, Tsybakov and
Verzelen, 2010; Arias-Castro, Candès and Plan, 2011).

1.3 Organization of the paper
We describe our methodology in detail in Section 2 and establish its theoretical properties
in Section 3. Numerical results illustrate the finite sample performance of our proposed
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algorithm in Section 4. Proofs of our main results are deferred until Section 5 with
ancillary results in Section 6.

1.4 Notation
For any positive integer 𝑛, we write [𝑛] := {1, . . . , 𝑛}. For a vector 𝑣 = (𝑣1, . . . , 𝑣𝑛)⊤ ∈ R𝑛,
we define ‖𝑣‖0 := ∑︀𝑛

𝑖=1 1{𝑣𝑖 ̸=0}, ‖𝑣‖∞ := max𝑖∈[𝑛] |𝑣𝑖| and ‖𝑣‖𝑞 :=
{︁∑︀𝑛

𝑖=1(𝑣𝑖)𝑞
}︁1/𝑞

for any
positive integer 𝑞, and let 𝒮𝑛−1 := {𝑣 ∈ R𝑛 : ‖𝑣‖2 = 1}. The support of vector 𝑣 is defined
by supp(𝑣) := {𝑖 ∈ [𝑛] : 𝑣𝑖 ̸= 0}.

For 𝑛 ≥ 𝑚, O𝑛×𝑚 denotes the space of 𝑛 × 𝑚 matrices with orthonormal columns.
For 𝑎 ∈ R𝑝, we define diag(𝑎) to the 𝑝 × 𝑝 diagonal matrix with diagonal entries filled
with elements of 𝑎, i.e., (diag(𝑎))𝑖,𝑗 = 1{𝑖=𝑗}𝑎𝑖. For 𝐴 ∈ R𝑝×𝑝, define diag(𝐴) to be the
𝑝× 𝑝 diagonal matrix with diagonal entries coming from 𝐴, i.e., (diag(𝐴))𝑖,𝑗 = 1{𝑖=𝑗}𝐴𝑖,𝑗.
We also write tr(𝐴) := ∑︀

𝑖∈[𝑝] 𝐴𝑖,𝑖. For a symmetric matrix 𝐴 ∈ R𝑝×𝑝 and 𝑘 ∈ [𝑝], the
𝑘-operator norm of 𝐴 is defined by

‖𝐴‖𝑘,op := sup
𝑣∈𝒮𝑝−1:‖𝑣‖0≤𝑘

|𝑣⊤𝐴𝑣|.

For any 𝑆 ⊆ [𝑛], we write 𝑣𝑆 for the |𝑆|-dimensional vector obtained by extracting co-
ordinates of 𝑣 in 𝑆 and 𝐴𝑆,𝑆 the matrix obtained by extracting rows and columns of 𝐴
indexed by 𝑆.

Given two sequences (𝑎𝑛)𝑛∈N and (𝑏𝑛)𝑛∈N such that 𝑏𝑛 > 0 for all 𝑛, we write 𝑎𝑛 =
𝒪(𝑏𝑛) if |𝑎𝑛| ≤ 𝐶𝑏𝑛 for some constant 𝐶. If the constant 𝐶 depends on some parameter
𝑥, we write 𝑎𝑛 = 𝒪𝑥(𝑏𝑛) instead. Also, 𝑎𝑛 = 𝒪(𝑏𝑛) denotes 𝑎𝑛/𝑏𝑛 → 0.

2 Testing via complementary sketching
In this section, we describe our testing strategy. Since we are only interested in the
difference in regression coefficients in the two linear models, we reparametrise (2) with
𝛾 := (𝛽1 + 𝛽2)/2 and 𝜃 := (𝛽1 − 𝛽2)/2 to separate the nuisance parameter from the
parameter of interest. Define

Θ𝑝,𝑘(𝜌) :=
{︁
𝜃 ∈ R𝑝 : ‖𝜃‖2 ≥ 𝜌 and ‖𝜃‖0 ≤ 𝑘

}︁
.

Under this new parametrisation, the null and the alternative hypotheses can be equiva-
lently formulated as

𝐻0 : 𝜃 = 0 and 𝐻1 : 𝜃 ∈ Θ𝑝,𝑘(𝜌).

The parameter of interest 𝜃 is now 𝑘-sparse under the alternative hypotheses. However,
its inference is confounded by the possibly dense nuisance parameter 𝛾 ∈ R𝑝. A natural
idea, then, is to eliminate the nuisance parameter from the model. In the special design
setting where 𝑋1 = 𝑋2 (in particular, 𝑛1 = 𝑛2), this can be achieved by considering the
sparse regression model 𝑌1 − 𝑌2 = 𝑋1𝜃 + (𝜖1 − 𝜖2). While the above example only works
in a special, idealised setting, it nevertheless motivates our general testing procedure.
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To introduce our test, we first concatenate the design matrices and response vectors
to form

𝑋 =
(︃
𝑋1
𝑋2

)︃
and 𝑌 =

(︃
𝑌1
𝑌2

)︃
.

A key idea of our method is to project 𝑋 and 𝑌 respectively along 𝑛 − 𝑝 pairs of direc-
tions that are complementary in sign in a subset of their coordinates, a process we call
complementary sketching. Specifically, assume 𝑛1 + 𝑛2 > 𝑝 and define 𝑛 := 𝑛1 + 𝑛2 and
𝑚 := 𝑛− 𝑝 and let 𝐴1 ∈ R𝑛1×𝑚 and 𝐴2 ∈ R𝑛2×𝑚 be chosen such that

𝐴⊤
1 𝐴1 + 𝐴⊤

2 𝐴2 = 𝐼𝑚 and 𝐴⊤
1 𝑋1 + 𝐴⊤

2 𝑋2 = 0. (7)

In other words, 𝐴 := (𝐴⊤
1 , 𝐴

⊤
2 )⊤ is a matrix with orthonormal columns orthogonal to the

column space of 𝑋. Such 𝐴1 and 𝐴2 exist since the null space of 𝑋 has dimension at least
𝑚. Define 𝑍 := 𝐴⊤

1 𝑌1 + 𝐴⊤
2 𝑌2 and 𝑊 := 𝐴⊤

1 𝑋1 − 𝐴⊤
2 𝑋2. From the above construction,

we have
𝑍 = 𝐴⊤

1 𝑋1𝛽1 + 𝐴⊤
2 𝑋2𝛽2 + (𝐴⊤

1 𝜖1 + 𝐴⊤
2 𝜖2) = 𝑊𝜃 + 𝜉, (8)

where 𝜉 | 𝑊 ∼ 𝑁𝑚(0, 𝐴⊤𝐴) = 𝑁𝑚(0, 𝜎2𝐼𝑚). We note that similar to conventional sketch-
ing (see, e.g. Mahoney, 2011), the complementary sketching operation above synthesises
𝑚 data points from the original 𝑛 observations. However, unlike conventional sketching,
where one projects the design 𝑋 and response 𝑌 by the same sketching matrix 𝑆 ∈ R𝑚×𝑛

to obtain sketched data (𝑆𝑋, 𝑆𝑌 ), here we project 𝑋 and 𝑌 along different directions to
obtain (𝐴𝑋,𝐴𝑌 ), where 𝐴 := (𝐴⊤

1 ,−𝐴⊤
2 )⊤ is complementary in sign to 𝐴 in its second

block. Moreover, the main purpose of the conventional sketching is to trade off statistical
efficiency for computational speed by summarising raw data with a smaller number of
synthesised data points, whereas the main aim of our complementary sketching operation
is to eliminate the nuisance parameter, and surprisingly, as we will see in Section 3, there
is essentially no loss of statistical efficiency introduced by our complementary sketching
in this two-sample testing setting.

To summarise, after projecting 𝑋 and 𝑌 via complementary sketching to obtain 𝑊
and 𝑍, we reduce the original two-sample testing problem to a one-sample problem with 𝑚
observations, where we test the global null of 𝜃 = 0 against sparse alternatives using data
(𝑊,𝑍). From here, we can construct test statistics as functions of 𝑊 and 𝑍, for which
we describe two different tests. The first testing procedure, detailed in Algorithm 1, com-
putes the sum of squares of hard-thresholded inner products between the response 𝑍 and
standardised columns of the design matrix 𝑊 in (8). We denote the output of Algorithm 1
with input 𝑋1, 𝑋2, 𝑌1 and 𝑌2 and tuning parameters 𝜆 and 𝜏 as 𝜓sparse

𝜆,𝜏 (𝑋1, 𝑋2, 𝑌1, 𝑌2). As
we will see in Section 3, the choice of 𝜆 = 2𝜎

√
log 𝑝 and 𝜏 = 𝑘𝜎2 log 𝑝 would be suitable

for testing against sparse alternatives in the case of 𝑘 ≤ 𝑝1/2. On the other hand, in the
dense case when 𝑘 > 𝑝1/2, one option would be to choose 𝜆 = 0. However, it turns out to
be difficult to set the test threshold level 𝜏 in this dense case using the known problem
parameters. Therefore, we decided to study instead the following as our second test. We
apply steps 1 to 4 of Algorithm 1 to obtain the vector 𝑍, and then define our test as

𝜓dense
𝜂 (𝑋1, 𝑋2, 𝑌1, 𝑌2) := 1{‖𝑍‖2

2 ≥ 𝜂},
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Algorithm 1: Pseudo-code for complementary sketching-based test 𝜓sparse
𝜆,𝜏 .

Input: 𝑋1 ∈ R𝑛1×𝑝, 𝑋2 ∈ R𝑛2×𝑝, 𝑌1 ∈ R𝑛1 , 𝑌2 ∈ R𝑛2 satisfying 𝑛1 + 𝑛2 − 𝑝 > 0, a
hard threshold level 𝜆 ≥ 0, and a test threshold level 𝜏 > 0.

1 Set 𝑚← 𝑛1 + 𝑛2 − 𝑝.
2 Form 𝐴 ∈ O𝑛×𝑚 with columns orthogonal to the column space of (𝑋⊤

1 , 𝑋
⊤
2 )⊤.

3 Let 𝐴1 and 𝐴2 be submatrices formed by the first 𝑛1 and last 𝑛2 rows of 𝐴.
4 Set 𝑍 ← 𝐴⊤

1 𝑌1 + 𝐴⊤
2 𝑌2 and 𝑊 ← 𝐴⊤

1 𝑋1 − 𝐴⊤
2 𝑋2.

5 Compute 𝑄← diag(𝑊⊤𝑊 )−1/2𝑊⊤𝑍.
6 Compute the test statistic

𝑇 :=
𝑝∑︁
𝑗=1

𝑄2
𝑗1{|𝑄𝑗 |≥𝜆}.

7 Reject the null hypothesis if 𝑇 ≥ 𝜏 .

for a suitable choice of threshold level 𝜂.
The computational complexity of both 𝜓sparse

𝜆,𝜏 and 𝜓dense
𝜂 depends on Step 2 of Algo-

rithm 1. In practice, we can form the projection matrix 𝐴 as follows. We first generate an
𝑛×𝑚 matrix 𝑀 with independent 𝑁(0, 1) entries, and then project columns of 𝑀 to the
orthogonal complement of the column space of 𝑋 to obtain 𝑀̃ := (𝐼𝑛 −𝑋𝑋†)𝑀 , where
𝑋† is the Moore–Penrose pseudoinverse of 𝑋. Finally, we extract an orthonormal basis
from the columns of 𝑀̃ via a QR decomposition 𝑀̃ = 𝐴𝑅, where 𝑅 is upper triangular
and 𝐴 is a (random) 𝑛×𝑚 matrix with orthonormal columns that can be used in Step 2
of Algorithm 1. The overall computational complexity for our tests are therefore of order
𝒪(𝑛2𝑝+𝑛𝑚2). Finally, it is worth emphasising that while the matrix 𝐴 generated this way
is random, our test statistics 𝑇 = ∑︀𝑝

𝑗=1 𝑄
2
𝑗1{|𝑄𝑗 |≥𝜆} and ‖𝑍‖2

2, are in fact deterministic.
To see this, we observe that both

𝑊⊤𝑍 = (𝐴⊤
1 𝑋1 − 𝐴⊤

2 𝑋2)⊤(𝐴⊤
1 𝑌1 + 𝐴⊤

2 𝑌2) =
(︁
𝑋⊤

1 −𝑋⊤
2

)︁(︃𝐴1
𝐴2

)︃(︁
𝐴⊤

1 𝐴⊤
2

)︁(︃𝑌1
𝑌2

)︃

and ‖𝑍‖2
2 = 𝑌 ⊤𝐴𝐴⊤𝑌 depend on 𝐴 only through 𝐴𝐴⊤, which is determined by the column

space of 𝐴. Moreover, by Lemma 9, (‖𝑊𝑗‖2
2)𝑗∈[𝑝], being diagonal entries of 𝑊⊤𝑊 =

4𝑋⊤
1 𝐴1𝐴

⊤
1 𝑋1, are also functions of 𝑋 alone. This attests that both test statistics, and

consequently our two tests, are deterministic in nature.

3 Theoretical analysis
We now turn to the analysis of the theoretical performance of 𝜓sparse

𝜆,𝜏 and 𝜓dense
𝜂 . We

consider both the size and power of each test, as well as the minimax lower bounds for
smallest detectable signal strengths.

In addition to working under the regression model (2), we further assume the following
conditions in our theoretical analysis.
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(C1) All entries of 𝑋1 and 𝑋2 are independent standard normals.

(C2) Parameters 𝑛1, 𝑛2, 𝑝 satisfy 𝑚 = 𝑛1 + 𝑛2 − 𝑝 > 0 and lie in the asymptotic regime
where 𝑛1/𝑛2 → 𝑟 and 𝑝/𝑚→ 𝑠 as 𝑛1, 𝑛2, 𝑝→∞

The main purpose for assuming (C1) is to ensure that after standardising columns to have
unit length, the matrix 𝑊 , as computed in Step 4 of Algorithm 1, satisfies a restricted
isometry condition with high probability as in Proposition 2. In fact, as revealed in the
proof of our theory, even if matrices 𝑋1 and 𝑋2 do not follow the Gaussian design, as
long as 𝑊 satisfies (9) and (10), all results in this section will still be true. The condition
𝑛1 + 𝑛2 − 𝑝 > 0 in (C2) is necessary in this two-sample problem, since otherwise, for any
prescribed value of Δ := 𝛽1 − 𝛽2, the equation system with 𝛽1 as unknowns(︃

𝑋1
𝑋2

)︃
𝛽1 =

(︃
𝑌1

𝑌2 −𝑋2Δ

)︃

has at least one solution when (𝑋⊤
1 , 𝑋

⊤
2 )⊤ has rank 𝑛. As a result, except in some patho-

logical cases, we can always find 𝛽1, 𝛽2 ∈ R𝑝 that fit the data perfectly with 𝑌1 = 𝑋1𝛽1
and 𝑌2 = 𝑋2𝛽2, which makes the testing problem impossible. Finally, we have carried out
proofs of our theoretical results with finite sample arguments wherever possible. Never-
theless, due to a lack of finite-sample bounds on the empirical spectral density of matrix-
variate Beta distributions, all results in this section are presented under the asymptotic
regime set out in Condition (C2). Under this condition, we were able to exploit existing
results in the random matrix theory to obtain a sharp dependence of the detection limit
on 𝑠 and 𝑟.

In what follows, we also make the simplifying assumption that the noise variance 𝜎2

is known. By replacing 𝑋1, 𝑋2, 𝑌1, 𝑌2 with 𝑋1/𝜎, 𝑋2/𝜎, 𝑌1/𝜎 and 𝑌2/𝜎, we may further
assume that 𝜎2 = 1 without loss of generality, which we assume for the rest of this section.
In practice, if the noise variance is unknown, we can replace it with one of its consistent
estimators 𝜎̂2 (see e.g. Reid, Tibshirani and Friedman, 2016, and references therein).

3.1 Sparse case
We consider in this subsection the test 𝜓sparse

𝜆,𝜏 , which is suitable for distinguishing 𝛽1
and 𝛽2 that differ in a small number of coordinates, the setting that has more subtle
phenomena and hence is most of interest to us. Our first result below states that with a
choice of hard-thresholding level 𝜆 of order

√
log 𝑝, the test has asymptotic size 0.

Theorem 1. If Condition (C2) holds and 𝛽1 = 𝛽2, then, with the choice of parameters
𝜏 > 0 and 𝜆 =

√︁
(4 + 𝜀) log 𝑝 for any 𝜀 > 0, we have

𝜓sparse
𝜆,𝜏 (𝑋1, 𝑋2, 𝑌1, 𝑌2) a.s.−−→ 0.

The almost sure statement in Theorem 1 and subsequent results in this section are
with respect to both the randomness in 𝑋 = (𝑋⊤

1 , 𝑋
⊤
2 )⊤ and in 𝜖 = (𝜖⊤

1 , 𝜖
⊤
2 )⊤. However,

a closer inspection of the proof of Theorem 1 tells us that the statement is still true if we
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allow an arbitrary sequence of matrices 𝑋 (indexed by 𝑝) and only consider almost sure
convergence with respect to the distribution of 𝜖.

The control of the asymptotic power of 𝜓sparse
𝜆,𝜏 is more involved. A key step in the

argument is to show that 𝑊⊤𝑊 is suitably close to a multiple of the identity matrix.
More precisely, in Proposition 2 below, we derive entrywise and 𝑘-operator norm controls
of the Gram matrix of the design matrix sketch 𝑊 .

Proposition 2. Under Conditions (C1) and (C2), we further assume 𝑘 ∈ [𝑝] and let 𝑊
be defined as in Algorithm 1. Then with probability 1,

max
𝑗∈[𝑝]

⃒⃒⃒⃒
⃒(𝑊⊤𝑊 )𝑗,𝑗

4𝑛𝜅1
− 1

⃒⃒⃒⃒
⃒→ 0, (9)

where 𝜅1 is as defined in Lemma 12. Moreover, define 𝑊̃ = 𝑊 diag(𝑊⊤𝑊 )−1/2. If

𝑘 log(𝑒𝑝/𝑘)
𝑛

→ 0, (10)

then there exists 𝐶𝑠,𝑟 > 0, depending only on 𝑠 and 𝑟, such that with probability 1, the
following holds for all but finitely many 𝑝:

‖𝑊̃⊤𝑊̃ − 𝐼‖𝑘,op ≤ 𝐶𝑠,𝑟

√︃
𝑘 log(𝑒𝑝/𝑘)

𝑛
. (11)

We note that condition (10) is relatively mild and would be satisfied if 𝑘 ≤ 𝑝𝛼 for any
𝛼 ∈ [0, 1).

All theoretical results in this section except for Theorem 1 assume the random design
Condition (C1) to hold. However, as revealed by the proofs, for any given (deterministic)
sequence of 𝑋, these results remain true as long as (9) and (11) are satisfied. The
asymptotic nature of Proposition 2 is a result of our application of Bai et al. (2015,
Theorem 1.1), which guarantees an almost sure convergence of the empirical spectral
distribution of Beta random matrices in the weak topology. This sets the tone for the
asymptotic nature of our results, which depend on the aforementioned limiting spectral
distribution.

The following theorem provides power control of our procedure 𝜓sparse
𝜆,𝜏 , when the ℓ2

norm of the scaled difference in regression coefficient 𝜃 = (𝛽1 − 𝛽2)/2 exceeds an appro-
priate threshold.

Theorem 3. Under Conditions (C1) and (C2), we further assume 𝑘 ∈ [𝑝] and that (10)
holds. If 𝜃 = (𝛽1 − 𝛽2)/2 ∈ Θ𝑝,𝑘(𝜌) with 𝜌 ≥

√︁
8𝑘 log 𝑝
𝑛𝜅1

, and we set input parameters
𝜆 = 2

√
log 𝑝 and 𝜏 ≤ 3𝑘 log 𝑝 in Algorithm 1, then

𝜓sparse
𝜆,𝜏 (𝑋1, 𝑋2, 𝑌1, 𝑌2) a.s.−−→ 1.

The size and power controls in Theorems 1 and 3 jointly provide an upper bound on
the minimax detection threshold. Specifically, let 𝑃𝑋

𝛽1,𝛽2 be the conditional distribution of
𝑌1, 𝑌2 given 𝑋1, 𝑋2 under model (2). Conditionally on the design matrices 𝑋1 and 𝑋2 and
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given 𝑘 ∈ [𝑝] and 𝜌 > 0, the (conditional) minimax risk of testing 𝐻0 : 𝛽1 = 𝛽2 against
𝐻1 : 𝜃 = (𝛽1 − 𝛽2)/2 ∈ Θ𝑝,𝑘(𝜌) is defined as

ℳ𝑋(𝑘, 𝜌) := inf
𝜓

{︃
sup
𝛽∈R𝑝

𝑃𝑋
𝛽,𝛽(𝜓 ̸= 0) + sup

𝛽1,𝛽2∈R𝑝

(𝛽1−𝛽2)/2∈Θ𝑝,𝑘(𝜌)

𝑃𝑋
𝛽1,𝛽2(𝜓 ̸= 1)

}︃
,

where we suppress all dependences on the dimension of data for notational simplicity
and the infimum is taken over all 𝜓 : (𝑋1, 𝑌1, 𝑋2, 𝑌2) ↦→ {0, 1}. If ℳ𝑋(𝑘, 𝜌) p−→ 0, there
exists a test 𝜓 that with asymptotic probability 1 correctly differentiates the null and
the alternative. On the other hand, if ℳ𝑋(𝑘, 𝜌) p−→ 1, then asymptotically no test can
do better than a random guess. The following corollary provides an upper bound on the
signal size 𝜌 for which the minimax risk is asymptotically zero.

Corollary 4. Let 𝑘 ∈ [𝑝] and assume Conditions (C1), (C2) and (10). If 𝜌 ≥
√︁

8𝑘 log 𝑝
𝑛𝜅1

,
and we set input parameters 𝜆 = 2

√
log 𝑝 and 𝜏 ∈ (0, 3𝑘 log 𝑝] in Algorithm 1, then

ℳ𝑋(𝑘, 𝜌) ≤ sup
𝛽∈R𝑝

𝑃𝑋
𝛽,𝛽(𝜓sparse

𝜆,𝜏 ̸= 0) + sup
𝛽1,𝛽2∈R𝑝

(𝛽1−𝛽2)/2∈Θ𝑝,𝑘(𝜌)

𝑃𝑋
𝛽1,𝛽2(𝜓sparse

𝜆,𝜏 ̸= 1) a.s.−−→ 0

Corollary 4 shows that the test 𝜓sparse
𝜆,𝜏 has an asymptotic detection limit, measured in

‖𝛽1 − 𝛽2‖2, of at most
√︁

8𝑘 log 𝑝
𝑛𝜅1

for all 𝑘 satisfying (10). While (10) is satisfied for 𝑘 ≤ 𝑝𝛼

with any 𝛼 ∈ [0, 1), the detection limit upper bound shown in Corollary 4 is suboptimal
when 𝛼 > 1/2, as we will see later in Theorem 6. On the other hand, the following
theorem shows that when 𝛼 < 1/2, the detection limit of 𝜓sparse

𝜆,𝜏 is essentially optimal.

Theorem 5. Under conditions (C1) and (C2), if further assume 𝑘 ≤ 𝑝𝛼 for some 𝛼 ∈
[0, 1/2) and 𝜌 ≤

√︁
(1−2𝛼−𝜀)𝑘 log 𝑝

4𝑛𝜅1
for some 𝜀 ∈ (0, 1− 2𝛼], then ℳ𝑋(𝑘, 𝜌) a.s.−−→ 1.

For any fixed 𝛼 < 1/2, Theorem 5 shows that if the signal ℓ2 norm is a factor of
32/(1− 2𝛼− 𝜀) smaller than what can be detected by 𝜓sparse

𝜆,𝜏 shown in Corollary 4, then
all tests are asymptotically powerless in differentiating the null from the alternative. In
other words, in the sparse regime where 𝑘 ≤ 𝑝𝛼 for 𝛼 < 1/2, the test 𝜓sparse

𝜆,𝜏 has a minimax
optimal detection limit measured in ‖𝛽1 − 𝛽2‖2, up to constants depending on 𝛼 only.

It is illuminating to relate the above results with the corresponding ones in the one-
sample problem in the sparse regime (𝛼 < 1/2). Let𝑋 be an 𝑛×𝑝matrix with independent
𝑁(0, 1) entries and 𝑌 = 𝑋𝛽 + 𝜖 for 𝜖 | 𝑋 ∼ 𝑁(0, 𝐼𝑛), and we consider the one-sample
problem to test 𝐻0 : 𝛽 = 0 against 𝐻1 : 𝛽 ∈ Θ𝑝,𝑘(𝜌). Theorem 2 and 4 of Arias-Castro,
Candès and Plan (2011) state that under the additional assumption that all nonzero
entries of 𝛽 have equal absolute values, the detection limit for the one-sample problem
is at 𝜌 ≍

√︁
𝑘 log 𝑝
𝑛

, up to constants depending on 𝛼. Thus, Corollary 4 and Theorem 5
suggest that the two-sample problem with model (2) has up to multiplicative constants
the same detection limit as the one-sample problem with sample size 𝑛𝜅1. By the explicit
expression of 𝜅1 from Lemma 12, we have

𝑛𝜅1 = 𝑛𝑟

(1 + 𝑟)2(1 + 𝑠) , (12)
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which unveils how this ‘effective sample size’ depends on the relative proportions between
sample sizes 𝑛1, 𝑛2 and the dimension 𝑝 of the problem. It is to be expected that the
effective sample size is proportional to 𝑚, which is the number of observations constructed
from 𝑋1 and 𝑋2 in 𝑊 . More intriguingly, (12) also gives a precise characterisation of how
the effective sample size depends on the imbalance between the number of observations
in 𝑋1 and 𝑋2. For a fixed 𝑛 = 𝑛1 + 𝑛2, 𝑛𝜅1 is maximised when 𝑛1 = 𝑛2 and converges to
𝑛1𝑚/𝑛 (or 𝑛2𝑚/𝑛) if 𝑛1/𝑛→ 0 (or 𝑛2/𝑛→ 0).

3.2 Dense case
We now turn our attention to our second test, 𝜓dense

𝜂 . The following theorem states a
sufficient signal ℓ2 norm size for which 𝜓dense

𝜂 is asymptotically powerful in distinguishing
the null from the alternative.

Theorem 6. Let 𝜂 = 𝑚 + 23/2√𝑚 log 𝑝 + 4 log 𝑝. Under Conditions (C1) and (C2), we
further assume 𝑘 ∈ [𝑝], 𝜌2 ≥ 2

√
𝑚 log 𝑝
𝑛𝜅1

and that (10) is satisfied.

(a) If 𝛽1 = 𝛽2, then 𝜓dense
𝜂 (𝑋1, 𝑋2, 𝑌1, 𝑌2) a.s.−−→ 0.

(b) If 𝜃 = (𝛽1 − 𝛽2)/2 ∈ Θ𝑝,𝑘(𝜌), then 𝜓dense
𝜂 (𝑋1, 𝑋2, 𝑌1, 𝑌2) a.s.−−→ 1.

Consequently, ℳ𝑋(𝑘, 𝜌) a.s.−−→ 0.

Theorem 6 indicates that the sufficient signal ℓ2 norm for asymptotic powerful testing
via 𝜓dense

𝜂 does not depend upon the sparsity level. While the above result is valid for
all 𝑘 ∈ [𝑝], it is more interesting in the dense regime where 𝑘 ≥ 𝑝1/2. More precisely, by
comparing Theorems 6 and 4, we see that if 𝑘2 log 𝑝 > 𝑚 and 𝑘 log(𝑒𝑝/𝑘) ≤ 𝑛/(2𝐶𝑠,𝑟),
the test 𝜓dense

𝜂 has a smaller provable detection limit than 𝜓sparse
𝜆,𝜏 . In our asymptotic

regime (C2), 2
√
𝑚 log 𝑝
𝑛𝜅1

is, up to constants depending on 𝑠 and 𝑟, of order 𝑝−1/2 log1/2 𝑝.
The following theorem establishs that the detection limit of 𝜓dense

𝜂 is minimax optimal up
to poly-logarithmic factors in the dense regime.

Theorem 7. Under conditions (C1) and (C2), if we further assume 𝑝1/2 ≤ 𝑘 ≤ 𝑝𝛼 for
some 𝛼 ∈ [1/2, 1] and 𝜌 = 𝒪(𝑝−1/4 log−3/4 𝑝), then ℳ𝑋(𝑘, 𝜌) a.s.−−→ 1.

Theorem 7 points out that the lower bound on detectable signal size 𝜌2 prescribed in
Theorem 6 is necessary up to poly-logarithmic factors. The following proposition makes
it explicit that the upper bound on sparsity imposed by (10) in Theorem 6 cannot be
completely removed, i.e., the same result may not hold if we allow 𝑘 to be a constant
fraction of 𝑛.

Proposition 8. If 𝑘 = 𝑝 ≥ min{𝑛1, 𝑛2}, then ℳ𝑋(𝑘, 𝜌) = 1. If 𝑘 = 𝑝 and 𝑝/𝑛1, 𝑝/𝑛2 ∈
[𝜀, 1) for any fixed 𝜀 ∈ (0, 1), and 𝜃 = (𝛽1 − 𝛽2)/2 ∈ Θ𝑝,𝑘(𝜌) with

𝜌2 = 𝒪

(︃
max

{︃
𝑝

(𝑛1 − 𝑝)2 ,
𝑝

(𝑛2 − 𝑝)2

}︃)︃
,

then ℳ𝑋(𝑘, 𝜌) a.s.−−→ 1.
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4 Numerical studies
In this section, we study the finite sample performance of our proposed procedures via
numerical experiments. Unless otherwise stated, the data generating mechanism for all
simulations in this section is as follows. We first generate design matrices 𝑋1 and 𝑋2 with
independent 𝑁(0, 1) entries. Then, for a given sparsity level 𝑘 and a signal strength 𝜌,
set Δ = (Δ𝑗)𝑗∈[𝑝] so that (Δ1, . . . ,Δ𝑘)⊤ ∼ 𝜌Unif(𝒮𝑘−1) and Δ𝑗 = 0 for 𝑗 > 𝑘. We then
draw 𝛽1 ∼ 𝑁𝑝(0, 𝐼𝑝) and define 𝛽2 := 𝛽1 + Δ. Finally, we generate 𝑌1 and 𝑌2 as in (2),
with 𝜖1 ∼ 𝑁𝑛1(0, 𝐼𝑛1) and 𝜖2 ∼ 𝑁𝑛2(0, 𝐼𝑛2) independent from each other.

In Section 4.1, we supply the oracle value of 𝜎̂2 = 1 to our procedures to check
whether their finite sample performance is in accordance with our theory. In all subsequent
subsections where we compare our methods against other procedures, we estimate the
noise variance 𝜎2 with the method-of-moments estimator proposed by Dicker (2014).
Specifically, after obtaining 𝑊 and 𝑍 in Step 4 of Algorithm 1, we compute

𝑀̂1 := 1
𝑝

tr
(︃

1
𝑚
𝑊⊤𝑊

)︃
and 𝑀̂2 := 1

𝑝
tr
{︃(︃

1
𝑚
𝑊⊤𝑊

)︃2}︃
− 1
𝑝𝑚

{︃
tr
(︃

1
𝑚
𝑊⊤𝑊

)︃2}︃
.

This allows us to estimate

𝜎̂2 :=
{︃

1 + 𝑝𝑀̂2
1

(𝑚+ 1)𝑀̂2
2

}︃
‖𝑍‖2

2
𝑚
− 𝑀̂1

𝑚(𝑚+ 1)𝑀̂2
‖𝑊⊤𝑍‖2

2.

We implement our estimators 𝜓sparse
𝜆,𝜏 and 𝜓dense

𝜂 on standardised data 𝑋1/𝜎̂, 𝑋2/𝜎̂, 𝑌1/𝜎̂

and 𝑌2/𝜎̂ with the tuning parameters 𝜆 =
√

4 log 𝑝, 𝜏 = 3𝑘 log 𝑝 and 𝜂 = 𝑚+
√

8𝑚 log 𝑝+
4 log 𝑝 as suggested by Theorems 1, 3 and 6.

4.1 Effective sample size in two-sample testing
We first investigate how the empirical power of our test 𝜓sparse

𝜆,𝜏 relies on various problem
parameters. In light of our results in Theorems 1 and 3, we define

𝜈 := 𝑟𝑛𝜌2

𝜎2(1 + 𝑠)(1 + 𝑟)2𝑘 log 𝑝, (13)

where 𝑠 := 𝑝/𝑚 and 𝑟 := 𝑛1/𝑛2. As discussed after Theorem 3, 𝑟𝑛/{(1 + 𝑠)(1 + 𝑟)2}
in the definition of 𝜈 can be viewed as the effective sample size in the testing problem.
In Figure 1, we plot the estimated test power of 𝜓sparse

𝜆,𝜏 against 𝜈 over 100 Monte Carlo
repetitions for 𝑛 = 1000, 𝑘 = 10, 𝜌 ∈ {0, 0.2, . . . , 2} and various values of 𝑝 and 𝑛1. In
the left panel of Figure 1, 𝑝 ranges from 100 to 900, which corresponds to 𝑠 from 1/9 to
9. In the right panel, we vary 𝑛1 from 100 to 900, which corresponds with an 𝑟 varying
between 1/9 and 9. In both panels, the power curves for different 𝑠 and 𝑟 values overlap
each other, with the phase transition all occurring at around 𝜈 ≈ 1.5. This conforms well
with the effective sample size and the detection limit articulated in our theory.
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Figure 1: Power function of 𝜓sparse
𝜆,𝜏 , estimated over 100 Monte Carlo repetitions, plotted

against 𝜈, as defined in (13), in various parameter settings. Left panel: 𝑛1 = 𝑛2 = 500,
𝑝 ∈ {100, 200, . . . , 900}, 𝑘 = 10, 𝜌 ∈ {0, 0.2, . . . , 2}. Right panel: 𝑛1 ∈ {100, 200, . . . , 900},
𝑛2 = 1000− 𝑛1, 𝑝 = 400, 𝑘 = 10, 𝜌 ∈ {0, 0.2, . . . , 2}.

4.2 Comparison with other methods
Next, we compare the performance of our procedures against competitors in the existing
literature. The only methods we were aware of that could allow for dense regression
coefficients 𝛽1 and 𝛽2 were those proposed by Zhu and Bradic (2016) and Charbonnier,
Verzelen and Villers (2015). In addition, we also include in our comparisons the classical
likelihood ratio test, denoted by 𝜓LRT, which rejects the null when the 𝐹 -statistic defined
in (4) exceeds the upper 𝛼-quantile of an 𝐹𝑝, 𝑛−2𝑝 distribution. Note that the likelihood
ratio test is only well-defined if 𝑝 < min{𝑛1, 𝑛2}. The test proposed by Zhu and Bradic
(2016), which we denote by 𝜓ZB, requires that 𝑛1 = 𝑛2 (when the two samples do not
have equal sample size, a subset of the larger sample would be discarded for the test to
apply). Specifically, writing 𝑋+ := 𝑋1 +𝑋2, 𝑋− := 𝑋1−𝑋2 and 𝑌+ := 𝑌1 + 𝑌2, 𝜓ZB first
estimates 𝛾 = (𝛽1 + 𝛽2)/2 and

Π := {E(𝑋⊤
+𝑋+)}−1E(𝑋⊤

+𝑋−)

by solving Dantzig-Selector-type optimisation problems. Then based on the obtained
estimators 𝛾 and Π̂, 𝜓ZB proceeds to compute a test statistic

𝑇ZB := ‖{𝑋− −𝑋+Π̂}⊤{𝑌+ −𝑋+𝛾}‖∞

‖𝑌+ −𝑋+𝛾‖2
.

Their test rejects the null if the test statistic exceeds an empirical upper-𝛼-quantile (ob-
tained via Monte-Carlo simulation) of ‖𝜉‖∞ for 𝜉 ∼ 𝑁(0, {𝑋−−𝑋+Π̂}⊤{𝑋−−𝑋+Π̂}). As
the estimation of Π involves solving a sequence of 𝑝 Dantzig Selector problems, which is
often time consuming, we have implemented 𝜓ZB with the oracle choice of Π̂ = Π, which
is equal to 𝐼𝑝 when covariates in the two design matrices 𝑋1 and 𝑋2 follow independent
centred distribution with the same covariance matrix. The test proposed by Charbon-
nier, Verzelen and Villers (2015), denoted here by 𝜓CVV, first performs a LARS regression
(Efron et al., 2004) of concatenated response 𝑌 = (𝑌 ⊤

1 , 𝑌
⊤

2 )⊤ against the block design
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matrix (︃
𝑋1 𝑋1
𝑋2 −𝑋2

)︃

to obtain a sequence of regression coefficients 𝑏̂ = (𝑏̂1, 𝑏̂2) ∈ R𝑝+𝑝. Then for every 𝑏̂ on the
LARS solution path with ‖𝑏̂‖0 ≤ min{𝑛1, 𝑛2}/2, they restrict the original testing problem
into the subset of coordinates where either 𝑏̂1 or 𝑏̂2 is non-zero, and form test statistics
based on the Kullback–Leibler divergence between the two samples restricted to these
coordinates. The sequence of test statistics are then compared with Bonferonni-corrected
thresholds at size 𝛼. For both the 𝜓LRT and 𝜓CVV, we set 𝛼 = 0.05.
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Figure 2: Power comparison of different methods at different sparsity levels 𝑘 ∈
{1, 10, ⌊𝑝1/2⌋, 0.1𝑝, 𝑝} and different signal ℓ2 norm 𝜌 on a logarithmic grid (noise variance
𝜎2 = 1). Left panel: 𝑛1 = 𝑛2 = 500, 𝑝 = 800, 𝜌 ∈ [0, 10]; right panel: 𝑛1 = 𝑛2 = 1200,
𝑝 = 1000, 𝜌 ∈ [0, 20].

Figure 2 compares the estimated power, as a function of ‖𝛽1 − 𝛽2‖2, of 𝜓sparse
𝜆,𝜏 and

𝜓dense
𝜂 against that of 𝜓LRT, 𝜓ZB and 𝜓CVV. We ran all methods on the same 100 datasets

for each set of parameters. We performed numerical experiments in two high-dimensional
settings with different sample-size-to-dimension ratio: 𝑝 = 1000, 𝑛1 = 𝑛2 = 1200 in the
left panel and 𝑝 = 800, 𝑛1 = 𝑛2 = 500 in the right panel. Here, we took 𝑛1 = 𝑛2 to
maximise the power of 𝜓ZB. Also, since the likelihood ratio test requires 𝑝 < min{𝑛1, 𝑛2},
it is only implemented in the left panel. For each experiment, we varied 𝑘 in the set
{1, 10, ⌊𝑝1/2⌋, 0.1𝑝, 𝑝} to examine different sparsity levels.

We see in Figure 2 that both 𝜓sparse
𝜆,𝜏 and 𝜓dense

𝜂 showed promising finite sample perfor-
mance. Both our tests did not produce any false positives under the null when 𝜌 = 0, and
showed better power compared to 𝜓ZB and 𝜓CVV. In the more challenging setting of the
right panel with 𝑝 > max{𝑛1, 𝑛2}, it takes a signal ℓ2 norm more than 10 times smaller
than that of the competitors for our test 𝜓sparse

𝜆,𝜏 to reach power of almost 1 in the sparsest
case. Note though, in the densest case on the right panel (𝑘 = 800), 𝜓sparse

𝜆,𝜏 and 𝜓dense
𝜂 did

not have saturated power curves, because noise variance is over-estiamted by 𝜎̂2 in this
setting.

We also observe that the power of 𝜓sparse
𝜆,𝜏 has a stronger dependence on the level

𝑘 than that of 𝜓dense
𝜂 . For 𝑘 ≤ √𝑝, 𝜓sparse

𝜆,𝜏 appears much more sensitive to the signal
size. As 𝑘 increases, 𝜓dense

𝜂 eventually outperforms 𝜓sparse
𝜆,𝜏 , which is consistent with our
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observed phase transition behaviour as discussed after Theorem 6. It is interesting to note
that when the likelihood ratio test is well-defined (left panel), it has better power than
𝜓dense
𝜂 . This is partly due to the fact that the theoretical choice of threshold 𝜂 is relatively

conservative to ensure asymptotic size of the test is 0 almost surely. In comparison, the
rejecting threshold for the likelihood ratio test is chosen to have (𝑝 fixed and 𝑛 → ∞)
asymptotic size of 𝛼 = 0.05, and the empirical size is sometimes observed to be larger
than 0.08.

4.3 Model misspecification
We have so far focused on the case of Gaussian random design 𝑋1, 𝑋2 with identity co-
variance and Gaussian regression noises 𝜖1, 𝜖2. This complies with these assumptions that
have helped us gain theoretical insights into the two-sample testing problem. However,
our proposed testing procedures can still be used even if these modelling assumptions
were not satisfied. To evaluate the performance of our proposed procedure under model
misspecification, we consider the following four setups:

(a) Correlated design: assume rows of 𝑋1 and 𝑋2 are independently drawn from 𝑁(0,Σ)
with Σ = (2−|𝑗1−𝑗2|)𝑗1,𝑗2∈[𝑝].

(b) Rademacher design: assume entries of 𝑋1 and 𝑋2 are independent Rademacher
random variables.

(c) One way balanced ANOVA design: assume 𝑑1 := 𝑛1/𝑝 and 𝑑2 := 𝑛2/𝑝 are integers
and 𝑋1 and 𝑋2 are block diagonal matrices

𝑋1 =

⎛⎜⎜⎝
1𝑑1

. . .
1𝑑2

⎞⎟⎟⎠ 𝑋2 =

⎛⎜⎜⎝
1𝑑2

. . .
1𝑑2

⎞⎟⎟⎠ ,
where 1𝑑 is an all-one vector in R𝑑.

(d) Heavy tailed noise: we generate both 𝜖1 and 𝜖2 with independent 𝑡4/
√

2 entries.
Note that the

√
2 denominator standardises the noise to have unit variance, to

ensure easier comparison between settings.

In setups (a) to (c), we keep 𝜖1 ∼ 𝑁𝑛1(0, 𝐼𝑛1) and 𝜖2 ∼ 𝑁𝑛2(0, 𝐼𝑛2) and in setup (d), we
keep 𝑋1 and 𝑋2 to have independent 𝑁(0, 1) entries. Figure 3 compares the performance
of 𝜓sparse

𝜆,𝜏 , 𝜓dense
𝜂 with that of 𝜓ZB and 𝜓CVV. In all settings, we set 𝑛1 = 𝑛2 = 500

and 𝑘 = 10. In settings (a), (b) and (d), we choose 𝑝 = 800 and 𝜌 from 0 to 20. In
setting (c), we choose 𝑝 = 250 and 𝜌 from 0 to 50. We see that 𝜓sparse

𝜆,𝜏 is robust to
model misspecification and exhibits good power in all settings. The test 𝜓desne

𝜂 is robust
to non-normal design and noise, but exhibits a slight reduction in power in a correlated
design. The advantage of 𝜓sparse

𝜆,𝜏 and 𝜓dense
𝜂 over competing methods is least significant in

the ANOVA design in setting (c), where each row vector of the design matrices has all
mass concentrated in one coordinate. In all other settings where the rows of the design
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matrices are more ‘incoherent’ in the sense that all coordinate have similar magnitude,
𝜓sparse
𝜆,𝜏 and 𝜓dense

𝜂 start having nontrivial power at a signal ℓ2 norm 10 to 20 times smaller
than that of the competitors.

(a) (b)
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Figure 3: Power functions of different methods in models with non-Gaussian design or
non-Gaussian noise, plotted against signal ℓ2 norm 𝜌 on a logarithmic grid. (a) correlated
design matrix Σ = (2−|𝑖−𝑗|)𝑖,𝑗∈[𝑝]; (b) Rademacher design; (c) one-way balanced ANOVA
design; (d) Gaussian design with 𝑡4/

√
2-distributed noise. Details of the models are in

Section 4.3.

5 Proof of main results
Proof of Theorem 1. Under the null hypothesis where 𝛽1 = 𝛽2, we have 𝜃 = 0 and there-
fore, 𝑍 = 𝑊𝜃 + 𝜉 = 𝜉 ∼ 𝑁𝑚(0, 𝐼𝑚). In particular, 𝑄𝑗 ∼ 𝑁(0, 1) for all 𝑗 ∈ [𝑝]. Thus, by
a union bound, we have for 𝜆 =

√︁
(4 + 𝜖) log 𝑝 and any 𝜏 > 0 that

P(𝑇 ≥ 𝜏) ≤
𝑝∑︁
𝑗=1

P(|𝑄𝑗| ≥ 𝜆) ≤ 𝑝𝑒−𝜆2/2 = 𝑝−1−𝜀/2,

The almost sure convergence is derived from the Borel–Cantelli lemma after noting that
𝑝−1−𝜀/2 is summable for any 𝜀 > 0.
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Proof of Proposition 2. Let 𝐻 ∈ O𝑝×𝑝 be any orthogonal matrix, then since 𝑋 d= 𝑋𝐻,
by Lemma 9 we have

𝐻⊤𝑊⊤𝑊𝐻 = 4(𝐻⊤𝑋⊤
1 𝑋1𝐻)(𝐻⊤𝑋⊤𝑋𝐻)−1(𝐻⊤𝑋⊤

2 𝑋2𝐻)
d= 4(𝑋⊤

1 𝑋1)(𝑋⊤𝑋)−1(𝑋⊤
2 𝑋2) = 𝑊⊤𝑊. (14)

In particular, all diagonal entries of 𝑊⊤𝑊 have the same distribution and all off-diagonal
entries of 𝑊⊤𝑊 have the same distribution. So it suffices to study (𝑊⊤𝑊 )1,1 and
(𝑊⊤𝑊 )1,2.

Let 𝑋 = 𝑄𝑇 be the QR decomposition of 𝑋, which is almost surely unique if we
require the upper-triangular matrix 𝑇 to have non-negative entries on the diagonal. Let
𝑄1 be the submatrix obtained from the first 𝑛1 rows of 𝑄. By Lemma 13, 𝑄1 and 𝑇 are
independent and 𝑇 has independent entries distributed as 𝑇𝑗,𝑗 = 𝑡𝑗 > 0 with 𝑡2𝑗 ∼ 𝜒2

𝑛−𝑗+1
for 𝑗 ∈ [𝑝] and 𝑇𝑗,𝑘 = 𝑧𝑗,𝑘 ∼ 𝑁(0, 1) for 1 ≤ 𝑗 < 𝑘 ≤ 𝑝.

Define 𝐵 := 𝑄⊤
1 𝑄1 and let 𝐵 = 𝑉 Λ𝑉 ⊤ be its eigendecomposition, which is al-

most surely unique if we require the diagonal entries of Λ to be non-increasing and the
diagonal entries of 𝑉 to be nonnegative. By Lemma 13, 𝑄 is uniformly distributed
on O𝑛×𝑝, which means 𝑄 d= 𝑄𝐻 for any 𝐻 ∈ O𝑝×𝑝. Consequently 𝑄1

d= 𝑄1𝐻 and
𝐵

d= 𝐻⊤𝐵𝐻 = (𝐻⊤𝑉 )Λ(𝐻⊤𝑉 )⊤. Since the group O𝑝×𝑝 acts transitively on itself through
left multiplication, the joint density of 𝑉 and Λ must be a function of Λ only. In particular,
𝑉 and Λ are independent.

Note that 𝑋1 = 𝑄1𝑇 . Thus, 𝑋⊤
1 𝑋1 = 𝑇⊤𝐵𝑇 and 𝑋⊤

2 𝑋2 = 𝑇⊤(𝐼𝑝−𝐵)𝑇 . By Lemma 9,
we have

𝑊⊤𝑊 = 4𝑋⊤
1 𝐴1𝐴

⊤
1 𝑋1 = 4(𝑋⊤

1 𝑋1)(𝑋⊤
1 𝑋1 +𝑋⊤

2 𝑋2)−1(𝑋⊤
2 𝑋2)

= 4𝑇⊤𝐵(𝐼𝑝 −𝐵)𝑇 = 4𝑇⊤𝑉 Λ(𝐼𝑝 − Λ)𝑉 ⊤𝑇. (15)

Let 1 ≥ 𝜆1 ≥ · · · ≥ 𝜆𝑝 ≥ 0 be the diagonal entries of Λ. Define 𝑎𝑗 = 𝜆𝑗(1− 𝜆𝑗) for 𝑗 ∈ [𝑝]
and set 𝑎 := (𝑎1, . . . , 𝑎𝑝). We can write 𝑡21 = 𝑠2

1 + 𝑟2
1 with 𝑠2

1 ∼ 𝜒2
𝑝 and 𝑟2

1 ∼ 𝜒2
𝑛−𝑝 such

that 𝑠1 ≥ 0, 𝑟1 ≥ 0 are independent from each other and independent of everything else.
By Lemma 13, we have that 𝐺𝑗,1 := 𝑠1𝑉𝑗,1 for 𝑗 ∈ [𝑝] are independent 𝑁(0, 1) random
variables. Note that

1
4(𝑊⊤𝑊 )1,1 =

𝑝∑︁
𝑗=1

𝑡21𝑎𝑗𝑉
2
𝑗,1 = 𝑡21

𝑠2
1

𝑝∑︁
𝑗=1

𝑎𝑗𝐺
2
𝑗,1.

Let 𝛿 > 0 be chosen later. By Laurent and Massart (2000, Lemma 1), applied conditionally
on 𝑎, we have with probability at least 1− 6𝛿 that all of the following inequalities hold:

‖𝑎‖1 − 2‖𝑎‖2

√︁
log(1/𝛿) ≤

𝑝∑︁
𝑗=1

𝑎𝑗𝐺
2
𝑗,1 ≤ ‖𝑎‖1 + 2‖𝑎‖2

√︁
log(1/𝛿) + 2‖𝑎‖∞ log(1/𝛿),

𝑝− 2
√︁
𝑝 log(1/𝛿) ≤ 𝑠2

1 ≤ 𝑝+ 2
√︁
𝑝 log(1/𝛿) + 2 log(1/𝛿),

𝑛− 2
√︁
𝑛 log(1/𝛿) ≤ 𝑡21 ≤ 𝑛+ 2

√︁
𝑛 log(1/𝛿) + 2 log(1/𝛿).
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Using the fact that ‖𝑎‖∞ ≤ 1/4, we have with probability at least 1− 6𝛿 that

𝑛− 2
√︁
𝑛 log(1/𝛿)

𝑝+ 2
√︁
𝑝 log(1/𝛿) + 2 log(1/𝛿)

{︁
‖𝑎‖1 − 2‖𝑎‖2

√︁
log(1/𝛿)

}︁
≤ 1

4(𝑊⊤𝑊 )1,1

≤
𝑛+ 2

√︁
𝑛 log(1/𝛿) + 2 log(1/𝛿)

𝑝− 2
√︁
𝑝 log(1/𝛿)

{︁
‖𝑎‖1 + 2‖𝑎‖2

√︁
log(1/𝛿) + 1

2 log(1/𝛿)
}︁

If log(1/𝛿) = 𝒪(𝑝), then for each 𝑝 with probability at least 1− 6𝛿, we have that⃒⃒⃒⃒
⃒(𝑊⊤𝑊 )1,1

4 − 𝑛

𝑝
‖𝑎‖1

⃒⃒⃒⃒
⃒ ≤ ‖𝑎‖1

2
√︁
𝑛 log(1/𝛿)
𝑝

(︁
1 +

√︁
𝑛/𝑝

)︁
+ 𝑛

𝑝

{︃
2‖𝑎‖2

√︁
log(1/𝛿) + log(1/𝛿)

2

}︃

+𝒪𝑠
(︃
‖𝑎‖1 log(1/𝛿)

𝑝
+ ‖𝑎‖2 log(1/𝛿)

√
𝑝

+ log3/2(1/𝛿)
𝑝1/2

)︃
. (16)

By the definition of 𝐵, we have for 𝐻 := 𝑇 (𝑋⊤𝑋)−1/2 ∈ O𝑝×𝑝 that

𝐻⊤𝐵𝐻 = 𝐻⊤𝑇−⊤𝑋⊤
1 𝑋1𝑇

−1𝐻 = (𝑋⊤𝑋)−1/2(𝑋⊤
1 𝑋1)(𝑋⊤𝑋)−1/2,

which follows the matrix-variate Beta distribution Beta𝑝(𝑛1/2, 𝑛2/2) as defined before
Lemma 12. Hence the diagonal elements of Λ are the same as the eigenvalues of a
Beta𝑝(𝑛1/2, 𝑛2/2) random matrix. By Lemma 12, throughout the rest of this proof we
may restrict ourselves to an almost sure event on which

‖𝑎‖1/𝑝→ 𝜅1 and ‖𝑎‖2/
√
𝑝→ 𝜅2.

By (16), for each 𝑝, with probability at least 1− 6𝛿, we have⃒⃒⃒⃒
⃒(𝑊⊤𝑊 )1,1−

4𝑛
𝑝
‖𝑎‖1

⃒⃒⃒⃒
⃒ ≤ 8

√︁
𝑛 log(1/𝛿)

(︁
(𝜅1 +𝜅2)

√︁
𝑛/𝑝+𝜅1

)︁
+𝒪𝑠

(︃
log(1/𝛿)+ log3/2(1/𝛿)

𝑝1/2

)︃
.

(17)
For the first claim in the proposition, we take 𝛿 = 1/𝑝3. Using (17), Lemma 12, a union
bound over 𝑗 ∈ [𝑝] and the Borel–Cantelli lemma (noting that 1/𝑝2 is summable), we
obtain that,

max
𝑗∈[𝑝]

⃒⃒⃒⃒
⃒(𝑊⊤𝑊 )𝑗,𝑗

4𝑛𝜅1
− 1

⃒⃒⃒⃒
⃒ a.s.−−→ 0.

For the second part of the claim, define Δ := 𝑊⊤𝑊 − 4𝑛𝑝−1‖𝑎‖1𝐼𝑝. By Lemma 11,
there exists a 1/4-net 𝒩 of cardinality at most

(︁
𝑝
𝑘

)︁
9𝑘 such that

‖Δ‖𝑘,op ≤ 2 sup
𝑢∈𝒩

𝑢⊤Δ𝑢. (18)

By (14), we have 𝑢⊤Δ𝑢 d= 𝑒⊤
1 Δ𝑒1 for all 𝑢 ∈ 𝒮𝑝−1. Hence, by (17), (18) and a union

bound over 𝑢 ∈ 𝒩 , there exists 𝐶𝑠 > 0, depending only on 𝑠, such that for each 𝑝, with
probability at least 1− 6|𝒩 |𝛿 that

‖Δ‖𝑘,op ≤ 8
√︁
𝑛 log(1/𝛿)

{︁
(𝜅1 + 𝜅2)

√︁
𝑛/𝑝+ 𝜅1

}︁
+𝒪𝑠

(︃
log(1/𝛿) + log3/2(1/𝛿)

𝑝1/2

)︃
. (19)
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If log(1/𝛿) = 𝒪(𝑝), as will be verified for our choice of 𝛿 later, then on the event
where (19) is true, we have ‖𝑊⊤𝑊‖𝑘,op = 4(1 + 𝒪(1))𝑛𝑝−1‖𝑎‖1 and ‖diag(𝑊⊤𝑊 )‖op =
4(1 + 𝒪(1))𝑛𝑝−1‖𝑎‖1. Define 𝐷 :=

(︁
diag(𝑊⊤𝑊 )
4𝑛𝑝−1‖𝑎‖1

)︁1/2
, we have

𝑊̃⊤𝑊̃ − 𝑊⊤𝑊

4𝑛‖𝑎‖1/𝑝
= (𝐷−1 − 𝐼) 𝑊⊤𝑊

4𝑛‖𝑎‖1/𝑝
𝐷−1 + 𝑊⊤𝑊

4𝑛‖𝑎‖1/𝑝
(𝐷−1 − 𝐼).

Taking 𝑘-operator norms on both sides of the above identity, since 𝐷 is a diagonal matrix,
we have⃦⃦⃦⃦
⃦𝑊̃⊤𝑊̃ − 𝑊⊤𝑊

4𝑛‖𝑎‖1/𝑝

⃦⃦⃦⃦
⃦
𝑘,op
≤ ‖𝐷−1 − 𝐼‖op

⃦⃦⃦⃦
⃦ 𝑊⊤𝑊

4𝑛‖𝑎‖1/𝑝

⃦⃦⃦⃦
⃦
𝑘,op

(‖𝐷−1‖op + 1)

≤ (2 + 𝒪(1))‖𝐷−1 − 𝐼𝑝‖op ≤ (1 + 𝒪(1)) max
𝑗∈[𝑝]

⃒⃒⃒⃒
⃒ (𝑊⊤𝑊 )𝑗,𝑗
4𝑛𝑝−1‖𝑎‖1

− 1
⃒⃒⃒⃒
⃒.

Combining the above inequality with the observation that |(𝑊⊤𝑊 )𝑗,𝑗 − 4𝑛𝑝−1‖𝑎‖1| ≤
‖Δ‖𝑘,op, we have by (19) and Lemma 12 that, asymptotically with probability at least
1− 6|𝒩 |𝛿,

‖𝑊̃⊤𝑊̃ − 𝐼‖𝑘,op ≤
⃦⃦⃦⃦
⃦𝑊̃⊤𝑊̃ − 𝑊⊤𝑊

4𝑛‖𝑎‖1/𝑝

⃦⃦⃦⃦
⃦
𝑘,op

+
⃦⃦⃦⃦
⃦ 𝑊⊤𝑊

4𝑛‖𝑎‖1/𝑝
− 𝐼𝑝

⃦⃦⃦⃦
⃦
𝑘,op

≤ (2 + 𝒪(1)) ‖Δ‖𝑘,op

4𝑛𝑝−1‖𝑎‖1
≤ (4 + 𝒪(1))

{︁
(1 + 𝜅2/𝜅1)

√︁
𝑛/𝑝+ 1

}︁√︃ log(1/𝛿)
𝑛

.

Choosing 𝛿 := (10𝑒𝑝/𝑘)−(𝑘+4). By (10), we indeed have log(1/𝛿) = (𝑘 + 4) log(10𝑒𝑝/𝑘) =
𝑜(𝑝), as required in the above calculation. Also,

|𝒩 |𝛿 ≤ 9𝑘
(︃
𝑝

𝑘

)︃(︃
10𝑒𝑝
𝑘

)︃−(𝑘+4)

≤
(︃

9𝑒𝑝
𝑘

)︃𝑘(︃10𝑒𝑝
𝑘

)︃−(𝑘+4)

≤ 0.9𝑘
(𝑒𝑝/𝑘)4 ≤ max{𝑝−2, 0.9

√
𝑝},

which is summable over 𝑝. Thus, by the Borel–Cantelli lemma, we see that for any 𝜀 > 0,
with probability 1, the following sequence of events{︃

‖𝑊̃⊤𝑊̃ − 𝐼‖𝑘,op > (4 + 𝜀)
{︁
(1 + 𝜅2/𝜅1)

√︁
𝑛/𝑝+ 1

}︁√︃(𝑘 + 4) log(10𝑒𝑝/𝑘)
𝑛

}︃

happen finitely often. Hence the desired conclusion holds with, for instance, 𝐶𝑠,𝑟 =
5(1 +

√︁
1 + 1/𝑠+

√︁
𝑠+ 𝑟 − 1 + 1/𝑠+ 1/𝑟).

Proof of Theorem 3. By Proposition 2, it suffices to work with a deterministic sequence
of 𝑊 such that (9) and (11) holds, which we henceforth assume in this proof.

Define 𝜃 = (𝜃1, . . . , 𝜃𝑝)⊤ such that 𝜃𝑗 := 𝜃𝑗‖𝑊𝑗‖2. Then, from (8), we have

𝑍 = 𝑊̃𝜃 + 𝜉,
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for 𝜉 ∼ 𝑁𝑚(0, 𝐼𝑚). Write 𝑄 := (𝑄1, . . . , 𝑄𝑝)⊤ and 𝑆 := supp(𝜃) = supp(𝜃), then

𝑄𝑆 = (𝑊̃⊤𝑍)𝑆 ∼ 𝑁𝑘

(︁
(𝑊̃⊤𝑊̃ )𝑆,𝑆𝜃𝑆, (𝑊̃⊤𝑊̃ )𝑆,𝑆

)︁
.

Our strategy will be to control ‖𝑄𝑆‖2. To this end, by (9), we have

‖𝜃𝑆‖2
2 =

∑︁
𝑗∈𝑆

𝜃2
𝑗‖𝑊𝑗‖2

2 ≥ {4− 𝒪(1)}𝑛𝜅1
∑︁
𝑗∈𝑆

𝜃2
𝑗 = (4− 𝒪(1))𝑛𝜅1𝜌

2. (20)

Moreover, by (11) and (10), we have for sufficiently large 𝑝 that

‖𝐼𝑘 − (𝑊̃⊤𝑊̃ )𝑆,𝑆‖op ≤ ‖𝐼𝑝 − 𝑊̃⊤𝑊̃‖𝑘,op ≤ 𝐶𝑠,𝑟

√︃
𝑘 log(𝑒𝑝/𝑘)

𝑛
= 𝒪(1). (21)

Define 𝑅 := ‖(𝑊̃⊤𝑊̃ )𝑆,𝑆𝜃𝑆‖2. By the triangle inequality, (20) and (21), we have

𝑅2 ≥
[︁
‖𝜃𝑆‖2

{︁
1− ‖𝐼𝑘 − (𝑊̃⊤𝑊̃ )𝑆,𝑆‖op

}︁]︁2
≥ (4− 𝒪(1))𝑛𝜅1𝜌

2 ≥ (32− 𝒪(1))𝑘 log 𝑝, (22)

where we have evoked the condition 𝜌2 ≥ 8𝑘 log 𝑝/(𝑛𝜅1) in the final bound.
By Lemma 14 and (21), for sufficiently large 𝑝, we have with probability at least

1− 2𝑝−2 that

‖𝑄𝑆‖2
2 ≥ (1− 𝒪(1))(𝑘 +𝑅2)− (2 + 𝒪(1))

{︁√︁
2(𝑘 + 2𝑅2) log 𝑝+ 2 log 𝑝

}︁
≥ (1− 𝒪(1))(𝑘 +𝑅2)− (2 + 𝒪(1))

√︁
(𝑘 + 2𝑅2)𝑅2/16− (1/8 + 𝒪(1))𝑅2

≥
(︃

1− 1
4
√

2
− 𝒪(1)

)︃
𝑘 +

(︃
7
8 −

1√
2
− 𝒪(1)

)︃
𝑅2 ≥ 5𝑘 log 𝑝, (23)

where both the second and the final inequalities hold because of (22).
From (23), using the tuning parameters 𝜆 = 2

√
log 𝑝 and 𝜏 = 𝑘 log 𝑝, we have for

sufficiently large 𝑝 that with probability at least 1− 2𝑝−2,

𝑇 =
𝑝∑︁
𝑗=1

𝑄2
𝑗1{|𝑄𝑗 |≥𝜆} ≥ ‖𝑄𝑆‖2

2 − 𝑘𝜆2 ≥ 𝑘 log 𝑝 ≥ 𝜏,

which allows us to reject the null. The desired almost sure convergence follows by the
Borel–Cantelli lemma since 1/𝑝2 is summable over 𝑝 ∈ N.

Proof of Corollary 4. The first inequality follows from the definition of ℳ𝑋(𝑘, 𝜌). An
inspection of the proofs of Theorems 1 and 3 reveals that both results only depend on
the complementary-sketched model 𝑍 = 𝑊𝜃 + 𝜉, and hence hold uniformly over (𝛽1, 𝛽2).
Thus, we have from Theorem 1 that sup𝛽∈R𝑝 𝑃𝑋

𝛽,𝛽(𝜓sparse
𝜆,𝜏 ̸= 0) a.s.−−→ 0 and from Theorem 3

that sup𝛽1,𝛽2∈R𝑝:(𝛽1−𝛽2)/2∈Θ𝑝,𝑘(𝜌) 𝑃
𝑋
𝛽,𝛽(𝜓sparse

𝜆,𝜏 ̸= 1) a.s.−−→ 0. Combining the two completes the
proof.

21



Proof of Theorem 5. By considering a trivial test 𝜓 ≡ 0, we see that ℳ ≤ 1. Thus, it
suffices to show that ℳ ≥ 1 − 𝒪(1). Also, by Proposition 2, it suffices to work with
a deterministic sequence of 𝑋 (and hence 𝑊 ) such that (9) and (11) holds, which we
henceforth assume in this proof.

Let 𝐿 := (𝑋⊤
1 𝑋1 +𝑋⊤

2 𝑋2)−1(𝑋⊤
2 𝑋2 −𝑋⊤

1 𝑋1) and 𝜋 be the uniform distribution on

Θ0 := {𝜃 ∈ {𝑘−1/2𝜌,−𝑘−1/2𝜌, 0}𝑝 : ‖𝜃‖0 = 𝑘} ⊆ Θ.

We write 𝑃0 := 𝑃𝑋
0,0 and let 𝑃𝜋 :=

∫︀
𝜃∈Θ0

𝑃𝑋
𝐿𝜃,𝜃 𝑑𝜋(𝜃) denote the uniform mixture of 𝑃𝑋

𝛾,𝜃 for
{(𝛾, 𝜃) : 𝜃 ∈ Θ0, 𝛾 = 𝐿𝜃}. Let ℒ := 𝑑𝑃𝜋/𝑑𝑃0 be the likelihood ratio between the mixture
alternative 𝑃𝜋 and the simple null 𝑃0. We have that

ℳ≥ inf
𝜓

{︂
1− (𝑃0 − 𝑃𝜋)𝜓

}︂
= 1− 1

2

∫︁ ⃒⃒⃒⃒
⃒1− 𝑑𝑃𝜋

𝑑𝑃0

⃒⃒⃒⃒
⃒𝑑𝑃0

≥ 1− 1
2

{︃∫︁ (︃
1− 𝑑𝑃𝜋

𝑑𝑃0

)︃2

𝑑𝑃0

}︃1/2

≥ 1− 1
2{𝑃0(ℒ2)− 1}1/2.

So it suffices to prove that 𝑃0(ℒ2) ≤ 1+𝒪(1). Writing 𝑋̃1 = 𝑋1𝐿+𝑋1 and 𝑋̃2 = 𝑋2𝐿−𝑋2
and suppressing the dependence of 𝑃 ’s on 𝑋 in notations, by the definition of 𝑃𝜋, we
compute that

ℒ =
∫︁ 𝑑𝑃𝐿𝜃,𝜃

𝑑𝑃0
𝑑𝜋(𝜃) =

∫︁ 𝑒− 1
2 (‖𝑌1−𝑋1𝐿𝜃−𝑋1𝜃‖2+‖𝑌2−𝑋2𝐿𝜃+𝑋2𝜃‖2)

𝑒− 1
2 (‖𝑌1‖2+‖𝑌2‖2)

𝑑𝜋(𝜃)

=
∫︁
𝑒⟨𝑋̃1𝜃,𝑌1⟩− 1

2 ‖𝑋̃1𝜃‖2+⟨𝑋̃2𝜃,𝑌2⟩− 1
2 ‖𝑋̃2𝜃‖2

𝑑𝜋(𝜃).

For 𝜃 ∼ 𝜋 and some fixed 𝐽0 ⊆ [𝑝] with |𝐽0| = 𝑘, let 𝜋𝐽0 be the distribution of 𝜃𝐽0

conditional on supp(𝜃) = 𝐽0. Let 𝐽, 𝐽 ′ be independently and uniformly distributed on
{𝐽0 ⊆ [𝑝] : |𝐽0| = 𝑘}. By Fubini’s theorem, we have

𝑃0(ℒ2) =
∫︁∫︁

𝜃,𝜃′
𝑒

1
2 ‖𝑋̃1(𝜃+𝜃′)‖2− 1

2 ‖𝑋̃1𝜃‖2− 1
2 ‖𝑋̃1𝜃′‖+ 1

2 ‖𝑋̃2(𝜃+𝜃′)‖2− 1
2 ‖𝑋̃2𝜃‖2− 1

2 ‖𝑋̃2𝜃′‖2
𝑑𝜋(𝜃) 𝑑𝜋(𝜃′)

=
∫︁∫︁

𝜃,𝜃′
𝑒𝜃

⊤(𝑋̃⊤
1 𝑋̃1+𝑋̃⊤

2 𝑋̃2)𝜃′
𝑑𝜋(𝜃) 𝑑𝜋(𝜃′)

=
∫︁∫︁

𝜃,𝜃′
𝑒𝜃

⊤𝑊⊤𝑊𝜃′
𝑑𝜋(𝜃) 𝑑𝜋(𝜃′)

= E
[︂
E
{︂
𝑒𝜃

⊤
𝐽∩𝐽′𝜃

′
𝐽∩𝐽′

∫︁
𝜃′

𝐽′

∫︁
𝜃𝐽

𝑒𝜃
⊤
𝐽 (𝑊̃⊤𝑊̃−𝐼𝑝)𝐽,𝐽′𝜃′

𝐽′ 𝑑𝜋𝐽(𝜃𝐽) 𝑑𝜋𝐽 ′(𝜃′
𝐽)⏟  ⏞  

ℐ

⃒⃒⃒⃒
𝐽, 𝐽 ′

}︂]︂
, (24)

where we have employed Lemmas 10 and 9 in the penultimate equality and used the
decomposition 𝜃⊤𝑊⊤𝑊𝜃′ = 𝜃⊤𝑊̃⊤𝑊̃𝜃′ = 𝜃⊤(𝑊̃⊤𝑊̃ − 𝐼𝑝)𝜃′ + 𝜃⊤𝜃′ in the final step.

We first control the integral ℐ. Define 𝜃 := (𝜃1, . . . , 𝜃𝑝)⊤ and 𝜃′ := (𝜃′
1, . . . , 𝜃

′
𝑝)⊤ such

that 𝜃𝑗 := 𝜃𝑗‖𝑊𝑗‖2 and 𝜃′
𝑗 := 𝜃′

𝑗‖𝑊𝑗‖2. By (9), we have

𝜗 := max
{︁
max
𝑗∈𝐽
|𝜃𝑗|,max

𝑗∈𝐽 ′
|𝜃′
𝑗|
}︁
≤ (1 + 𝒪(1))

√︃
4𝑛𝜅1𝜌2

𝑘
. (25)
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By (25) and (11), we have for any 𝜌 = 𝒪(𝑝−1/4 log−3/4 𝑝) (which includes the case 𝜌 ≤√︁
(1−2𝛼−𝜀)𝑘 log 𝑝

4𝑛𝜅1
for 𝑘 ≤ 𝑝𝛼 with 𝛼 < 1/2) that

𝜗2‖(𝑊̃⊤𝑊̃ − 𝐼𝑝)𝐽,𝐽 ′‖F ≤ 𝜗2‖(𝑊̃⊤𝑊̃ − 𝐼𝑝)𝐽∪𝐽 ′,𝐽∪𝐽 ′‖F ≤
√

2𝑘𝜗2‖𝑊̃⊤𝑊̃ − 𝐼𝑝‖2𝑘,op

≤ (1 + 𝒪(1))
√

2𝑘4𝑛𝜅1𝜌
2

𝑘
· 𝐶𝑠,𝑟

√︃
2𝑘 log{𝑒𝑝/(2𝑘)}

𝑛
= 𝒪(log−1(𝑝)).

Consequently, by Arias-Castro, Candès and Plan (2011, Lemma 4), we have

ℐ ≤ 𝑒2𝜗2‖(𝑊̃⊤𝑊̃−𝐼𝑝)𝐽,𝐽′ ‖F log(3𝑘) + 𝜗2‖(𝑊̃⊤𝑊̃ − 𝐼𝑝)𝐽,𝐽 ′‖F ≤ 𝑒𝒪(1) + 𝒪(1) = 1 + 𝒪(1).

Plugging the above display in (24), we obtain

𝑃0(ℒ2) ≤ (1 + 𝒪(1))E
{︁
E
(︁
𝑒𝜃

⊤
𝐽∩𝐽′𝜃

′
𝐽∩𝐽′

⃒⃒⃒
𝐽 ∩ 𝐽 ′

)︁}︁
= (1 + 𝒪(1))E

[︂
E
{︂ ∏︁
𝑗∈𝐽∩𝐽 ′

exp
(︁
𝜃𝑗𝜃

′
𝑗

)︁ ⃒⃒⃒⃒
𝐽 ∩ 𝐽 ′

}︂]︂

≤ (1 + 𝒪(1))E
{︂ ∏︁
𝑗∈|𝐽∩𝐽 ′|

2 cosh(𝜗2)
}︂

= (1 + 𝒪(1))E
{︁
cosh|𝐽∩𝐽 ′|(𝜗2)

}︁
. (26)

Hence, it suffices to show that E{cosh|𝐽∩𝐽 ′|(𝜗2)} = 1 + 𝒪(1). Note that |𝐽 ∩ 𝐽 ′| ∼
HyperGeom(𝑘; 𝑘, 𝑝) is a hypergeometric random variable (defined as the number of black
balls obtained from 𝑘 draws without replacement from an urn containing 𝑝 balls, 𝑘 of
which is black). Let 𝐵 ∼ Bin(𝑘, 𝑘/𝑝). By Hoeffding (1963, Theorem 4) and the fact that
cosh(𝑥) ≤ 𝑒𝑥 for all 𝑥 ≥ 0, we have

E
{︁
cosh|𝐽∩𝐽 ′|(𝜗2)

}︁
≤ E𝑒𝜗2|𝐽∩𝐽 ′| ≤ E𝑒𝜗2𝐵 =

{︃
1 + 𝑘

𝑝

(︁
𝑒𝜗

2 − 1
)︁}︃𝑘
≤ exp

{︃
𝑘2

𝑝
(𝑒𝜗2 − 1)

}︃
. (27)

Since 𝛼 ∈ [0, 1/2) and 𝜌 ≤
√︁

(1−2𝛼−𝜀)𝑘 log 𝑝
4𝑛𝜅1

, from (25), we can deduce that

𝜗 ≤
√︁

(1− 2𝛼− 𝜀+ 𝒪(1)) log 𝑝

and hence 𝑒𝜗2
𝑘2/𝑝 = 𝑝−𝜀+𝒪(1) = 𝒪(1). So, from (27) we have E{cosh|𝐽∩𝐽 ′|(𝜗2)} = 1+ 𝒪(1),

which completes the proof.

Proof of Theorem 6. As in the proof of Theorem 3, we work with a deterministic sequence
of 𝑊 such that (9) and (11) are satisfied. For 𝜃 = (𝜃1, . . . , 𝜃𝑝)⊤ such that 𝜃𝑗 := 𝜃𝑗‖𝑊𝑗‖2,
we have from (8) that

𝑍 = 𝑊̃𝜃 + 𝜉,

for 𝜉 ∼ 𝑁𝑚(0, 𝐼𝑚). Hence, under the null hypothesis, we have ‖𝑍‖2
2 ∼ 𝜒2

𝑚, which by
Laurent and Massart (2000, Lemma 1) yields that

P
{︁
‖𝑍‖2

2 ≥ 𝑚+ 2
√︁
𝑚 log(1/𝛿) + 2 log(1/𝛿)

}︁
≤ 𝛿.
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Setting 𝛿 = 𝑝−2, for 𝜂 = 𝑚+ 23/2√𝑚 log 𝑝+ 4 log 𝑝, we have by the Borel–Cantelli lemma
that 𝜓dense

𝜂 (𝑋1, 𝑋2, 𝑌1, 𝑌2) a.s.−−→ 0.
On the other hand, under the alternative hypothesis, ‖𝑍‖2

2 ∼ 𝜒2
𝑚(‖𝑊𝜃‖2

2), which by
Birgé (2001, Lemma 8.1) implies that

P
{︁
‖𝑍‖2

2 ≤ 𝑚+ ‖𝑊𝜃‖2
2 − 2

√︁
(𝑚+ 2‖𝑊𝜃‖2

2) log(1/𝛿)
}︁
≤ 𝛿.

Again, setting 𝛿 = 𝑝−2, observe from (11) and (10) that

‖𝑊𝜃‖2
2 = ‖𝑊̃𝜃‖2

2 = ‖𝜃‖2
2 + 𝜃⊤(𝑊̃⊤𝑊̃ − 𝐼𝑝)𝜃 ≥ ‖𝜃‖2

2

(︁
1− ‖𝑊̃⊤𝑊̃ − 𝐼𝑝‖𝑘,op

)︁
≥ (4− 𝒪(1))𝑛𝜅1𝜌

2,

where the final bound comes from (20). Similarly we bound ‖𝑊𝜃‖2
2 ≤ (4 + 𝒪(1))𝑛𝜅1𝜌

2. If
𝜌2 ≥ 2

√
𝑚 log 𝑝
𝑛𝜅1

, then from the above display, we have ‖𝑊𝜃‖2
2 ≥ (8− 𝒪(1))

√
𝑚 log 𝑝≫ log 𝑝

and ‖𝑊𝜃‖2
2 ≤ (8 + 𝒪(1))

√
𝑚 log 𝑝≪ 𝑚, and so

𝑚+ ‖𝑊𝜃‖2
2 − 2

√︁
(𝑚+ 2‖𝑊𝜃‖2

2) log(1/𝛿)− 𝜂

≥ ‖𝑊𝜃‖2
2 − 25/2

√︁
(𝑚+ 2‖𝑊𝜃‖2

2) log 𝑝− 4 log 𝑝

≥ (1− 𝒪(1))‖𝑊𝜃‖2
2 − 25/2(1 + 𝒪(1))

√︁
𝑚 log 𝑝 > 0

asymptotically. Consequently, P(‖𝑍‖2
2 ≤ 𝜂) ≤ 𝑝−2 and by the Borel–Cantelli lemma, we

have 𝜓dense
𝜂 (𝑋1, 𝑋2, 𝑌1, 𝑌2) a.s.−−→ 1.

Proof of Theorem 7. We follow the proof of Theorem 5 up to (26). Let 𝐵 ∼ Bin(𝑘, 𝑘/𝑝).
By Hoeffding (1963, Theorem 4) and the fact that cosh(𝑥) ≤ 𝑒𝑥

2/2 for all 𝑥 ∈ R, we have

E
{︁
cosh|𝐽∩𝐽 ′|(𝜗2)

}︁
≤ E𝑒|𝐽∩𝐽 ′|𝜗4/2 ≤ E𝑒𝜗4𝐵/2 =

{︃
1 + 𝑘

𝑝

(︁
𝑒𝜗

4/2− 1
)︁}︃𝑘
≤ exp

{︃
𝑘2

𝑝
(𝑒𝜗4/2− 1)

}︃
.

If 𝛼 ∈ [1/2, 1] and 𝜌 = 𝒪(𝑝−1/4 log−3/4 𝑝), the by (25), 𝜗4 = 𝒪(𝑝1−2𝛼) = 𝒪(1), and hence
(𝑒𝜗4/2−1)𝑘2/𝑝 = (1/2+ 𝒪(1))𝑘2𝜗4/𝑝 = 𝒪(1). By (26), 𝑃0(ℒ2) = 1+ 𝒪(1) and we conclude
as in the proof of Theorem 5.

Proof of Proposition 8. As in the proof of Theorem 5, it suffices to control 𝑃0(ℒ2) for
some choice of prior 𝜋. We write 𝜆min(𝑊⊤𝑊 ) for the minimum eigenvalue of 𝑊⊤𝑊 and
let 𝜃 be an associated eigenvector with ℓ2 norm equal to 𝜌. We choose 𝜋 to be the Dirac
measure on 𝜃. Then by (24), we have

𝑃0(ℒ2) = 𝑒𝜃
⊤𝑊⊤𝑊𝜃 = 𝑒𝜌

2𝜆min(𝑊⊤𝑊 ).

When 𝑝 ≥ 𝑛1 or 𝑝 ≥ 𝑛2, by Lemma 9, 𝑊⊤𝑊 = (𝑋⊤
1 𝑋1)(𝑋⊤𝑋)−1(𝑋⊤

2 𝑋2) is singular.
Hence 𝜆min(𝑊⊤𝑊 ) = 0 and 𝑃0(ℒ2) = 1, which implies that ℳ𝑋(𝑘, 𝜌) = 1.

On the other hand, if 𝑝 < min{𝑛1, 𝑛2}, we work on the almost sure event where (9)
and (11) hold. Let 𝑇 and Λ be defined as in the proof of Proposition 2, then by (15), we
have

𝜆min(𝑊⊤𝑊 ) ≤ 4‖𝑇‖2
op𝜆min

(︁
Λ(𝐼 − Λ)

)︁
≤ 4‖𝑋⊤𝑋‖op min{𝜆min(Λ), 1− 𝜆max(Λ)}
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Using tail bounds for operator norm of a random Gaussian matrix (see, e.g. Wainwright,
2019, Theorem 6.1), we have

‖𝑋⊤𝑋‖op ≤ 𝑛

(︃
1 +

√︂
𝑝

𝑛
+
√︃

2 log 𝑝
𝑛

)︃2

≤ 5𝑛

asymptotically with probability 1. Moreover, by Bai et al. (2015, Theorem 1.1), there is
an almost sure event on which the empirical spectral distribution of Λ converges weakly
to a distribution supported on [𝑡ℓ, 𝑡𝑟], for 𝑡ℓ and 𝑡𝑟 defined in (28). We will work on
this almost sure event henceforth. For 𝑝/𝑛1 → 𝜉 ∈ [𝜀, 1) and 𝑝/𝑛2 → 𝜂 ∈ [𝜀, 1), we
have lim sup𝑝→∞ 𝜆min(Λ) ≤ 𝑡ℓ and lim inf𝑝→∞ 𝜆max(Λ) ≥ 𝑡𝑟. On the other hand, Taylor
expanding the expression for 𝑡ℓ and 𝑡𝑟 in (28) with respect to 1− 𝜉 and 1− 𝜂 respectively,
we obtain that

𝑡ℓ = 1
4𝜂(1− 𝜉)2 +𝒪𝜀

(︁
(1− 𝜉)3

)︁
,

1− 𝑡𝑟 = 1
4𝜉(1− 𝜂)2 +𝒪𝜀

(︁
(1− 𝜂)3

)︁
.

Therefore, min{𝜆min(Λ), 1− 𝜆max(Λ)} = 𝒪𝜀(min{(1− 𝜉)2, (1− 𝜂)2}). Using the condition
on 𝜌2, we have

𝜌2𝜆min(𝑊⊤𝑊 ) = 𝒪

(︃
max

{︃
1

(1− 𝜉)2𝑝
,

1
(1− 𝜂)2𝑝

}︃)︃
𝒪𝜀(𝑛min{(1− 𝜉)2, (1− 𝜂)2}) = 𝒪(1),

which implies that 𝑃0(ℒ2) = 1 + 𝒪(1) and ℳ𝑋
a.s.−−→ 1.

6 Ancillary results
Lemma 9. Let 𝑛1, 𝑛2, 𝑝,𝑚 be positive integers such that 𝑛1 + 𝑛2 = 𝑝 + 𝑚 = 𝑛. Let
𝑋 = (𝑋⊤

1 , 𝑋
⊤
2 )⊤ ∈ R𝑛×𝑝 be a non-singular matrix with block components 𝑋1 ∈ R𝑛1×𝑝 and

𝑋2 ∈ R𝑛2×𝑝. Let 𝐴1 ∈ R𝑛1×𝑚 and 𝐴2 ∈ R𝑛2×𝑚 be chosen to satisfy (7). Then

𝑋⊤
1 𝐴1𝐴

⊤
1 𝑋1 = −𝑋⊤

2 𝐴2𝐴
⊤
2 𝑋2 = (𝑋⊤

1 𝑋1)(𝑋⊤𝑋)−1(𝑋⊤
2 𝑋2).

Proof. The first equality follows immediately from (7). Define 𝑋̃1 := 𝑋1(𝑋⊤𝑋)−1/2 and
𝑋̃2 := 𝑋2(𝑋⊤𝑋)−1/2. Then 𝑋̃ := (𝑋̃⊤

1 , 𝑋̃
⊤
2 )⊤ has orthonormal columns with the same

column span as 𝑋, and so (︃
𝑋̃1 𝐴1
𝑋̃2 𝐴2

)︃
∈ O𝑛×𝑛.

In particular, 𝑋̃1𝑋̃
⊤
1 + 𝐴1𝐴

⊤
1 = 𝐼𝑛1 . Therefore,

𝑋⊤
1 𝐴1𝐴

⊤
1 𝑋1 = 𝑋⊤

1 (𝐼𝑛1 − 𝑋̃1𝑋̃
⊤
1 )𝑋1 = 𝑋⊤

1 𝑋1 −𝑋⊤
1 𝑋1(𝑋⊤𝑋)−1𝑋⊤

1 𝑋1

= 𝑋⊤
1 𝑋1(𝑋⊤𝑋)−1(𝑋⊤𝑋 −𝑋⊤

1 𝑋1) = (𝑋⊤
1 𝑋1)(𝑋⊤𝑋)−1(𝑋⊤

2 𝑋2),

where the last equality holds by noting the block structure of 𝑋.
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Lemma 10. For 𝑋1 ∈ R𝑛1×𝑝 and 𝑋2 ∈ R𝑛2×𝑝, define 𝐿 := (𝑋⊤
1 𝑋1 +𝑋⊤

2 𝑋2)−1(𝑋⊤
2 𝑋2 −

𝑋⊤
1 𝑋1), 𝑋̃1 := 𝑋1(𝐿+ 𝐼𝑝) and 𝑋̃2 := 𝑋2(𝐿− 𝐼𝑝). We have

𝑋̃⊤
1 𝑋̃1 + 𝑋̃⊤

2 𝑋̃2 = 4𝑋⊤
1 𝑋1(𝑋⊤

1 𝑋1 +𝑋⊤
2 𝑋2)−1𝑋⊤

2 𝑋2.

Proof. Write 𝐺1 := 𝑋⊤
1 𝑋1, 𝐺2 := 𝑋⊤

2 𝑋2. It is clear that

𝐿− 𝐼𝑝 = −2(𝑋⊤
1 𝑋1 +𝑋⊤

2 𝑋2)−1𝑋⊤
1 𝑋1 = −2(𝐺1 +𝐺2)−1𝐺1,

𝐿+ 𝐼𝑝 = 2(𝑋⊤
1 𝑋1 +𝑋⊤

2 𝑋2)−1𝑋⊤
2 𝑋2 = 2(𝐺1 +𝐺2)−1𝐺2.

Therefore, we have

1
4(𝑋̃⊤

1 𝑋̃1 + 𝑋̃⊤
2 𝑋̃2) = 1

4
{︁
(𝐿+ 𝐼𝑝)⊤𝑋⊤

1 𝑋1(𝐿+ 𝐼𝑝) + (𝐿− 𝐼𝑝)⊤𝑋⊤
1 𝑋2(𝐿− 𝐼𝑝)

}︁
= 𝐺2(𝐺1 +𝐺2)−1𝐺1(𝐺1 +𝐺2)−1𝐺2 +𝐺1(𝐺1 +𝐺2)−1𝐺2(𝐺1 +𝐺2)−1𝐺1

= −𝐺1(𝐺1 +𝐺2)−1𝐺1(𝐺1 +𝐺2)−1𝐺2

−𝐺1(𝐺1 +𝐺2)−1𝐺2(𝐺1 +𝐺2)−1𝐺2 + 2𝐺1(𝐺1 +𝐺2)−1𝐺2

= 𝐺1(𝐺1 +𝐺2)−1𝐺2.

The proof is complete by recalling the definitions of 𝐺1 and 𝐺2.

The following lemma concerns the control of the 𝑘-operator norm of a symmetric
matrix. Similar results have been derived in previous works (see, e.g. Wang, Berthet and
Samworth, 2016, Lemma 2). For completeness, we include a statement and proof of the
specific version we use.

Lemma 11. For any symmetric matrix 𝑀 ∈ R𝑝×𝑝 and 𝑘 ∈ [𝑝], there exists a subset
𝒩 ⊆ 𝒮𝑝−1 such that |𝒩 | ≤

(︁
𝑝
𝑘

)︁
9𝑘 and

‖𝑀‖𝑘,op ≤ 2 sup
𝑢∈𝒩

𝑢⊤𝑀𝑢.

Proof. Define ℬ0(𝑘) := ∪𝐽⊂[𝑝],|𝐽 |=𝑘𝑆𝐽 , where 𝑆𝐽 := {𝑣 ∈ 𝒮𝑝−1 : 𝑣𝑖 = 0,∀𝑖 /∈ 𝐽}. For each
𝑆𝐽 , we find a 1/4-net 𝒩𝐽 of cardinality at most 9𝑘 (Vershynin, 2012, Lemma 5.2). Define
𝒩 := ∪𝐽⊂[𝑝],|𝐽 |=𝑘𝒩𝐽 , which has the desired upper bound on cardinality. By construction,
for 𝑣 ∈ arg max𝑢∈ℬ0(𝑘) 𝑢

⊤𝑀𝑢, there exists a 𝑣 ∈ 𝒩 such that | supp(𝑣)∪ supp(𝑣)| ≤ 𝑘 and
‖𝑣 − 𝑣‖2 ≤ 1/4. We have

‖𝑀‖𝑘,op = 𝑣⊤𝑀𝑣 = 𝑣⊤𝑀(𝑣 − 𝑣) + (𝑣 − 𝑣)⊤𝑀𝑣 + 𝑣⊤𝑀𝑣 ≤ 2‖𝑣 − 𝑣‖2‖𝑀‖𝑘,op + 𝑣⊤𝑀𝑣

≤ 1
2‖𝑀‖𝑘,op + sup

𝑢∈𝒩
𝑢⊤𝑀𝑢.

The desired inequality is obtained after rearranging terms in the above display.

The following lemma describes the asymptotic limit of the nuclear and Frobenius norms
of the product of a matrix-variate Beta-distributed random matrix and its reflection.
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Recall that for 𝑛1 + 𝑛2 > 𝑝, we say that a 𝑝 × 𝑝 random matrix 𝐵 follows a matrix-
variate Beta distribution with parameters 𝑛1/2 and 𝑛2/2, written 𝐵 ∼ Beta𝑝(𝑛1/2, 𝑛2/2),
if 𝐵 = (𝑆1 + 𝑆2)−1/2𝑆1(𝑆1 + 𝑆2)−1/2, where 𝑆1 ∼ 𝑊𝑝(𝑛1, 𝐼𝑝) and 𝑆2 ∼ 𝑊𝑝(𝑛2, 𝐼𝑝) are
independent Wishart matrices and (𝑆1 + 𝑆2)1/2 is the symmetric matrix square root of
𝑆1 + 𝑆2. Recall also that the spectral distribution function of any 𝑝 × 𝑝 matrix 𝐴 is
defined as 𝐹𝐴(𝑡) := 𝑛−1∑︀𝑝

𝑖=1 1{𝜆𝐴
𝑖 ≤𝑡}, where 𝜆𝐴𝑖 s are eigenvalues (counting multiplicities)

of the matrix 𝐴. Further, given a sequence (𝐴𝑛)𝑛∈N of matrices, their limiting spectral
distribution function 𝐹 is defined as the weak limit of the 𝐹𝐴𝑛 , if it exists.

Lemma 12. Let 𝐵 ∼ Beta𝑝(𝑛1/2, 𝑛2/2) and suppose that 𝜆1, . . . , 𝜆𝑝 are the eigenvalues
of 𝐵. Define 𝑎 = (𝑎1, . . . , 𝑎𝑝)⊤, with 𝑎𝑗 = 𝜆𝑗(1−𝜆𝑗) for 𝑗 ∈ [𝑝]. In the asymptotic regime
of (C2), we have

‖𝑎‖1/𝑝
a.s.−−→ 𝜅1,

‖𝑎‖2/
√
𝑝

a.s.−−→ 𝜅2,

where
𝜅1 = 𝑟

(1 + 𝑟)2(1 + 𝑠) and 𝜅2
2 = 𝑟(𝑟 + 𝑠− 𝑟𝑠+ 𝑟2𝑠+ 𝑟𝑠2)

(1 + 𝑟)4(1 + 𝑠)3 .

Proof. We first look at the limiting spectral distribution of 𝐵. From the asymptotic
relations between 𝑛1, 𝑛2 and 𝑝 in (C2), we have that

𝑝/𝑛1 → 𝜉 := 𝑠+ 𝑠𝑟

𝑟 + 𝑠𝑟
and 𝑝/𝑛2 → 𝜂 := 𝑠+ 𝑠𝑟

1 + 𝑠
.

Define the left and right limits

𝑡ℓ, 𝑡𝑟 := (𝜉 + 𝜂)𝜂 + 𝜉𝜂(𝜉 − 𝜂)∓ 2𝜉𝜂
√
𝜉 − 𝜉𝜂 + 𝜂

(𝜉 + 𝜂)2 . (28)

By Bai et al. (2015, Theorem 1.1), almost surely, weak limit 𝐹 of 𝐹𝐵 exists and is of the
form max{1 − 1/𝜉, 0}𝛿0 + max{1 − 1/𝜂, 0}𝛿1 + 𝜇, where 𝛿0 and 𝛿1 are point masses at 0
and 1 respectively, and 𝜇 has a density

(𝜉 + 𝜂)
√︁

(𝑡𝑟 − 𝑡)(𝑡− 𝑡ℓ)
2𝜋𝜉𝜂𝑡(1− 𝑡) 1[𝑡ℓ,𝑡𝑟]

with respect to the Lebesgue measure on R. Define ℎ1 : 𝑡 ↦→ 𝑡(1− 𝑡). By the portmanteau
lemma (see, e.g. van der Vaart, 2000, Lemma 2.2), we have almost surely that

‖𝑎‖1/𝑝 = 𝐹𝐵ℎ1 → 𝐹ℎ1 = 𝜉 + 𝜂

2𝜋𝜉𝜂

∫︁ 𝑡𝑟

𝑡ℓ

√︁
(𝑡𝑟 − 𝑡)(𝑡− 𝑡ℓ)𝑑𝑡 = 𝜉 + 𝜂

16𝜉𝜂 (𝑡𝑟 − 𝑡ℓ)2

= 𝑟

(1 + 𝑟)2(1 + 𝑠) .
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Similarly, for ℎ2 : 𝑡 ↦→ 𝑡2(1− 𝑡)2, we have almost surely that

‖𝑎‖2
2/𝑝→ 𝐹ℎ2 = 𝜉 + 𝜂

2𝜋𝜉𝜂

∫︁ 𝑡𝑟

𝑡ℓ

𝑡(1− 𝑡)
√︁

(𝑡𝑟 − 𝑡)(𝑡− 𝑡ℓ)𝑑𝑡

= 𝜉 + 𝜂

256𝜉𝜂 (𝑡𝑟 − 𝑡ℓ)2(8𝑡ℓ − 5𝑡2ℓ + 8𝑡𝑟 − 6𝑡ℓ𝑡𝑟 − 5𝑡2𝑟)

= 𝑟(𝑟 + 𝑠− 𝑟𝑠+ 𝑟2𝑠+ 𝑟𝑠2)
(𝑟 + 1)4(𝑠+ 1)3 .

Define 𝜅1 := 𝐹ℎ1 and 𝜅2 := (𝐹ℎ2)1/2, we arrive at the lemma.

The following result concerning the QR decomposition of a Gaussian random matrix
is probably well-known. However, since we did not find results in this exact form in the
existing literature, we have included a proof here for completeness. Recall that for 𝑛 ≥ 𝑝,
the set O𝑛×𝑝 can be equipped with a uniform probability measure that is invariant under
the action of left multiplication by O𝑛×𝑛 (see, e.g. Stiefel manifold in Muirhead, 2009,
Section 2.1.4).

Lemma 13. Suppose 𝑛 ≥ 𝑝 and 𝑋 is an 𝑛× 𝑝 random matrix with independent 𝑁(0, 1)
entries. Write 𝑋 = 𝐻𝑇 , with 𝐻 taking values in O𝑛×𝑝 and 𝑇 an upper-triangular 𝑝 × 𝑝
matrix with non-negative diagonal entries. This decomposition is almost surely unique.
Moreover, 𝐻 and 𝑇 are independent, with 𝐻 uniformly distributed on O𝑛×𝑝 with respect
to the invariant measure and 𝑇 = (𝑡𝑗,𝑘)𝑗,𝑘∈[𝑝] having independent entries satisfying 𝑡2𝑗,𝑗 ∼
𝜒2
𝑝−𝑗+1 and 𝑡𝑗,𝑘 ∼ 𝑁(0, 1) for 1 ≤ 𝑗 < 𝑘 ≤ 𝑝.

Proof. The uniqueness of the QR decomposition follows since 𝑋 has rank 𝑝 almost surely.
The marginal distribution of 𝑇 then follows from the Bartlett decomposition of 𝑋⊤𝑋
(Muirhead, 2009, Theorem 3.2.4) and the relationship between the QR decomposition of
𝑋 and the Cholesky decomposition of 𝑋⊤𝑋.

For any fixed 𝑄 ∈ O𝑛×𝑛, we have 𝑄𝑋 d= 𝑋. Since O𝑛×𝑛 acts transitively (by left
multiplication) on O𝑛×𝑝, the joint density of 𝐻 and 𝑇 must be constant in 𝐻 for each
value of 𝑇 . In particular, we have that 𝐻 and 𝑇 are independent, and that 𝐻 is uniformly
distributed on O𝑛×𝑝 with respect to the translation-invariant measure.

The lemma below provides concentration inequalities for the norm of a multivariate
normal random vector with near-identity covariance.

Lemma 14. Let 𝑋 ∼ 𝑁𝑑(𝜇,Σ). Suppose ‖𝜇‖2 = 𝑅 and ‖Σ− 𝐼‖op ≤ 1/2. Then

P
[︂
‖𝑋‖2

2 − (𝑑+𝑅2)(1 + 2‖Σ− 𝐼‖op) ≥
{︁
2
√︁

(𝑑+ 2𝑅2)𝑡+ 2𝑡
}︁
(1 + 2‖Σ− 𝐼‖op)

]︂
≤ 2𝑒−𝑡,

P
[︂
‖𝑋‖2

2 − (𝑑+𝑅2)(1− 2‖Σ− 𝐼‖op) ≤ −
{︁
2
√︁

(𝑑+ 2𝑅2)𝑡+ 2𝑡
}︁
(1 + 2‖Σ− 𝐼‖op)

]︂
≤ 2𝑒−𝑡.

Proof. Define 𝑌 = Σ−1/2(𝑋 − 𝜇). Then

‖𝑋‖2
2 = 𝑌 ⊤Σ𝑌 + 2𝜇⊤Σ1/2𝑌 + ‖𝜇‖2

2 = ‖𝑌 + 𝜇‖2
2 + 𝑌 ⊤(Σ− 𝐼)𝑌 + 2𝜇⊤(Σ1/2 − 𝐼)𝑌.

28



Observe that ‖𝑌 + 𝜇‖2
2 ∼ 𝜒2

𝑑(𝑅2). By Birgé (2001, Lemma 8.1), we have

P
{︁
‖𝑌 + 𝜇‖2

2 ≥ 𝑑+𝑅2 + 2
√︁

(𝑑+ 2𝑅2)𝑡+ 2𝑡
}︁
≤ 𝑒−𝑡 (29)

P
{︁
‖𝑌 + 𝜇‖2

2 ≤ 𝑑+𝑅2 − 2
√︁

(𝑑+ 2𝑅2)𝑡
}︁
≤ 𝑒−𝑡 (30)

On the other hand, we also have

|𝑌 ⊤(Σ− 𝐼)𝑌 |+ |2𝜇⊤(Σ1/2 − 𝐼)𝑌 | ≤ ‖𝑌 ‖2
2‖Σ− 𝐼‖op + 2𝑅‖𝑌 ‖2‖Σ1/2 − 𝐼‖op

≤ (2‖𝑌 ‖2
2 +𝑅2)‖Σ− 𝐼‖op, (31)

where the final inequality follows from a Taylor expansion of {𝐼+ (Σ− 𝐼)}1/2 after noting
‖Σ − 𝐼‖op ≤ 1/2 and the elementary inequality 2𝑎𝑏 ≤ 𝑎2 + 𝑏2 for 𝑎, 𝑏 ∈ R. By Laurent
and Massart (2000, Lemma 1), we have with probability at least 1− 𝑒−𝑡 that

‖𝑌 ‖2
2 ≤ 𝑑+ 2

√
𝑑𝑡+ 2𝑡. (32)

Combining (29), (31) and (32), we have with probability at least 1− 2𝑒−𝑡 that

‖𝑋‖2
2 ≤

{︁
𝑑+𝑅2 + 2

√︁
(𝑑+ 2𝑅2)𝑡+ 2𝑡

}︁
(1 + 2‖Σ− 𝐼‖op).

Similarly, for the lower bound, we have again by (30), (31) and (32) that

‖𝑋‖2
2 ≥ 𝑑+𝑅2 − 2

√︁
(𝑑+ 2𝑅2)𝑡− {2𝑑+ 4

√
𝑑𝑡+ 4𝑡+𝑅2}‖Σ− 𝐼‖op

≥ (𝑑+𝑅2)(1− 2‖Σ− 𝐼‖op)−
{︁
2
√︁

(𝑑+ 2𝑅2)𝑡+ 2𝑡
}︁
(1 + 2‖Σ− 𝐼‖op).

holds with probability at least 1− 2𝑒−𝑡.
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