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1. Abstract 

Understanding the governing dopant feature for cyclic discharge capacity is vital for the design and 

discovery of new doped lithium Nickel-Cobalt-Manganese (NCM) oxide cathodes for lithium-ion battery 

applications. We herein apply six machine learning regression algorithms to study the correlations of the 

structural, elemental features of 168 distinct doped NCM systems with their respective initial discharge 

capacity (IC) and 50th cycle discharge capacity (EC). First, Pearson’s correlation coefficient study 

suggests that the lithium content ratio is highly correlated to both discharge capacity variables. Among 

all six regression algorithms, gradient boosting models have demonstrated the best prediction power for 

both IC and EC, with the root-mean-square error calculated to be 16.66 mAhg-1 and 18.59 mAhg-1 

respectively against a hold-out test set. Furthermore, a game-theory based variable importance analysis 

reveals that the doped NCM materials with higher lithium content, smaller dopant content and doped 

with lower electronegativity atoms, are more likely to possess higher IC and EC. This study has 

demonstrated the exciting potentials of applying cutting-edge machine learning techniques to accurately 

capture the complex structure-property relationship of doped NCM systems and the models can be used 

as fast screening tools for new doping NCM structures with more superior electrochemical discharging 

properties.  

2. Introduction 

The unprecedented increase in the demand for clean energy has accelerated the research for discovering 

new lithium-ion batteries with higher energy density, higher power density and more steady cyclic 

performance. Cathodes, in particular, have received a considerable amount of attention due to their 

current high cost, arising from the use of expensive cobalt metals, and the limited capacity that cannot 

fulfil the current demand.1  



Among the various cathode candidates, layered cathodes have received tremendous market success 

owing to their high practical capacity and the wide operating voltage window. Quinary oxides (e.g. 

LiNixCoyMnzO2) is currently the state-of-art layered cathode material as it integrates the superior 

properties of all three fundamental layered materials: LiCoO2 (high kinetics), LiNiO2 (high capacity), 

LiMnO2 (high safety). The nature of its broad compositional space has enabled scientists to discover new 

and robust electrochemical compounds such as LiNi0.33Co0.33Mn0.33O2 (NCM333), 

LiNi0.50Co0.20Mn0.30O2 (NCM523), LiNi0.60Co0.20Mn0.20O2 (NCM622) and LiNi0.80Co0.10Mn0.10O2 

(NCM811).2–4 It is important to note that the different transition metals in these compounds play different 

roles during electrochemical reactions: nickel ion acts as the main active component during redox 

reactions, as it has the most diverse range of oxidation states among all. Manganese helps to stabilize the 

overall structure while cobalt can effectively prohibit the cation mixing effect between Li-ion and Ni-

ion. Furthermore, the mixing ratio of each transition metal (TM) in the material can bring different 

benefits to the cathode’s properties. A higher concentration of nickel can greatly improve the overall 

capacity as opposed to the benefits of higher kinetics and better safety from increasing the respective 

concentration of cobalt and manganese.4 

A common bottleneck issue is encountered during the selection of the optimal mixing ratio of these TMs 

to reach all desirable cathode properties (i.e. high kinetics, high stability, high capacity). The underlying 

reasons are the compositional space being too broad to be explored experimentally and the unavoidable 

benefits trade-offs from TM substitution. A wide range of studies has been conducted in doping the 

quinary oxide system with a trace amount of cation atoms to enhance the cathode’s electrochemical 

capability with minimal disturbance to the properties of the original crystal structure. Several successful 

cases have been made using various doping elements such as Al5, Fe5, Cu6, Cr78, Mg9, Mo10, K11, Pb12, 

Ti13, Si14, Sn15.  In general, two major benefits can be attained through the doping method. The first 

benefit can be seen from the hindering of the migration of Ni2+ into the Li+ layer to reduce the anionic 



mixing during the intercalation reactions. The second benefit is to increase the strength of TM-O bond 

to improve the overall structural stability and reduce the oxygen release during charge-discharge cycling. 

Nevertheless, the diverse available doping sites (Li, Ni, Co, Mn) along with the large compositional space 

have inevitably increased the difficulty of identifying the most suitable dopant for each NCM -derived 

cathode material. The conventional approach to characterize the electrochemical properties of a new 

doped system is through conducting repetitive experiments which is costly and time-consuming. Another 

approach based on the first-principle computational modelling is also hindered by the expensive 

computing cost for studying very large supercell systems. To conquer these shortcomings, this paper 

reports the use of the robust data learning and analyzing features of machine learning to investigate the 

linkages among various doping factors and the experimental cyclic performance of doped NCM 

cathodes. 

Machine learning (ML) methods have become increasingly popular across different fields of research 

nowadays. Min et al 16 implemented seven different algorithms to predict the cycling properties of Ni-

rich NCM cathode from the corresponding synthesis parameters and reached an average prediction score 

of R2 = 0.833. Houchins et al 17 implemented DFT-based neural network models to predict the structure 

energy and forces of various forms of NCM materials (e.g. 111,532,811,622) and achieved a promising 

prediction accuracy of 3.7meV/atom and 0.13 eV/ Å, respectively. Allam et al 18 constructed a deep 

learning model and attained a prediction error of 3.54%  for predicting the redox potential of organic 

materials. From these works, data quality is frequently reported as an influential factor for model 

performance. Although databases like Inorganic Crystal Structure Database (ICSD)19  and Material 

project20  are widely accessible for ML training, there is still a lack of established large database in 

experimentally measured material properties, in particular, the measured discharging properties of 

various cathode materials in Li-ion batteries. From our previous work 21, we had successfully curated a 

dataset of 102 doped spinel cathodes containing the elemental, structural information and discharge 



performance. In addition, small prediction errors of 11.90mAhg-1 and 11.77mAhg-1 were achieved by 

the gradient boosting machine models for the prediction of the initial and 20th cycle discharge capacity. 

These promising results had further encouraged us to curate a more high-quality discharge performance 

dataset for the layered NCM cathode and implement ML to reveal their complex structure-property 

relationship.  

In this work, 168 distinctive NCM doped systems are collected carefully with strict selection rules as 

described in Figure 1. The dataset contains 3696 data entries which cover 20 variations of dopants for 

all doped NCM -derivate material classes (NCM -333, NCM -523, NCM -622, NCM -811). Firstly, 

Pearson’s correlation coefficient study was performed to investigate the co-linearity of every variable 

pair. Furthermore, six non-linear algorithms, including gradient boosting machine, random forest, kernel 

ridge regression, feedforward deep learning, k-nearest neighbors and support vector machine was 

implemented with the design given in Table 1 to predict the initial discharge capacities and 50th cycle 

discharge capacities of the doped NCMs based on twenty covariates (e.g. material characterization 

results, experimental parameters, elemental properties). By comparing their electrochemical performance 

against a held-out test set, the best models can be identified for each discharge capacity prediction task. 

Furthermore, a variable importance study was performed with the best performing model to reveal the 

key doping features that governed the accurate predictions of discharging performance of the doped 

NCM systems. These insights would greatly enhance the current understanding of the doping effects and 

facilitating the design of future experimental work (e.g. independent variable selection, the doping 

concentrations).  

 

 

 



 

Figure 1. An overview of the data collection process with the demonstration of every filter applied in 

each publication selection stage. 

 



Table 1. The proposed ML model architecture of this study including the name and abbreviations of 

the covariate variables, response variables.    

 

Covariate Variables 

Publication Results Elemental Properties 

Name Abbreviation Name Abbreviation 

The ratio of lithium, nickel, cobalt, 

manganese, dopant in the material 

formula 

Li, Ni, Co, 

Mn, M - 

dopant 

Material molar mass Mr 

Crystal lattice constants “a” and “c” LC_a, LC_c Dopant’s molar mass Mr_dopant 

Crystal Volume CV 
Dopant’s number of 

electrons 
No_electron_dopant 

Experimental current density CD 
Dopant’s 

electronegativity 
EN_dopant 

Minimum and maximum cyclic 

voltage 

V_min, 

V_max 

Dopant’s number of 

isotopes 
No_iso_dopant 

  
Dopant’s first 

ionization energy 
E_ionisation_dopant 

  
Dopant’s electron 

affinity 
EA_dopant 

  
Dopant’s atomic 

radius 
AR_dopant 

  Dopant’s ionic radius IR_dopant 

Response Variables 

 

Name Abbreviation Name Abbreviation 

Initial discharge capacity IC 
50th cycle end 

discharge capacity 
EC 

3. Methods 

3.1 Data Collection of the doped NCM layered materials 

 The dataset consists of 168 different doped spinel systems with 20 dopant variations (e.g. Al, Ce, Cr, 

Cu, Cs, Eu, Fe, La, Mo, Mg, Nd, Na, Nb, Ru, Rb, Sn, Ti, V, Y, Zr) and was curated from over 59 reliable 

journals published from 1998 and 2020 (given as Table S3 in Supporting Information). During the 

journal selection, strict rules were applied to ensure a high consistent standard of the collected data: NCM 

materials should be i) single-doped with cation ions since the multi-doped systems are hard to fabricate 



and more costly, ii) be single-phase iii) have a space group of R-3m; and iv) have no surface coating. 

Furthermore, the electrochemical testing should also fulfil the following criteria to meet the data 

collection requirements: i) performed at least 50 cycles of charging/discharging cyclic test, ii) used 

lithium foil as anode and non-aqueous LiPF6 as electrolyte iii) applied constant current density for 

charging and discharging the battery; iv) the cyclic tests are carried out under the atmospheric conditions 

(i.e. Temperature = 25±5 ℃, Pressure = 1atm). It is also important to note that the 50th cycle discharge 

capacity has been chosen as it is the most performed test cycle among all studies.  

Electrolyte plays a significant role in bridging the two contrasting electrodes and in facilitating the 

formation of a solid-electrolyte interface layer to protect the electrode from any unwanted side reactions. 

Electrolytes are often a mixture system with solvent and additives of which could lead to different 

performances if not standardised. The types of electrolyte systems from our collected studies are 

summarized in Figure S3.  In our dataset,  nearly 71% of the investigating electrochemical test were 

performed from either the mixture of ethylene carbonate/dimethyl carbonate (vol % 1:1) or the ethylene 

carbonate/dimethyl carbonate/ethyl methyl carbonate (vol% 1:1:1). These systems have similar dielectric 

constants (Table S2) which should result in similar electrochemical performance. Only seven of the 

material systems have been tested with the addition of fluoroethylene carbonates and these are used to 

improve the battery operation safety and hence should not influence the overall data quality by a 

considerate amount.  

3.2 Model Training 

 The ML models used in this work were trained using Python programming language and with its relevant 

ML libraries (Sciki-learn, Pandas). Within the model, 20 covariate variables are selected to predict the 

initial and 50th cycle discharge capacities of each material. These cover the experimental results such as 

the crystal lattice constants (“a” and “c”), the formula ratio of lithium, nickel, manganese, cobalt, dopant 

in the material formula (Li, Ni, Mn, Co, M), material molar mass, volume of the unit cell (CV) and cyclic 



parameters such as the charge/discharge current density (CD) as well as the upper and lower operating 

voltage limit (V_min, V_max). In addition, seven dopant elemental properties are chosen as covariate 

variables to reveal their correlations with the discharging properties. These include: dopant’s molar mass; 

the number of electrons; electronegativity; electron affinity; first ionization energy; atomic radius and 

ionic radius. In this work, six non-linear algorithms were implemented including artificial neural network 

(ANN), random forest (RF), gradient boosting machine (GBM), support vector machine (SVM), kernel 

ridge regression (KRR), k-nearest neighbors (KNN). The whole data space was randomly split into the 

ratio of 4:1 correspond to the model training set and test set, respectively. Model hyperparameters were 

optimised using 5-fold cross-validation during model training as there are 134 sets in the training set and 

the optimized hyperparameters are given in Table S1.  

Model Evaluation Metrics: The model performance was evaluated through the calculation of the root 

mean square error (RMSE) and the coefficient of determination (R2) from the predictions against the 

training and test set. The calculation methods are given as equation (1) and (2) below: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1        (1) 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

     (2) 

Where n is the number of values, 𝑦𝑖 is the observed variable, 𝑦̂𝑖 is the predicted values and 𝑦̅ is the 

average of the observed values. 

The SHAP summary plots for the variable correlation and importance ranking are generated using the 

SHAP python package 22 and the further instruction are available in https://github.com/slundberg/shap. 

3.3 Safety Statement 

This work is performed wholly on the machine learning computational indicated and hence no 

unexpected or unusually high safety hazards were encountered 

https://github.com/slundberg/shap


4. Results and Discussion 

4.1 Pearson Coefficient Correlation Study  

 

To gain initial insight into the underlying variable correlations, a Pearson’s correlation coefficient study 

was performed for every pair of variables retrieved in the dataset. Figure 2 shows the matrix of 

correlation values (R) calculated for the twenty covariates and the two response variables. The extent of 

correlation between every pair is color-coded with darker orange indicating a strong positive correlation 

and dark green strong negative correlations.  

From the computed R values, it can be seen that there are more strong correlations (R > 0.75) being 

observed in-between covariates variables than for the covariate variables with either of the two response 

variables. However, some of these strong correlations observed between covariates might be misleading 

and do not provide any intuitive insights. For instance, the high correlations of lithium content ratio with 

minimum operating voltage (R = -0.77) and maximum operating voltage (R = 0.68) do not imply that 

any change in lithium content would influence the value of operating voltages. These voltage values are 

often preset for the experiments based on the specifications of the testing machine. In addition, a decrease 

in the lithium ratio seems to increase the molar mass of the material (R = -0.93) and this is because there 

are more available crystal lattice sites for the occupancies of heavier weighted TM and dopant elements. 

Similarly, the manganese molar ratio appears to have a correlation value of -0.95 with the nickel molar 

ratio in the formula, which is potentially due to the direct TM crystal site substitution. In addition, a high 

correlation (R = 0.79) is also identified for the pair of ionic radius of the dopant ion(IR_dopant) and the 

atomic radius of the dopant atom (AR_dopant). Both radii are the measurement of the distance away 

from the central nucleus despite one is under the neural state and the other is for the charged state and 

therefore their values might have a high linearity correlation with each other.For the model construction, 

it is important to find the linkage of covariate variables to the electrochemical properties. First, no strong 

correlations are being observed between covariate variable and response variables which might be due 



to the presence of non-linear correlations. The maximum cyclic voltage is found to have a relatively high 

correlation with both IC and EC at 0.65 and 0.62, respectively. In addition, an increase in the Li content 

ratio in the formula seems to suggest a partial increase in both IC and EC as their correlation values are 

calculated to be positive 0.5 and 0.49 respectively. This seems to agree with the latest results on higher 

discharging performance are obtained from the lithium-rich layered cathode (~200mAhg-1) than from the 

normal NCM-111 compounds (~165mAhg-1).23,24   



 

 

Figure 2. Results matrix of Pearson coefficient correlations for every pair of variables in the dataset, 

including covariate variables: Li, Ni, Co, Mn, M, LC_a, LC_c, CV, V_min, V_max, CD, Mr, 

Mr_dopant, No_electron_M, EA_dopant, No_iso_dopant, AR_dopant, IR_dopant, 

E_ionisation_dopant, EN_M and two response variables: IC, EC. The estimated correlation values 

are distributed within the range of -1 to 1, with the number reaching either end value implying a more 

perfect negative correlation and positive correlation, respectively. 

 

 

 

1 −0.61

1

−0.45

−0.22

1

0.54

−0.95

0.07

1

0.01

−0.28

−0.01

0.23

1

−0.77

0.66

0.11

−0.54

−0.2

1

−0.3

0.04

0.31

−0.03

−0.12

0.56

1

−0.69

0.52

0.19

−0.42

−0.19

0.96

0.77

1

−0.01

0.15

−0.12

−0.11

−0.24

0.14

0.11

0.14

1

−0.77

0.58

0.24

−0.47

−0.23

0.69

0.23

0.61

0.24

1

0.68

−0.51

−0.28

0.47

0.02

−0.53

−0.22

−0.48

−0.15

−0.55

1

−0.01

0.14

−0.05

−0.13

−0.31

0.17

0

0.13

0.1

0.2

0.01

1

−0.93

0.72

0.4

−0.64

−0.33

0.78

0.29

0.7

0.09

0.8

−0.67

0.1

1

0

0.14

−0.05

−0.13

−0.32

0.17

0

0.13

0.11

0.2

0.01

1

0.1

1

0.01

0.1

0.15

−0.19

−0.12

0.11

0.03

0.1

0.23

0.06

−0.04

0.1

0.08

0.12

1

0

0.11

−0.01

−0.11

−0.31

0.21

0.1

0.2

0.07

0.22

0.01

0.86

0.08

0.88

0.17

1

0.01

0.11

0.11

−0.17

−0.18

0.04

−0.11

0

0.08

0.1

−0.08

−0.17

0.11

−0.15

0.63

−0.06

1

0.09

−0.06

0

0.03

−0.02

−0.01

−0.07

−0.03

0.09

0.05

0.02

0.43

−0.08

0.45

0.39

0.51

−0.21

1

0.17

−0.11

−0.12

0.14

−0.23

−0.03

0.06

−0.01

0.06

0

0.25

0.64

−0.14

0.64

−0.41

0.6

−0.51

0.21

1

0.13

−0.16

−0.15

0.2

0

−0.14

−0.04

−0.12

−0.1

−0.18

0.16

0.41

−0.2

0.39

−0.72

0.28

−0.68

−0.04

0.79

1

0.5

−0.23

−0.3

0.22

−0.18

−0.38

−0.19

−0.36

−0.25

−0.46

0.65

−0.05

−0.42

−0.05

−0.19

−0.01

−0.01

−0.22

0.18

0.24

1

0.49

−0.16

−0.33

0.15

−0.26

−0.33

−0.15

−0.31

−0.16

−0.42

0.62

0.02

−0.38

0.02

−0.18

0.04

−0.08

−0.13

0.24

0.27

0.93

1

Li

Ni

Co

Mn

M

LC_a

LC_c

CV

CD

V_min

V_max

Mr_dopant

Mr

no_electron_M

EN_M

No_iso_dopant

E_ion_dopant

EA_dopant

AR_dopant

IR_dopant

IC

EC

Li
N
i

C
o

M
n M

LC
_a

LC
_c C

V
C
D

V
_m

in

V
_m

ax

M
r_

dopan
t

M
r

no_e
le

ct
ro

n_M

E
N
_M

N
o_i

so
_d

opan
t

E
_i

on_d
opan

t

E
A
_d

opan
t

A
R
_d

opan
t

IR
_d

opan
t

IC E
C

−1.0−0.5 0.0 0.5 1.0

Pearson
Correlation



4.2 Model Performance Comparisons: 

 

To build accurate prediction models, six different non-linear regression algorithms have been trained and 

validated against a holdout test set for their prediction powers. Table 2 shows the RMSE values 

computed during the training and for predicting the held-out test set. R2 values are also calculated to 

demonstrate the proportion of variation in the test set being accurately captured by the model. In general, 

the validated test-set RMSE and R2 values are more insightful for selecting the best performing model 

as the data are not involved in the training process and hence contains less prediction bias. Firstly, the 

ANN models are shown to have the worst performance with the lowest test-set RMSE among all. This 

is because both ANN models are embedded with many model parameters (see Table S1) and would 

require a much larger sample size to estimate these well. Furthermore, the tree-based ensemble methods 

generally have much lower test-set RMSE values than other nonlinear models such as SVM and KNN 

besides the KRR models. To help with visualizing the prediction mechanism of the tree-based ensemble 

methods, we have included diagrammatic illustrations for the random forest and gradient boosting 

algorithms and they are given in Figure S1 and Figure S2, respectively in the supporting information. 

In addition, a plot of one decision tree generated from the random forest model for the prediction of 50th 

cycle discharge capacity is given to illustrate the predicting process and this is given in Figure S4, in the 

supporting information. Overall, it is seen that the gradient boosting machine (GBM) has the best 

prediction performance for both tasks with their test set RMSE values being the lowest among all, at 

16.66 mAgh-1 and 18.59 mAgh-1 respectively.   

In the efforts to resolve the capacity fading issues faced by layered cathode material, a wide range of 

mathematical modelling-based studies has been conducted to understand the time series-based changes 

in NCM capacity with the loss of active materials.25,26 Although several insights were gained in these 

studies, the inconsistent change in the capacity for different material compositions, as well as the 

influence of other essential testing conditions such as current density remains unresolved. It is estimated 



that an experimental cyclic test of 25 cycles for a newly assembled Li-ion battery with the discharge rate 

of C/10 (1C denotes the discharge current density that would full discharge the battery within an hour) 

can take up to 20 days to complete.27 Hence, the establishment of a highly accurate predictive model 

would greatly reduce the time duration required for the testing of electrochemical properties,  and shorten 

the timespan for discovering new and robust cathode materials. The construction of a highly accurate 

model for predicting discharge capacities normally requires a large amount of experimental data with 

high diversity in material compositions and a good consistency in experimental factor controls. This has 

prompted us to implement strict selection rules for the journals and use high-quality data to train and 

build predictive models that would best describe the changes of discharging capacities for various NCM 

compounds at the initial and the 50th cycle.   

Gradient boosting machine (GBM) algorithms28 have known to be robust in describing the non-linear 

correlations across the wide variable space. GBM have previously seen successful applications in the 

prediction of the bulk and shear moduli of zeolites29, classification of metal and insulators of inorganic 

crystals30, prediction of the bandgap of new hybrid (ogranic+inorganic) perovskites.31  

Figure 3 shows scatter plots of the predicted and experimental values of the initial and 50th cycle end 

discharge capacities during the training and testing stages for the optimal GBM models and RF models. 

The values of the R2 scores, RMSE values for the test set prediction are highlighted in the graph along 

with the mean train RMSE values which are averaged across the 5 folds of cross-validation. Firstly, all 

models have shown good ability in generalising the training set as all of the 134 training points are shown 

to be close to the red 45-degree line. For the given test dataset, the GBM models have much higher R2 

scores for both prediction tasks than the RF models and this suggests superior prediction power in 

capturing the variations in the new dataset. These high correlation scores are shown to be consistent with 

the low test-set RMSE for all GBM models. However, a few outliners can be identified from the training 



and test sets at circa. near 225 mAhg-1 and 250 mAhg-1, respectively from the GBM-EC graph and this 

would potentially affect the R2 scores.  

Nevertheless, the correlation scores from both GBM-IC (R2 = 0.76) and GBM-EC (R2 = 0.64) model 

have exceeded the benchmark value of R2 >0.6 for a model to be considered as predictive.32 These high 

correlation values have indicated that structural and elemental parameters such as the crystal lattice 

dimension and dopant’s ionic radius can predict the discharge capacity of layered doped NCM cathode 

as accurately as the synthesis parameters variables used in Min et al’s work.16 Based on the above results,  

both GBM models for the IC and EC predictions are chosen for further analysis.  

Table 2. Comparisons of the mean RMSE values during the 5-fold cross-validation and for testing 

against holdout test and the R2 test score computed by six non-linear models, for the prediction of 

initial discharge capacity and end discharge capacity. 

 

ML techniques 

Initial Discharge Capacity (mAhg-1) 
50th Cycle End Discharge Capacity 

(mAhg-1) 

Cross-

validated 

RMSE mean 

RMSE on 

the test 

set 

R2 scores 

on the 

Test Set 

Cross-

validated 

RMSE mean 

RMSE on 

the test 

set 

R2 scores 

on the 

Test Set 

GBM 20.26 16.66 0.76 21.53 18.59 0.64 

RF 21.98 

 

17.00 0.59 21.86 19.25 0.42 

SVM 22.94 21.11 0.37 22.00 19.38 0.41 

KRR 20.65 17.28 0.58 21.77 19.13 0.43 

KNN 23.57 18.98 0.49 25.03 21.51 0.28 

ANN 34.15 22.39 0.29 33.93 24.58 0.05 



 

Figure 3.  Scatter plots of the experiment values against the predicted values for the prediction of 

initial discharge capacity and 50th cycle end discharge capacity computed by gradient boosting models 

[ie. (i) and (iii), respectively], and random forest [i.e. (ii) and (iv), respectively]. 

 

4.3. Variable Importance Studies 

 

The covariate variable importance can be estimated through the calculation of the Shapley values from 

the best performing models’ predictions of the hold-out test set. Sharpley values come from the 

coalitional game theory where each of the covariate variables is treated as the individual “player” and 

the values estimate the covariate variables’ contribution to the final prediction of a response variable 

instance. It is more desirable than the traditional permutation method for the easier interpretation of the 

variable correlation with the response variable. In this project, the treeSHAP (Shapley Additive 

exPlanations) method proposed by Lundberg et al33, is used to gain insight into the importance of all 



covariate variables and their feature effect on the prediction. Figure 4-a and b show the summarized 

Sharpley values for all 20 covariate variables during the predictions of IC and EC in the test-set through 

the GBM-IC model and the GBM-EC model, respectively. The Sharpley values measure the impact of 

that covariate variable on the model prediction with the more positive or negative value implying a larger 

overall influence. The y-axis of each graph gives the list of covariates in the order of their contribution 

to the overall prediction with the most important one being at the top and less important ones at the lower 

ranks.    

To begin with, the minimum cut-off voltage, maximum cut-off voltage and the current density are ranked 

within the top 10 important variables. These covariate variables are all the experimental conditions for 

cycling and thereby are expected to have great influences on the material’s discharging performance as 

a cathode.34 After excluding these experimental setting variables, one can see that the dopant content 

ratio and the lithium content ratio are being ranked as the third and the fifth most important features, 

respectively for the IC test-set prediction from Figure 4-a.  

A negative correlation is identified for the dopant content ratio and the IC as an increase in the 

corresponding Shapley values lead to the decrease in the IC feature values (shown in the sequence of red 

to blue). On the contrary, the Shapley values of lithium content ratio are shown to be positively correlated 

to the IC value, with the colour of the data plot shown to be blue to red. Figure 4-c shows the 3D plot of 

the dopant content ratio, Li content ratio correlating to the respective IC values for the entire dataset 

(train+ test). Firstly, two clusters of data can be identified with one characterized for having a lower Li 

content ratio with different dopant content ratios and the other having a higher Li content ratio and lower 

dopant content ratio. Observations can be made such that the IC values increase (Change from blue to 

green) as the dopant content ratio reduces in the first cluster. Moreover, the latter cluster has much higher 

average IC values than the first one which implies that a higher Li content is generally more desirable 

for obtaining a high IC value. This concludes that a higher Li content ratio (x > 1.20) coupled with a 



lower dopant content ratio (y < 0.02) can reach a higher IC. Further key insights can be also gained from 

Figure 4-a on that a doped NCM cathode material formula with lower dopant’s electronegativity 

(EN_M), the shorter lattice constant “a” (LC_a) and “c”(LC_c), smaller formula molar mass, less 

manganese content and more cobalt content, can lead to higher IC values.  

Figure 4-b shows that the dopant content ratio and its electronegativity value are ranked as the second 

and the fourth important for the predictions of EC. Electronegativity measures the dopant element’s 

ability to attract electron pairs toward itself. Dopant’s EN controls the bonding strength with the 

surrounding TMs and oxygen atoms and influences structural stability as well as the overall crystal 

structure density. During long cyclic charging and discharging performance, the overall crystal structure 

often becomes unstable which then triggers significant lattice collapses and leads to severe capacity 

fading.35 The involvement of dopant content can greatly improve the structure stability by forming 

stronger bonds whilst the strategy with doping with a small amount can ensure that no second material 

phase is formed and also the whole crystal structure is not modified significantly to disturb the Li-ion 

intercalation/deintercalation mechanisms. Both the content ratio and the electronegativity of dopant are 

demonstrated to be negatively correlated to the EC feature value as the colour of the trend are changing 

blue to red (left to right). Figure 4-d displays the 3D intercorrelation of the two dopant-related covariate 

variables with the respective EC in the whole dataset. A clear trend is observed for EC decreasing with 

the decrease in the dopant content ratio (from blue to red). In addition, high EC data are observed to be 

at the lower range between 1.25 and 1.5 for the dopant’s electronegativity for when the dopant content 

ratio is kept low (x > 0.02) and this corresponds to the magnesium(1.31) and zirconium (1.33) dopant in 

the collected dataset. From these phenomena, it is suggested that doping the atom with the 

electronegativity closer to 1.5 and with less amount can lead to higher EC values. Other observations can 

be made from Figure 4-b that a smaller material molar mass with lower manganese and higher nickel 

content can lead to a higher EC value for using doped NCM materials as the cathode, which shares a lot 



of similarities with the previous findings in the IC variable correlations.  Interestingly, the dopant ratio 

in the material formulas has shown to be the most influential factor as it is ranked the third and the second 

for IC and EC, respectively and this is much higher than other material properties such as the dopant’s 

electronegativity value and the lithium content ratio in the material formula. This suggests that the doping 

amount might play a much more important role in influencing the discharge capacities than other material 

systematic properties.     

To conclude, our results have demonstrated that the materials that both constitute high IC and EC share 

the common characteristics of high Li content ratio, small dopant ratio, small manganese ratio and being 

doped with atoms of low to middle range electronegativity and low electron affinity. In addition, it is 

also encouraged to design a doped NCM material with low formula molar mass as it is inversely related 

to both discharge capacities.  
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Figure 4. The summary plots for the feature contribution of twenty covariate variables in the test-set 

prediction of (a) IC generated based on GBM-IC model and (b) EC generated based on GBM-EC 

model. The y-axis indicates the feature importance of variables ranked in descending order. The x-

axis shows the scale of the Shapley values for every feature and indicates their contribution to the 

prediction. The figure legends are given as heat-map showing the values of the respective response 

feature variable. The 3D plots give insights into the intercorrelations of (c) IC with two most important 

variables (Li content ratio, dopant content ratio) and (d) EC with the two most important variables 

(Dopant content ratio and dopant’s electronegativity) in the whole dataset.  

 

4.4 .Overall Discussions 

 

Although some of the obtained correlations were known qualitatively, our model gives new insights by 

providing a quantitative prediction of IC and EC using these features for any new cathode materials that 

practitioners want to experiment on. These quantitative correlations were identified through the use of 

the Shapley value method developed from the coalitional game theory, of which based on the author’s 
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knowledge, our study was the first in the field to implement this theory into analysing the contribution 

of the doping features for the predictions of the LIB discharge capacities. 

In addition, the results of our research are novel in that it gives an estimation of the importance of each 

of the material property related features for each capacity property. For instance, despite that the higher 

lithium content is more favourable for achieving higher IC and EC as identified in the manuscript, its 

importance as given in Figure 4-a and Figure 4-b are shown to be much less than than the dopant 

content feature. This could of a suggestion for the experimentalist to consider the factor of optimal dopant 

ratio first before considering the lithium content ratio in the formula in the design of experiments.  

During the selection of covariate variables (input variables) for the machine learning model, two major 

criteria have been used to guide this process: i) the relevance of the feature towards reflecting on the 

material properties and the performance properties ii)  whether such data is widely reported or collectable. 

We selected the variables that can best describe the properties of synthesised materials to reflect wholly 

on the differences in synthesis methods, raw materials used across different research groups. For 

example, these properties include the crystal volume, crystal structure lattice constant of the materials 

can reflect on the conditions of the cathode materials as the host for the Li-ions. These properties are 

completely dependent on what the authors have reported in the publication and therefore we have not 

introduced any bias in the selection of these. In addition, we included the elemental properties related to 

the dopant atoms used in the studies from the NCM material dataset. As indicated in the initial results of 

the Pearson correlation coefficient matrix, no strong linear correlations have been identified for the pair 

of covariate and response variables of which indicate that the correlations between the selected covariates 

variables are not possibly explained by a simple linear model. This suggests that the selection process of 

the covariate variables in our project contain little bias.  

Simple correlations of the structure and property for NCM material could be observed if the investigating 

material system is fixed. For example, the researcher could be investigating the effects of one dopant 



with a different concentration on the discharge performance of the NCM material. On the other hand, 

The interpretation of a large dataset containing different doped NCM material systems is extremely hard 

to be achieved through simple human intuition. The novelty of our work focus on investigating a much 

wider range of doped NCM materials with 168 different compositions and 20 different dopant elements. 

We introduce this machine learning method to gain much broader insights into the overall variable 

correlations of different types of doped NCM materials to promote a much broader understanding of the 

doping effects on the NCM materials’ electrochemical performance and the relevant governing variables 

in each case.   

4.5.  Remaining Challenges and Future Improvements 

 

Data quality is essential for building highly predictive ML models. In this section, the data collection 

challenges for this work are highlighted and discussed along with the recommendation made for future 

potential research. Firstly, the doped NCM materials involved in this project all composite materials with 

the variations seen in the mixing ratio of the remaining two components, namely, conductive additive 

and binder. The lack of standardization in which conductive additive and binder to be used has led to a 

large variation in material usage across different research teams. The roles of these materials are to 

stabilize the overall cathode structure and to promote the Li-ion mobility within the structure which are 

considered essential for long cycle discharging. Furthermore, considering that the active material is the 

major component (75% ~ 90%) of this composite, the information of conductive additives and binder are 

assumed to be standardized for all collected data and further research could be done in investigating their 

effects. Secondly, the effects of materials’ microstructural properties (etc. particle sizes) and the 

morphological features on the material discharging properties have been extensively studied.36–40 Such 

information, however, is very difficult to collect owing to the reporting in various particle reporting scales 

(e.g. D10, D50, D90) as well as the general lack of conducting cathode surface study. For the 

electrochemical test, information such as the surface area of the cathode material and volume of the 



electrolyte is often misreported and since the elemental composition might be unevenly distributed in the 

whole of the cathode composite system, this could lead to unreasonable fluctuations in the capacity 

loading.    

Despite a great amount of efforts being devoted to establishing strict journal filters and selecting suitable 

journals (Figure 1) in this work, there are still rooms for improvement to be made as discussed above. 

To fully unleash the power of ML for the application of predicting the futuristic discharge performances 

of NCM cathode, the following points are worthy of considerations for future experimental and 

modelling research in NCM cathode: 

1. Fully report the cathode material information such as the surface compositions, primary and 

secondary particle size, pore size. 

2. For the full cell electrochemical test, report key information such as the surface area of cathode 

and anode materials.  

3. Conduct comparative studies on the changes in microstructure and crystal structures for the 

cathode material after long cycle discharging.  

4. For a small dataset (less than 500 rows), implement tree-based algorithms such as random forest 

and gradient boosting first before constructing an artificial neural network as it is shown to be 

time-consuming and less efficient in predicting capacities.   

5. Conclusions 

Analyzing the past experimental results is a crucial step to better understand the complex correlations of 

the NCM system properties and their discharging performance and additionally, the outcome of this 

project demonstrated the feasibility of using machine learning techniques in doing so. Six various non-

linear machine learning algorithms have been trained and validated with the manually curated 2197 

experimental results of 168 doped NCM materials. The models are built on using thirteen material 



physical properties and seven dopant’s elemental properties as covariate variables to predict the initial 

(IC) and 50th cycle (EC) discharge capacities of each material structure. First, the Pearson coefficient 

correlation study has indicated that no strong linear correlations are captured for any pairs of covariate 

variables and two response variables. In addition, gradient boosting models are proven to hold the best 

prediction power against the holdout test set for having the lowest root-mean-square error at 16.66 mAhg-

1, 18.59 mAhg-1 and highest R2 scores at 0.76, 0.64 during IC and EC prediction respectively. Further 

insights are gained into the governing material features for each discharging property. NCM materials 

with higher lithium content, smaller dopant content and doped with the lower electronegativity value 

atom seem to bring higher values in both IC and EC. From these promising results, we expect that these 

machine learning models can be used as a guide tool to estimate the discharging properties of any single 

doped NCM material and potentially discover new cathode materials with more advanced 

electrochemical properties.  
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Synopsis: 

Six machine learning methods are used to predict the initial and the 50th cycle discharge capacities (EC) 

for 168 doped lithium-nickel-manganese-cobalt-oxide systems based on the material structural and 

element properties. Among all models, gradient boosting machine has demonstrated the best prediction 

power in both tasks and the additional contributions of each input material variables for the capacity 

prediction are estimated.   
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