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Abstract

We show consistency in the mean integrated quadratic sense of an estimator of the autocorrelation operator p in
the autoregressive Hilbertian of order one model. Two main cases are considered, and we obtain upper bounds for the
corresponding rates. (©) 2001 Elsevier Science B.V. All rights reserved
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1. Introduction

Let H be a real and separable Hilbert space with norm ||-||. Let p be a bounded operator on H. We
suppose that Y 2 |[p"|l# < oo, where | -|« is the linear norm of operators in H. Let (&,) be a strong
Hilbertian white noise (SWN), that is a sequence of i.i.d. random variables with values in H satisfying

VneZ, FEe,=0, 0<E|el|=0*< .

We will consider in this paper the autoregressive Hilbertian of order one model, denoted by ARH(1). It is
the unique stationary solution of the equation

Xn:p(anl)"‘Sn- (1)

See Bosq (2000) for an extensive study of the ARH(1) model.
Such Hilbertian processes can theoretically and practically handle situations where continuous-time processes
are involved. Precisely, if (x;,# € R) is a continuous-time process with continuous paths, then

Xe(t)=Xp511, 0<1<0, keZ
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is a discrete L*([0,5])-valued process. Various applications have already been made. For example, Cavallini
et al. (1994) made forecasts of electricity consumption; and, by means of smoothing splines, Besse and Cardot
(1996) predicted traffic while Besse et al. (2000) made forecasts of the climatic variation called el nifo.

Several extensions of the ARH(1) model have been made. We may mention ARH( p) models (see Mourid,
1995), and ARH(1) models with exogenous variables (see Guillas, 2000). Moreover, Cardot et al. (1999)
studied a regression model with similar techniques.

Let us denote by C and D, respectively, the covariance and cross-covariance operator of the stationary
process X:

C(x) =E[(Xo,x)X0], D(x)=E[(Xo,x)X].

It can easily be shown that C is a symmetric positive and compact operator. Defining for all elements u,v in
H the operator u ® v by

u® v(x) = (u,x)v,x € H,

we then obtain the decomposition in a complete orthonormal basis (v;) of H:
oo
C= Z ijvj ® vj,
j=1
where (4;) is a decreasing sequence of positive numbers such that

oo

> i =E|X|* < .

j=1
The estimation of p is a rather intricate problem. Indeed, classical techniques such as maximum likelihood or
least squares are not accurate in this Hilbertian context. Bosq (1991) proposed an alternative technique, which
may be seen as a generalization of principal components regression in function spaces. It works as follows:
estimate the eigenvectors (v;) and the eigenvalues (/;) of the covariance operator and try to use the relation
D=pC in order to get p. C, and D, are the following respective unbiased estimators of C and D:

1 n 1 n—1

cnfn;X, ® X, Dy=-— ;XZWQH
and we denote by (v;,) and (4;,) the empirical eigenelements of C,. We would like to define an estimator
of p as p,=D,C, !, but C, is not invertible in general, so we have to make a projection on the space Hj,
spanned by the k, first eigenvectors of C,, obtaining this way an invertible operator in H;,. Naturally, the
choice of k, may not be easy and is usually done empirically or by a cross-validation procedure. In this paper,
we will give some ideas about this choice in relatively precise situations.

Bosq (2000) showed almost sure consistency of p,. Mas (1999) obtained results about limit in distribution
of p,. The purpose of this paper is to establish consistency of a slight modification of p, in the L? mode, that
is to say by considering E||p, , — pl|%, and to obtain rates of convergence when the eigenvectors are known
and when they are not.

While in the finite-dimensional case this rate of convergence may reach a 1/n-rate when the eigenvalues of
C are bounded by below (see Bosq, 2000, Section 8.1) we will find in the infinite-dimensional case where
the eigenvectors are known a n~!3-rate, and in the general case a n~"/*-rate.

In both cases, we will assume the existence of a sequence (a,) satisfying

0<p<l, 0<a,<Ply, neN.

The sequence (a,) plays the role of a regulation parameter which allows to control better the inverse of the
covariance operator. This idea is similar to the ridge regression technique in linear regression—see Hoerl and
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Kennard (1970)—that is, add a multiple of the identity to the covariance matrix in order to stabilize regression
estimates.
We also make use of the following assumptions:
(H;) X is a ARH(1) such that E||X,||* < cc.
(Hy) For all j, 4; > 0.
(H3) For all j, 4; > 4;41.

2. Known eigenvectors

The case considered here is the case where the eigenvectors v; of C are known.
Consider the following unbiased estimators of the (4;):

R 1<
Bw= T3 ()

n
i=1
For consistency of the i_,-,n, see Bosq (2000).

Consider now the following estimators of C:

kn kn
Cn = E ljnvj X vy, Cn,a = E max(ij,,,a,,)uj ® ;.
J=1 J=1

Let us define
A1
A k ke
Pna=T IDnCn,aTC 5

where 7 denotes the orthogonal projector over H , and

k,
T A
Cn,a = Z [max(ijm ay )]711&‘ ® ;.
=1

Our goal is to find an upper bound for E||p, , — p||%.

Lemma 1. Under (H,) and (Hy),
Co C1 c

s + 203 )

EHPAn,aipH%(f < 7’1)2 a2
“k,n

na2 nl,‘in
Proof. First, write the decomposition
5 iy & ok ke Jor b
Pna— Pp=("DyC, 7" — " p™") + (77 pm" — p).

n,a

Observe now that

kn
mprte(x) =D > " 4 vy, 1)y
j=1
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and let us set
ki
an,, = E /LjUj ® Uj,
=1

kn
cl= 27 @
hn = o U U
Jj=1

Accordingly,
Prag—P= (nk”DnC’,:;nk” - nk”DC;k,}nk") + (ﬂk”pnk" —p). 3)
The first term may be written as
nk”Dné,:Ll,nk” — 711‘"DC7;ﬂ1 b = nk”(D,,(A?,:al — DC;"1 )nk"
— 74 [(D, — DYCpa + D(Cpg — NI

mthn

— 7k (D, — D)C,py — DCopi(Cr — Coi )C M I,

hence
A1
||7[k”D,,Cn’ank” - 7rk”DC7;”l b i/;
a1 A1 B N
< 2D, — DISIIC, % + 2IDI%IC, o I1C 15 Cra = Cran I
<2a,?||D, — D% + 24, 2D Ca I 1C e — Crn %
because

A—1 _

I1Cralle <y
Thus, by (3),

E||pyq — Pl < 2124, °E|D, — D% + 24, *|D||%||Cy,

“NYENCua — Can %] + 2E|pn* — pl%. (4)

The second term of the right-hand side is easily bounded from above by 22,%” 41~ For the first term (Bosg,
2000, Theorem 4.8) gives

1
5lp, - Dl =0 1)

and clearly

1
Colly ==
|| whn 1L lﬁn
Moreover,
E|[Cha— Con %y < 2E(ICoa — Cul1e, se,) + 2E(ICy = Can |51, e,

+E(||én,a — ann Hz"'flén.a:én )

Now, we find an upper bound to P(én,a #+C,), knowing that the sequence (ijn) is not decreasing with respect
to j. Observe that

P(Choa#Ch)=P (a,, > min ij,,) )
J=1,...k,
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Let us define the discrete random variable [;, = arg min{ijn, j=1,....k,}. We then obtain

P(Cpra#Cp) = Play > iy »)
= P(/:L[kwn — l[k" <a,— /l]kn)

< P(utlkn,ﬂ - /lhn

= (l - ﬁ))"[k”)

< Py n— 21, | = (1= B)ia,),

SO

P(CA‘M #én) <P ( sup |)tj,, — Al = - ﬂ)ikn>
J

<P(ICy ~Clle = (1 = B)2,)
K
< N
n(l — ﬁ)z)%n
with a constant K > 0, applying the Chebychev inequality since
E|C, = C|% <2E|C, — Call% +2EIIC, = CII%

and

2

kn

A 2 A ”
E||Cy = Cally = E||Y [ — Anlty @ v
Jj=1 1%
R 2 N , |2 , 2
< E. Slupk ‘Ajn — Ajn| < 2E. s]uplC ‘)vjn — Al + 2E‘ slupk |Aj,, — 4
J=es n J=L., n J=Lekn

by Bosq (2000, Theorem 4.4, Corollary 4.5) so by Bosq (2000, Theorem 4.1)

A 1
£IC, - cl=o(;).

Note that
2
kn
[Cna — Cn”faﬁ = [max(4ju, an) — Ajnlv; @ vy < ai
Jj=1 %
and that
2
kn
EHCn — Cn/‘n f(/ =F Z [/‘{j,, — jvj]vj (9 %7 <E . slupk Mj’l — ij|2
j=1 » J=1s n

1
n

<6, - clz=o( ).
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Therefore we get, by (4)
& 2

Elp, —ol? < — + —
Hpn,a pHZ = na% + +

2
+ 225 - U
4 2 2 oo t-1

nk - ni a;

Theorem 1. Suppose that (H;) and (Hy) hold, and that there exist o >0, 0 <f <1, e<1/2 and y =1
such that

2

nS

<ap < ﬁ/lkna

lhen
EH‘( ‘(H : | " C(}' )'
n,a <z (1 2 )ik(l+/) Kn

Proof. It is an easy consequence of (2), using the inequalities oci}'('n /n® < a, and Ag 41 < Ay, O

Remark 1. The optimal choice of 4, is such that

c . 442y c
P=— —  je. MT=——"_ >0 5
& n(l—zs)/llzcﬂv Ko n(1=2¢) )

The rate of convergence in quadratic mean is then of order

2 = (1290642,

n

Remark 2. When ¢ =0 and in the most favorable case where y = 1, the rate of convergence is of order n~'/3.
Example 1. If ;= ar/, where a >0 and 0 <r < 1, by (5), we get
d
(4427)kn _
T — 2 d >0,
which yields
_|Ind —(1—-2¢)Inn
" (4+2y)Inr
Example 2. If /;=aj° where a > 0 and 6 > 1, by (9), we get
kn — Len(l—Zs)/(4+2y)6J’ e>0.
3. General case
We consider here the empirical eigenelements of C given by
Cn(vjn) = /ljnvjna
where A1, = ... = Ay 2 0= Ay41p = Ans2n = -, and (v;,) constitutes an orthonormal system of /. We denote

H x, the space spanned by vj,,...,0,,. We assume in this section that each eigensubspace associated to the
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eigenvectors /; is one dimensional. Consider the following empirical eigenvectors for identifiability reasons:

Uy = 8g0{0ju, V)0, J = 1.
Consider the following estimators of C:
n kan
C,= Z ljnujn ® Ujn, Cn,a = Z max(}ij an )vjn & Ujn-
j=1 j=1
Let us set
~ oy &L sk
Pra=7"D,C, 7",
where 7 denotes the orthogonal projector over H , and

kn
é;a = Z [max(/ljna ap )]_lvjn ® Ujn.-

j=1

We will show analogous results as in the previous section, using only slightly different techniques. We will

use in the sequel the following numbers defined under (Hj):

1
Akn: sup ————
oy A = A

cf. Bosq (2000, p. 107). Now we can give an upper bound for E|3, , — pl|%-

Lemma 2. Under (H;)—(H3)

~ < c Ay 3
Ellppg—plly < =5+ —5 + =5
1Pn.a I < na:  nlt o nA2a®  ni?
n ki kn kn

Proof. First, let us denote

Crin = Zivj®v],
Co = Zi b ;i

222

and write
~ ~ ~—1 ~ ~ ~ ~ _
pra— p=F"D,C, 7 —#"DC 7 + (#DC 7 — nDC b
+(n* nDCT[/(n —p)
The first term may be written as
~—1
#D,C, & — #DC 7" =7 (D, cn . — DCHR"
=#"[(D, — D)C, +D(C —C 1t
N ~—1 o—1 =
=7"[(Dy = D)C, 4 = DC, ((Cra = Con )C i) 17

(6)

(7)



288 S. Guillas | Statistics & Probability Letters 55 (2001) 281-291

hence

17D, C, o — #DC 7|

~—1

~—1
< 2Dy = DI%|IC, 0 lI% +2|ID

Coall1Ca I3 1 Cna = Cana I

n,a

2
<

é’Hén,a - an,,sz.

<24,2|D, = Dl + 24,2 |ID|I% || Cp)

Thus, by (7),

E||p,q — pl% < 2024, *E||Dy — DI +2a, 2| DI |1 Coiy 1% Ell Cra — Cata %]
+2E |7 DC 7 — nDC b % + 2B |7 DC Lt — pl . (8)
The third term of the right-hand side is easily bounded from above by 277 ;.
Let us now focus on the first term. Bosq (2000, Theorem 4.8) gives
1
£lp, - 0 =0( ).
n
and clearly
1
I1C 1% = =
%,
Moreover,
EHén,a = G 3? < 2E(||én,a - énllfflc}ﬂéé,,) + 2E(||én — Cahn f%’lc}_ﬁéc",,)

+E(||én,a — Cph H?flé,,,a:d,)'

Now, we find an upper bound for P(C‘n,a #C,). Fortunately, the sequence (4jn) is decreasing with respect
to j. Therefore,

P(én,a #én):P <an > Anllink ijn) s
=1,k
P(én,a #én) = P(an > j-kn_n)

= P(;“k,,,n - /lk,, <au — )”k,,)

< P(Vvk,,,n - )ukn

= (1 = p)ix,)
<P ( sup |4, — Al = (1 — ﬁ)/lkn>
=k

<SPG = Cllg = (1 = B)x,)

K
< -
n(l— By
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with a constant K > 0, applying the Chebychev inequality and knowing that

1
£lc, - ¢l =o(; ).

Note that

”én,a - én”iﬂ < ai

and that
2
kn ki
E|Cy = Cully =E|D At ®vu— ) 21 @1
=1 =1 P
2 2
n kn kn kn
S2E|Y At @ Yo — D Atn @ Unl| +2E D At @ un— Y45 @Y
j=1 j=1 P j=1 j=1 P
2 2
le kﬂ
<2E| D Gon = Ao @ || +2E || D 40 @ U — 1 @ 1))
j=1 P j=1 P
But
2
kn 1
E > Chn = ) @ v < Esupldyo = 4" < ENGy = CII :O<n) ,
j=1 P Jj=z1

by Bosq (2000, Theorem 4.1), and

_ ’ ’ / / /
Ujn @ U — U @ U = Uy @ Uy — Ujy @ Uy = (Vjn — vjn) ® vjn + U, ® (Vjn — vjn),

SO

2 2 2
k,

. I3 oy
E Z)“f(vf” Quy—1®v)|| <2E Z}“f(vf” —Uj,) @ V|| +2E Z AU, @ (U — V)
=1 P =1 P j=1 P

<4 sup 2 PElvn — vhll% < 4l4PPE- sup [ — vl
J=bes n J= 1 n

842
<4 Ml|27k”nE||Cn - CH?{Z’

by Bosq (2000, Lemma 4.3). Accordingly by Bosq (2000, Theorem 4.1),

kn /12
E|Y 4o ® v —y@u)|| =0 <nk> '

Jj=1 &
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For the second term of (8), we write

EHﬂ: "DC, Lihn nk"DC;"l 7t

< 2E||ﬁ ”DC;knlﬁkn —7 "DC l k,1||2

+2E|#DC,

n/fn

”DCW

f
< 2E|#DC) (7 — n*)|%

+2E||(75 — n* ")DC, Ll

L
Z

2

-
E|® v

\

with a constant L > 0. Finally, notice that by a similar calculus as previously,
2

kn /12
ok, kn
E|# — a5 =E E Uin ® U — Uiy @ V|| =0 R
j=1 P
Consequently, (8) entails
/ ! /A2 /A2
. c c A c3 Ay 2
Ellp, ., —pl> < =% + - AT . TR ¥)
1Pna = pliz < na:  nit  nila:  ni2 fatl
n kn k' k,

with positive constants ¢} . [

Theorem 2. Suppose that (H;)—(Hs) hold, and that there exist o >0, 0 < ff <1, e <1/2 and y =1 such
that

/
s
O(F < ay < ﬁikna
then
2

E|p 2 -0 A, o1}
1na — Pl = W + O(4,)-

Proof. It is an easy consequence of (6), using the inequalities amk /I’ < a, and Ag 41 < Ay, O

Remark 3. The optimal choice of /4, is such that
2

142 1 42
oA . ar2y _ €4,

= 1.€ = /
kn n(l_ze)ii+2y kn n(1=2¢)°

¢ > 0. %)

The rate of convergence in quadratic mean is then of order

1/(2+y)
2

;2 - Akn

ke T n(1=2¢) '

Example 3. If A, =ar/, where a >0 and 0 < r < 1, by (9), we get

/
r(6+2y)k,, — d d/ =0
n(]—23) ’
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which yields

b Ind’ — (1 —2¢)Inn
" (6+2y)Inr

The rate of convergence in quadratic mean is then of order

F—200=2e) Inn/(6+29) Inr _ o —(1=22)/(7+3)

Example 4. If /; =aj % where @ >0 and 6 > 1, a few calculations yield
A2~ MEZOTD M >0,
and by (9), we get

k,= Le/n(lf2s)/[26(v+3)+2] ], e >0

The rate of convergence in quadratic mean is then of order k%, i.e.

= 001=26)/[6G+3)+1]

Remark 4. When ¢ =0 and in the most favorable case where y =1, the rate of convergence in Example 4 is
of order n~%#+1) and therefore asymptotically of order n~ /4 as § — oo, which is the rate of convergence
in Example 3.
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