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Quantile Curve Estimation and Visualization
for Nonstationary Time Series

Dana DRAGHICESCU, Serge GUILLAS, and Wei Biao WU

There is an increasing interest in studying time-varying quantiles, particularly for
environmental processes. For instance, high pollution levels may cause severe respira-
tory problems, and large precipitation amounts can damage the environment, and have
negative impacts on the society. In this article we address the problem of quantile curve
estimation for a wide class of nonstationary and/or non-Gaussian processes. We discuss
several nonparametric quantile curve estimates, give asymptotic results, and propose a
data-driven procedure for the selection of smoothing parameters. This methodology
provides a statistically reliable and computationally efficient graphical tool that can be
used for the exploration and visualization of the behavior of time-varying quantiles
for nonstationary time series. A Monte Carlo simulation study and two applications to
ozone time series illustrate our method.

R codes with the algorithm for selection of smoothing parameters (described in
Section 3) are available in the online supplements.

Key Words: Nonstationary time series; Ozone; Quantile estimation; Quantile visual-
ization; Smoothing.

1. INTRODUCTION

Much research has been done in the past decades to extend quantile estimation methods
for independent and identically distributed (iid) data to more general processes. Quantiles
can be estimated by inverting estimates of the distribution function (Sheather and Marron
1990; Huang and Brill 1999), or directly via quantile regression (Koenker and Bassett
1978). For both approaches parametric and nonparametric methods are available. Inversion
methods allow inference on the whole evolution of the process, the drawback being the
computational time. Quantile estimates are useful when the problem of interest is to make
inference only on a specific quantile.
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For iid data parametric approaches were discussed by Koenker and Portnoy (1987) and
the references therein. Nonparametric estimation of the quantile function was also con-
sidered under certain smoothness assumptions. For example, Koenker, Pin, and Portnoy
(1994) and Cox (1983) used smoothing splines. Kernel smoothing was proposed, among
others, by Bhattacharya and Gangopadhyay (1990); Chaudhuri (1991); and Yu and Jones
(1998). Other approaches include rank nearest-neighbor methods (Yang 1981), penalized
likelihood (Cole and Green 1992), and neural networks (White 1990). A comprehensive
review of the applications of quantile regression and current research areas was given by
Yu, Lu, and Stander (2003) and Koenker (2005).

Recent studies considered the dependent case as well. Quantile processes were analyzed
by Mehra et al. (1992); Fotopoulos, Ahn, and Cho (1994); and Csörgö and Yu (1996).
Estimation of quantiles under strong mixing conditions was dealt with by Degenhardt et al.
(1996); Olsson and Rootzen (1996); Yu and Jones (1998); Mukherjee (1999); Cai (2002);
and Abberger and Heiler (2002). Wu (2005b) gave asymptotic representations of sample
quantiles for stationary processes.

For a random variable X with distribution function F, the αth quantile is defined as
qα(X) = inf{x :F(x) ≥ α}, 0 < α < 1. Given a sequence of random variables X1, . . . ,Xk ,
the αth sample quantile is defined as q̂α(X1, . . . ,Xk) = inf{x :Fk(x) ≥ α}, where Fk(x) =
k−1 ∑k

i=1 1Xi≤x is the empirical distribution function. When the observations are tem-
porally inhomogeneous, the marginal probability distribution (and thus the quantiles) of
the Xi ’s may vary with time as well. In this situation F(x; t) = P [X(t) ≤ x], assumed to
be a continuous function in the second argument, can be estimated more reliably by using
a weighted average of the above indicators. The dependence on time is implicitly carried
in the index i of each realization Xi, which is viewed as Xi = X(ti), with ti = i/k, i =
1, . . . , k, being rescaled time points. We can then estimate F by F̂ (x; t) = ∑k

i=1 wi1Xi≤x,∑k
i=1 wi = 1, the weights wi = w(ti; t) accounting for the temporal inhomogeneity. One

possibility for assigning these weights wi is via kernel smoothing, a technique that was
introduced by Rosenblatt (1956) for estimating density functions of iid data and widely
applied since, more recently for dependent data as well. A kernel estimator can be viewed
as the convolution of a smooth, known function (the kernel) with a rough empirical esti-
mator, to produce a smooth estimator. Well-known kernel estimators are the Nadaraya–
Watson (Nadaraya 1964; Watson 1964), Gasser–Müller (Gasser and Müller 1979), and
Priestley–Chao (Priestley and Chao 1972) kernel estimators. An example of a kernel esti-
mator for F(x; t) is given by (4.2) in Section 4. For details on kernel estimation we refer
to Wand and Jones (1995).

One way to generate dependent, nonstationary processes is via a time-varying trans-
formation G(t;Zt) of a stationary process Zt . By allowing the unknown transforma-
tion G to vary with time, the probability distribution function of the resulting process may
also change, and therefore the process need not be stationary. The nonstationary process
G(t;Zt) is then subordinated by a stationary process. Ghosh, Beran, and Innes (1997) stud-
ied asymptotic properties of a nonparametric conditional quantile estimator (obtained by
inverting a kernel estimator of the probability distribution function) in this setting, where
the underlying process Zt was assumed to be Gaussian and having long memory. A similar
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estimator was analyzed by Draghicescu and Ghosh (2003) for the case when the underly-
ing Gaussian process has short memory (under the general assumption that the correlations
are summable). A data-driven procedure for optimal bandwidth selection for these kernel
quantile estimators was proposed by Ghosh and Draghicescu (2002).

In this article we propose quantile estimation methods for a wide class of stochastic
processes, that allow for nonstationarity and/or non-Gaussianity. Section 2 introduces the
theoretical model. We consider time-varying transformations of stationary processes (with-
out assuming Gaussianity) and obtain asymptotic properties of a moving window quantile
curve estimator. An automatic, data-driven procedure for the selection of smoothing para-
meters is introduced in Section 3. Sections 4 and 5 present a simulation study, and applica-
tions to ground-level and stratospheric ozone data, respectively. A brief discussion is given
in Section 6.

2. QUANTILE CURVES OF NONSTATIONARY TIME SERIES

Quantile estimation for time series data involves the analysis of order statistics of depen-
dent random variables. It is unfortunately quite challenging to obtain asymptotic properties
of the order statistics if dependence is present. The assumption of independent order sta-
tistics is widely adopted in the literature; see, for example, Shorack and Wellner (1986).
Recently Wu (2005b) established Bahadur representations for order statistics of stationary
processes including linear processes and some widely used nonlinear processes.

Beside the dependence, the issue of nonstationarity further complicates the related
study. To the best of our knowledge, there is virtually no prior work in the literature con-
cerning asymptotic behavior of order statistics of nonstationary processes under general
dependence structures. The goal of this section is to establish an asymptotic theory for
quantile curve estimates of nonstationary time series. It is certainly necessary to impose
structural assumptions on the underlying processes. We introduce a model for nonstation-
ary processes which we call nearly stationary processes, based on which we shall present
an asymptotic theory.

Definition 1 (Nearly stationary processes): Let (εi)i∈Z be iid random variables, Zi =
(εi, εi−1, . . .), and G be a measurable function such that

Xi = Xi,n = G(i/n;Zi), 1 ≤ i ≤ n, (2.1)

are proper random variables. Let F(x; t) = P [G(t;Zi) ≤ x], x ∈ R, 0 ≤ t ≤ 1. We say that
the process (Xi)

n
i=1 is nearly stationary if there exists a constant L < ∞ such that for all

0 ≤ t, t ′ ≤ 1,

sup
x∈R

|F(x; t) − F(x; t ′)| ≤ L|t − t ′|. (2.2)

If the process (Xi)
n
i=1 is stationary, then F(x; t) = P(Xi ≤ x) = F(x). Since the latter

does not depend on t , one can let L = 0 in (2.2). Intuitively, the uniform Lipschitz conti-
nuity condition (2.2) implies that the distributions of Xi and Xj are close if |i/n − j/n| is
small, hence suggesting near stationarity.
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The class of nearly stationary processes is quite general. Wiener (1958) claimed that,
for every stationary ergodic process (Xi)i∈Z, there exist iid standard uniform(0, 1) random
variables εk , k ∈ Z, and a measurable function G such that the distributional equality

(Xi)i∈Z =D (G(Zi))i∈Z, where Zi = (εi, εi−1, . . .) (2.3)

holds (see also Kallianpur 1981; Priestley 1988; Tong 1990; Borkar 1993). In this sense, by
letting Zi be an infinite-dimensional shift (one-sided) process instead of a one-dimensional
process, one can allow for a more general class of processes. To account for nonstationarity
with slowly changing data-generating mechanisms, it is natural to let G(Zi) in (2.3) depend
on the time index i in the manner of (2.1), with F(·, ·) satisfying (2.2).

An important example of nearly stationary processes is the mean nonstationary model
Xi = m(i/n) + ei , where (ei)i∈Z are iid with distribution function Fe(x) = P(ei ≤ x) and
bounded density function fe = F ′

e. Then F(x; t) = Fe(x − m(t)). If m(·) is Lipschitz con-
tinuous, then (2.2) holds, and the process (Xi)

n
i=1 is nearly stationary. Fan and Yao (2003,

p. 226) argued that modeling the mean trend as m(i/n) is a simple way to capture the fea-
ture that the trend is much more slowly varying than the noise. Hall and Hart (1990) and
Johnstone and Silverman (1997) considered estimating mean trends of mean nonstation-
ary models with dependent errors. Another example is given by nonlinear heteroscedastic
processes. In Section 2.2 we show that such processes are nearly stationary.

The concept of near stationarity is closely related to locally stationary processes; see
Priestley (1965); Dahlhaus (1997); Adak (1998); Ombao et al. (2002); Giurcanu and
Spokoiny (2002). However, most work on locally stationary processes concerns covariance
based inference (such as the estimation of time-varying spectrum), whereas near station-
arity imposes conditions on the distribution function F instead of the second moments
[relation (2.2)], and could allow for infinite variances. Indeed, our primary goal is to esti-
mate quantiles, and we do not need the finite second-moment assumption.

As pointed out by Yu, Lu, and Stander (2003) and Koenker (2005), quantile regression
provides more detailed distributional information about the underlying statistical model
than the mean regression fits. In our setting, by estimating the quantile curves

qα(t) = inf{x :F(x; t) ≥ α}, 0 ≤ t ≤ 1, (2.4)

at different values of α ∈ (0,1), we can obtain detailed distributional information such as
changes in the variability of the process. Note that qα(t) is the αth quantile of G(t;Zi), 0 ≤
t ≤ 1. Condition (2.2) in the definition of nearly stationary processes suggests that qα(t)

is a continuous function of t . Hence, for a fixed t0 ∈ (0,1), we can use observations Xi

with i close to �nt0� to estimate qα(t0) via smoothing. Specifically, let bn be a bandwidth
sequence satisfying

bn → 0 and nbn → ∞. (2.5)

Let n1 = �n(t0 − bn)�, n2 = �n(t0 + bn)�, and m = n2 −n1 + 1. Based on Xi , n1 ≤ i ≤ n2,
we can estimate qα(t0) by the sample quantile

q̂α(t0) = q̂α

(
Xn1 , . . . ,Xn2

) = inf

{
x :

1

m

n2∑
i=n1

1Xi≤x ≥ α

}
. (2.6)



QUANTILE CURVE ESTIMATION AND VISUALIZATION 5

Theorem 1 provides a bound for the error q̂α(t0)−qα(t0), 0 < t0 < 1. For a random variable
ξ define the L2 norm ‖ξ‖ = [E(|ξ |2)]1/2. Recall Zi = (εi, εi−1, . . .). Define the projection
operator Pk , k ∈ Z, by

Pk· = E(·|Zk) − E(·|Zk−1). (2.7)

Theorem 1. Let (Xi)
n
i=1 be a nearly stationary process. Assume that

∞∑
j=1

ωj < ∞, where ωj = sup
0≤t≤1

sup
x∈R

∥∥P01G(t;Zj )≤x

∥∥. (2.8)

Further assume that f (x; t) = ∂F (x; t)/∂x, the density of G(t;Zj ), 0 ≤ t ≤ 1, is a con-
tinuous function in (x, t). Let t0 ∈ (0,1) and assume

f (qα(t0); t0) > 0. (2.9)

Then under (2.5),

q̂α(t0) − qα(t0) = OP

[
bn + (nbn)

−1/2]. (2.10)

Before we prove the theorem, we shall comment on conditions (2.8) and (2.9). By
the continuity of f (x; t), condition (2.9) implies that, for sufficiently small δ > 0,
min|t−t0|≤δ f (qα(t0); t) > 0. Hence, among Xn1 , . . . , Xn2 , there will be considerably many
data points that are contained in a neighborhood of qα(t0), thus ensuring the reliability of
the estimate q̂α(t0) in (2.6). Condition (2.8) is basically a short-range dependence assump-
tion. As argued by Wu (2005a), supx∈R ‖P01G(t;Zj )≤x‖ measures the contribution of ε0

in predicting G(t;Zj ). Therefore (2.8) implies that the cumulative contribution of ε0 in
predicting future values is finite, thus suggesting short-range dependence. Because ωj is
directly related to the data-generating mechanism of the underlying process, (2.8) is easy
to deal with. Sections 2.1 and 2.2 give applications of this result to nonstationary linear
processes and nonlinear heteroscedastic processes, respectively.

Proof of Theorem 1: Let θn = bn + (nbn)
−1/2, m = n2 − n1 + 1, and define

Sn(x) = 1

m

n2∑
i=n1

1Xi≤x and sn(x) = 1

m

n2∑
i=n1

F(x; i/n).

Note that 1Xi≤x − F(x; i/n) = ∑∞
k=0 Pi−k1Xi≤x and, for fixed k, Pi−k1Xi≤x , i =

n1, . . . , n2, are martingale differences. By the triangle inequality and the orthogonality
of martingale differences,

m‖Sn(x) − sn(x)‖ =
∥∥∥∥∥

n2∑
i=n1

∞∑
k=0

Pi−k1Xi≤x

∥∥∥∥∥
≤

∞∑
k=0

∥∥∥∥∥
n2∑

i=n1

Pi−k1Xi≤x

∥∥∥∥∥
=

∞∑
k=0

[
n2∑

i=n1

∥∥Pi−k1Xi≤x

∥∥2

]1/2

≤
∞∑

k=0

√
mωj .
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Thus Sn(x) − sn(x) = OP (m−1/2) = OP ((nbn)
−1/2). To show (2.10), let τn be a positive

sequence such that τn → ∞ and θnτn → 0. Let c∗ = f (qα(t0); t0) > 0. By the continuity
of f (x; t), we can choose δ > 0 such that min|t−t0|≤δ f (qα(t0); t) > c∗/2. By (2.2),

sn(qα(t0) + θnτn) − F(qα(t0); t0)
≥ F(qα(t0) + θnτn; t0) − F(qα(t0); t0)

− 1

m

n2∑
i=n1

∣∣F(qα(t0) + θnτn; i/n) − F(qα(t0) + θnτn; t0)
∣∣

≥ (c∗/2)θnτn − Lbn.

Because Sn(qα(t0) + θnτn) − sn(qα(t0) + θnτn) = OP (m−1/2) and F(qα(t0); t0) = α, we
have with probability approaching 1 that

Sn(qα(t0) + θnτn) − α = sn(qα(t0) + θnτn) + OP

(
m−1/2)

≥ (c∗/2)θnτn − Lbn + OP

(
m−1/2) > (c∗/3)θnτn.

Note that Sn(·) is nondecreasing, P [q̂α(t0) ≤ qα(t0) + θnτn] → 1. Similarly, P [q̂α(t0) ≥
qα(t0) − θnτn] → 1. Thus q̂α(t0) − qα(t0) = OP (θn) because the sequence τn → ∞ is
arbitrarily chosen. �

2.1 NEARLY STATIONARY LINEAR PROCESSES

Let aj (t), j ≥ 0, be real functions on [0,1] and let εk , k ∈ Z, be iid random variables
with distribution and density functions Fε and fε , respectively. Consider the nonstationary
process

Xi = Xi,n =
∞∑

j=0

aj (i/n)εi−j , i = 1, . . . , n. (2.11)

In the context of spectral analysis of locally stationary processes, such models were also
considered in Dahlhaus (1997). To apply Theorem 1 to estimate quantile curves, we need
to impose some regularity conditions on aj (·) and Fε .

Assume that supx∈R |xfε(x)| < ∞, E(|εj |p) < ∞, 1 ≤ p ≤ 2, and

∞∑
j=0

sup
t∈[0,1]

|aj (t)|p/2 < ∞. (2.12)

Further assume that aj (·) are Lipschitz continuous, namely, there exists lj < ∞ such that
|aj (t) − aj (t

′)| ≤ lj |t − t ′| holds for all t, t ′ ∈ [0,1], mint∈[0,1] |a0(t)| > 0, and

∞∑
j=0

lj < ∞. (2.13)

To show that (Xi)
n
i=1 is nearly stationary, let Yi(t) = ∑∞

j=1 aj (t)εi−j and G(t;Zi) =∑∞
j=0 aj (t)εi−j = a0(t)εi + Yi(t). Because a0(·) is a continuous function and

mint∈[0,1] |a0(t)| > 0, we have either mint∈[0,1] a0(t) > 0 or maxt∈[0,1] a0(t) < 0. With-
out loss of generality we assume the former. Let c0 = supx∈R(|x| + 1)fε(x) < ∞



QUANTILE CURVE ESTIMATION AND VISUALIZATION 7

and ρ(t, t ′) = a0(t)/a0(t
′). Elementary calculations show that |Fε(x) − Fε(xρ(t, t ′))| ≤

c0|1 − ρ(t, t ′)|/min(1, ρ(t, t ′)). Hence

|F(x; t) − F(x; t ′)| = ∣∣E[a0(t)εi + Yi(t) ≤ x|Zi−1] − E[a0(t
′)εi + Yi(t

′) ≤ x|Zi−1]
∣∣

≤ E
∣∣Fε

(
(x − Yi(t))/a0(t)

) − Fε

(
(x − Yi(t

′))/a0(t
′)
)∣∣

≤ E
∣∣Fε

(
(x − Yi(t))/a0(t)

) − Fε

(
(x − Yi(t))/a0(t

′)
)∣∣

+ E
∣∣Fε

(
(x − Yi(t))/a0(t

′)
) − Fε

(
(x − Yi(t

′))/a0(t
′)
)∣∣

≤ c0|1 − ρ(t, t ′)|/min(1, ρ(t, t ′)) + c0E|Yi(t) − Yi(t
′)|/|a0(t

′)|.
Because aj (·) are Lipschitz continuous and E|εk| < ∞, the above inequality and assump-
tion (2.13) yield condition (2.22), and thus the process Xi given by (2.11) is nearly station-
ary.

To check (2.8), let ε′
0, εk, k ∈ Z, be iid and let Z∗

i = (εi, εi−1, . . . , ε1, ε
′
0, ε−1, . . .) be a

coupled process of Zi with ε0 replaced by ε′
0. Let Y ∗

i (t) = Yi(t) − ai(t)ε0 + ai(t)ε
′
0. For

i ≥ 1, E[1G(t;Zi)≤x |Zi−1] = Fε((x − Yi(t))/a0(t)) and, by independence,

E
[
Fε

(
(x − Yi(t))/a0(t)

)|Z−1
] = E

[
Fε

(
(x − Y ∗

i (t))/a0(t)
)|Z−1

]
= E

[
Fε

(
(x − Y ∗

i (t))/a0(t)
)|Z0

]
.

Because min(1, |t |) ≤ |t |p/2, 1 ≤ p ≤ 2, and E(|εj |p) < ∞, (2.8) follows from (2.12) in
view of∥∥P01G(t;Zi)≤x

∥∥ = ∥∥P0Fε

(
(x − Yi(t))/a0(t)

)∥∥
= ∥∥E

[
Fε

(
(x − Yi(t))/a0(t)

) − Fε

(
(x − Y ∗

i (t))/a0(t)
)|Z0

]∥∥
≤ c0

∥∥min
[
2, |Yi(t) − Y ∗

i (t)|/|a0(t)|
]∥∥

≤ 2c0
∥∥[|Yi(t) − Y ∗

i (t)|/|a0(t)|
]p/2∥∥ = O

[|ai(t)|p/2]
via Jensen’s inequality. We emphasize that our conditions allow processes with infinite
variances. For example, if εi are iid standard symmetric-α-stable with characteristic func-
tion E(exp(

√−1uεi)) = exp(−|u|α) with 1 < α < 2, then E(ε2
i ) = ∞ and E(|εi |p) < ∞

for 0 < p < α (see Samorodnitsky and Taqqu 1994).

2.2 NONLINEAR HETEROSCEDASTIC PROCESSES

Let μ(t) and σ(t), t ∈ [0,1] be Lipschitz continuous functions and let εi, i ∈ Z, be iid
random variables with E(|εi |p) < ∞ for some p ≥ 1. Denote by Fε and fε the distri-
bution and density functions of εi , respectively. Recall Zi = (εi , εi−1, . . .). Consider the
heteroscedastic model

Xi = μ(i/n) + σ(i/n)ei, (2.14)

where (ei)i∈Z is a stationary process recursively defined by

ei = m(ei−1) + εi . (2.15)

Here m is a Lipschitz continuous function satisfying l0 = supa 
=b |m(a) − m(b)|/
|a − b| < 1. Then (ei) has a unique stationary distribution and, by iterating (2.15), ei can
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be expressed as ei = g(Zi) for some measurable function g. Recall Section 2.1 for Z∗
i .

By theorem 2 in Wu and Shao (2004), ‖g(Zi)‖p < ∞ and ‖g(Zi) − g(Z∗
i )‖p ≤ li0C

for some C > 0. Let G(t;Zi) = μ(t) + σ(t)g(Zi). Then E[1G(t;Zi)≤x |Zi−1] = Fε((x −
μ(t))/σ (t) − m(ei−1)) and, as in Section 2.1,∥∥P01G(t;Zi)≤x

∥∥
= ∥∥P0Fε

(
(x − μ(t))/σ (t) − m(ei−1)

)∥∥
= ∥∥E

[
Fε

(
(x − μ(t))/σ (t) − m(ei−1)

) − Fε

(
(x − μ(t))/σ (t) − m(e∗

i−1)
)|Z0

]∥∥
≤ c0

∥∥min[2,m(ei−1) − m(e∗
i−1)]

∥∥
≤ 2c0‖m(ei−1) − m(e∗

i−1)‖p/2
p = O

(
l
ip/2
0

)
.

Thus (2.8) is verified. To show (2.2), assume further that supx∈R |xfε(x)| < ∞ and
min0≤t≤1 σ(t) > 0. Let Fe and fe be the distribution and density functions of ei = g(Zi),
respectively. Because E(|ei |) < ∞ and E(|εi |) < ∞, we have E(|m(ei)|) < ∞ and

|xfe(x)| = |x|Efε(x − m(ei))

≤ E
{|x − m(ei)|fε(x − m(ei)) + |m(ei)|fε(x − m(ei))

}
< ∞.

Note that F(x; t) = Fe((x − μ(t))/σ (t)). By the Lipschitz continuity of μ(·) and σ(·),
elementary calculations show that (2.2) holds, and hence the process (Xi)

n
i=1 is also nearly

stationary.

2.3 IMPLEMENTATION ISSUES

As the proof of Theorem 1 indicates, the term bn in the bound of q̂α(t0)−qα(t0) in (2.10)
is due to the error of the approximation of nearly stationarity by stationarity, whereas the
other term (nbn)

−1/2 can be loosely interpreted as the variability of sample quantiles to
their theoretical counterparts. Relation (2.10) suggests the optimal bandwidth of the form

b
opt
n = cn−1/3, (2.16)

where c is a positive constant which may depend on the process (Xi)
n
i=1. Section 3 pro-

poses a data-driven scheme for the choice of bn.
Note that, as t changes from 0 to 1, q̂α(t, bn) := q̂α(X�n(t−bn)�, . . . ,X�n(t+bn)�) may not

be a continuous function of t, and thus an extra smoothing step is required. By using the
Nadaraya–Watson method, we propose the smoothed estimator

q̃α(t) =
∑n

i=1 K((t − i/n)/hn)q̂α(i/n, bn)∑n
i=1 K((t − i/n)/hn)

, (2.17)

where hn → 0 is another sequence of bandwidths, and the kernel K is a nonnegative prob-
ability density function. We also assume that nhn → ∞ to ensure that the estimated curves
are sufficiently smooth.

It is well known that the kernel estimator of a Lipschitz continuous function has the
mean squared error (MSE) of order O(n−2/3), and the optimal bandwidth is proportional
to n−1/3 (see, e.g., Gasser and Müller 1979). As the Monte Carlo simulation study in
Section 4 shows, the smoothing step (2.17) does not significantly contribute to the MSE;
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however, it can be used as a visual tool, as it provides nicer pictures. As another remark, the
kernel method could also deal with potential boundary problems. A common approach is
to use modified boundary kernels with asymmetric support. For examples of such kernels
and a detailed discussion we refer to Müller (1991).

3. SELECTION OF SMOOTHING PARAMETERS

The choice of smoothing parameters (bandwidths) plays a crucial role in nonparametric
inference. Commonly used criteria for bandwidth selection are based on cross-validation
or minimization of mean squared errors. For time-dependent data, the leave-one-out prin-
ciple used in cross-validation could alter the dependence structure, thus yielding unstable
estimates. The other criterion relies on the analytical expression of the mean squared error
of the nonparametric estimator, that is minimized with respect to the smoothing parameter
under certain regularity conditions. For quantile estimates, the mean squared error can be
expressed analytically in terms of the probability distribution function F . Because F is un-
known, this criterion would involve an estimator of F, together with its bias and variance.
Our purpose is to avoid the estimation of the whole probability distribution function, as it
adds error and inflates computational time considerably (see next section for an illustra-
tion).

In this section we propose an automatic, data-driven scheme for choosing smoothing
parameters in nonparametric quantile curve estimation. In practice, we cut up the observed
time series into blocks, assuming that the time series in each block are approximately
stationary, and carry out the two-step nonparametric procedure described in the previous
section. Selection of the number of blocks is equivalent to selection of the bandwidth bn in
Theorem 1. Let X1, . . . ,Xn be the observed time series, assumed to be nearly stationary.
Our algorithm involves splitting the series sequentially into (approximate) halves. The idea
is to select the biggest block size that will enable us to estimate accurately enough the
quantile evolution. The procedure is carried out in three steps:

1. Divide the series into blocks of approximate length 2i , i = p0, . . . ,m − 1, and com-
pute the sample quantile in each of these blocks (m ≥ 1 is such that 2m−1 < n ≤ 2m).
The choice of the initial p0 depends on the frequency with which the data are sam-
pled. A rule of thumb would be the minimum size for which the process seems to
behave with some stationarity, and such that it is not too small to be able to compute
quantiles. Moreover, p0 may depend on the level α of the quantile to be estimated.
Indeed, for α close to 0 or 1, it is intuitively clear that the starting minimal size
should be larger (e.g., 2p0 at least 16 for 0.1 ≤ α ≤ 0.9, and at least 32 for α > 0.9
or α < 0.1).

2. Compute the mean squared errors of the resulting estimates. These MSEi ’s are com-
puted as the sum of the squared differences between the sample quantiles and the
sample quantiles in the smallest blocks. The intuition is that the smallest blocks,
under the right assumptions, should give the most precise results. However, the vari-
ability is large with quantiles computed with small blocks, making it necessary to
introduce the penalty in the next step.
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3. Choose the block size that minimizes the criterion (1 + λ2i )MSEi for the largest
number of smoothing parameters λ, where the sequence of λ’s is of length 10 and
ranging from 0.01 to 0.1. The penalization for the number of parameters is aimed
to avoid oversmoothing. In this way, a small reduction of the mean squared error
with two times more parameters (i.e., with a block size divided by 2) does not imply
a choice of a smaller block size. This penalization requires only the choice of a
quantile level, and it is fast on both simulations and real data, as shown in the sequel.

A step further would be to extend the piecewise constant quantile estimator based on
the above scheme to a piecewise linear estimator. The heuristic argument is that we use a
first-order approximation of the true quantile curve locally. Even though this can be done
easily in practice by locally using quantile regression (see next section), the theoretical
derivations become cumbersome.

Another way to obtain quantile curve estimates is to use a rolling window approach,
namely to consider at each time point the sample quantile over a moving window centered
at the respective time point. Intuitively, the moving window approach would yield better
estimates, because the nonstationarity could arise at irregular time points. However, the
computing time, although still reasonable, is inflated. The problem then is how to choose
the optimal window width. Theoretically this can be done by minimizing the mean squared
error of the resulting quantile estimate, which is expressed analytically in terms of the prob-
ability distribution function. As mentioned previously, because we do not want to involve
estimation of the whole probability distribution function, we need to get such a bandwidth
automatically (directly from the data). The above scheme can be used in this setting as
well. Thus the optimal bandwidth for the moving window approach can be computed by
dividing the length of the time series by the optimal number of blocks. As explained in
Section 2, we further smooth this piecewise constant quantile curve by using the kernel
method; see (2.17).

To summarize, the automatic procedure for bandwidth selection described in this sec-
tion can be used to produce piecewise constant (PC), piecewise linear (PL), and mov-
ing window (MW) quantile curve estimates, which can be further smoothed via the ker-
nel method. The PC estimators are generated by taking the sample quantiles (constant)
in each block. For the PL estimators, the linear quantiles are taken in each block in-
stead of the sample quantiles. Linear quantiles are constructed via quantile regression
(Koenker and Bassett 1978), a method that has been implemented in R (package quantreg,
http://www.econ.uiuc.edu/roger/research/rq/rq.html). In contrast to these two approaches,
where the blocks (windows) are fixed, the estimates given by (2.6) are obtained by taking
the sample quantiles in moving windows, and therefore referred to as MW estimates. By
using the kernel method [relation (2.17)], we get the smoothed versions of these estimates,
PCS, PLS, and MWS, respectively.

4. MONTE CARLO SIMULATIONS

The following simulation study illustrates the behavior of the proposed quantile curve
estimates for small and moderate sample sizes. We compare various quantile estimation

http://www.econ.uiuc.edu/roger/research/rq/rq.html
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Figure 1. One realization, true median (solid line) and true 0.9 quantile (dashed line), for the simulated process
(4.1), n = 1024.

methods, and show that the smoothing step improves the mean squared error. We simulated
nonstationary non-Gaussian time series

Xt = μ(t/n) + σ(t/n) · (Z2
t − 1), (4.1)

where Zt is standard normal. We used μ(t/n) = cos(7t/n) + sin(17t/n) for 1/4 < t/n <

3/4, and its linear extension by continuity on [0,1], μ(0) = −1.07,μ(1) = 0.69, and
σ(t/n) = min(t/n,0.5); see Figure 1. Process (4.1) satisfies conditions in Section 2.2.

Table 1 displays the integrated mean squared errors IMSE(q̃α) = ∫ 1
0 MSE(q̃α(t)) dt for

two choices of the quantile level α = 0.5, 0.9, and for the six direct quantile estimators
described at the end of Section 3. We generated 500 simulated processes (4.1) in each
case.

Before discussing the performance of these estimators, we comment on the advan-
tages of the direct approach versus a plug-in method [involving inverting an estimator
of F(x; t)]. As mentioned in the Introduction, for processes that change smoothly with
time, F(x; t) can be estimated by using different weights for the indicator variables 1Xi≤x .
Consider, for example, the Nadaraya–Watson estimate

F̂ (x; t) =
∑n

i=1 K((t − i/n)/dn)1Xi≤x∑n
i=1 K((t − i/n)/dn)

, (4.2)

where K is a kernel, and dn is a sequence of bandwidths such that dn → 0 and ndn → 0 as
n → ∞. Then construct the plug-in quantile estimator

q̆α(t) = inf{x : F̂ (x; t) ≥ α}. (4.3)
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Table 1. Integrated mean squared errors (multiplied by 103 and rounded) of 0.5 and 0.9 quantile estimates for
simulated nearly stationary time series (4.1): piecewise constant (PC), piecewise constant, smoothed
(PCS), piecewise linear (PL), piecewise linear, smoothed (PLS), moving window (MW), moving win-
dow, smoothed (MWS). The moving window is applied for two kernels: rectangular (MWr, MWSr),
and Gaussian (MWg, MWSg).

α = 0.5 α = 0.9

n 128 256 512 1024 128 256 512 1024

PC 163 153 148 146 335 269 248 229
PCS 137 132 128 127 282 221 203 187
PL 140 146 163 170 282 221 203 187
PLS 131 140 159 167 230 187 170 169
MWr 79 77 75 73 200 167 137 129
MWSr 81 77 75 73 185 161 136 129
MWg 84 75 75 73 210 155 137 127
MWSg 87 76 75 73 194 149 135 127

A major drawback of this approach is the fact that taking the above infimum adds nu-
merical errors and increases computational time. We applied this method to the same 500
simulated processes for sample size n = 128. We used the truncated Gaussian kernel for K ,
and selected dn by using the algorithm in Ghosh and Draghicescu (2002). The integrated
mean squared errors of q̆α (multiplied by 103 and rounded, to be compared with the val-
ues in Table 1) were 206 for the median estimator and 470 for the 0.9 quantile estimator,
respectively. The infimum was taken over 200 values of x, and the computational time for
each simulation was about one minute (as opposed to the direct estimates, for which all the
500 runs took less than one minute). It is thus clear that the direct approach for estimating
time-varying quantiles is not only significantly faster, but more accurate as well.

With regard to the behavior of the proposed direct quantile estimates, Table 1 shows
that the moving window approach does much better than the two other techniques (piece-
wise constant and piecewise linear). Moreover, the piecewise constant estimate does better
than the piecewise linear one for relatively large sample sizes and the median, because the
piecewise linear estimate introduces the unnecessary complexity of linearly varying quan-
tiles when the sample quantiles are nearly constant. Note that for high quantiles and the
same sample sizes, the piecewise linear estimator does better in this example (and possibly
in many real examples), as these quantiles tend to vary more than the median. However,
the piecewise constant and piecewise linear estimates evenly divide the sample, whereas
the moving window has the ability to adjust to complex nonstationarities (such as season-
ality, or heteroscedasticity with an irregular frequency). Furthermore, it can be seen that
smoothing improves the mean squared error in nearly all cases, with better results for the
0.9 quantiles. Indeed, there is more variation in the higher quantiles and therefore it is
more difficult to find good estimates with small sample sizes. For the 0.5 and 0.9 quan-
tile estimates based on the smoothed moving window with a rectangular kernel, when the
sample sizes increase from 128 to 1024, the error goes from 81 to 73 and from 185 to
129, respectively. The other methods exhibit the same behavior. This shows that a larger
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sample improves the estimation of higher quantiles much more than for the median. The
best estimates are the ones produced by the moving window approach.

5. APPLICATIONS

There is a growing demand for new flexible and informative statistical tools (such as
summaries and graphs) for the exploration of large datasets with complex structures. The
methodology proposed in this article has a wide area of applicability in many fields, such
as environmental science, atmospheric sciences, ecology, and epidemiology. For instance,
in the study of climatic data, as pointed out by Vinnikov and Robock (2002), an important
but difficult problem is to determine whether the climate is getting more or less variable.
Vinnikov and Robock (2002) considered moments in residuals to test changes in variabil-
ity. Here, the quantile curve estimation procedure previously described provides a very
natural way to assess the variability in time series, by presenting detailed distributional
information. Our method can be used as a graphical and visualization tool in time series
analysis, having the advantages of being flexible, fast, accurate, and informative. Quantile
estimates can also be further used in modeling spatial-temporal processes.

The next applications to ground-level and stratospheric ozone illustrate the potential of
our approach. The smooth physical evolution of these processes makes nearly stationarity
a natural working assumption. It is known that high ozone values have negative effects, and
therefore modeling higher quantiles is very important. Moreover, our method can be used
to describe ozone dispersion, by modeling measures of variability such as the interquartile
range (IQR). The IQR is defined as the difference between the 0.75 quantile and the 0.25
quantile, and the IQR curve is defined as IQR(t) = q0.75(t) − q0.25(t). In all examples
below we use the moving window, smoothed approach, with a Gaussian kernel.

5.1 GROUND-LEVEL OZONE

In this application we consider the time series of daily maximum eight-hour averages of
ground-level ozone mixing ratios at five monitoring sites in metropolitan Chicago (source:
Illinois EPA). We used records of hourly averages of ozone in parts per billion (ppb).
For each day we computed the 16 possible eight-hour averages (starting at 0:00, 1:00, . . . ,

15:00 for eight consecutive hours), and retained the maximum of these eight-hour averages.
This measure is part of the National Air Quality Standard (NAAQS) for ground-level ozone
issued by the United States Environmental Protection Agency (EPA). Typical questions of
interest related to air pollution data concern understanding the behavior of high values, and
also the space–time variability of the underlying process. Our method provides an infor-
mative exploratory tool, that may lead to building relevant statistical models, to capture the
observed space–time dependencies. As an illustration, Figure 2 displays the 0.9 quantile
curve estimates, and the IQR curve estimates for the aforementioned time series. We show
the moving window, smoothed curve estimates for the period June 1–September 6, 1998.
Even though Chicago had met the EPA ozone standards during this period, it is interesting
to note the differences in these curves.
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Figure 2. Locations of five air pollution monitors in metropolitan Chicago (top); moving window, smoothed 0.9
quantile curve estimators for daily maximum eight-hour averages of ground-level ozone at these sites (middle);
and moving window, smoothed estimators of interquartile range curves (bottom), period June 1–September 6,
1998.
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For example, the monitoring sites 2 and 3 on the shore of Lake Michigan are 5.74 km
apart, but display different patterns in the behavior of higher ozone (as measured by the
0.9 quantile), with a maximum difference of about 20 ppb, whereas the sites 4 and 5 are
26.67 km apart and show a similar pattern, with a shift of about 5 ppb in the 0.9 quantile
curves. With regard to the ozone variability (measured by the IQR curves), whereas all
sites show increased values in the second half of the period, site 1 in South East Chicago
displays a completely different pattern in the first half of the period, with more than 10 ppb
increase compared to the other monitors. These plots may indicate temporal nonstationarity
and spatial-temporal interactions.

5.2 STRATOSPHERIC OZONE

An important environmental concern of the past three decades is stratospheric ozone
depletion. The Total Ozone Mapping Spectrometer (TOMS) Nimbus 7 satellite (http://
toms.gsfc.nasa.gov/eptoms/ep.html) provides daily total column ozone measurements on
a 180 by 288 latitude by longitude grid. Figure 3 shows the observations overpassing a
1◦ by 1.25◦ latitude by longitude cell centered at 45.5◦N, 0.625◦W, covering the period
July 17, 1990–May 5, 1993. This location was chosen for illustration purposes because
midlatitude variations are the most relevant to study ozone recovery (Guillas et al. 2004).
The estimated 0.1, 0.5, and 0.9 quantile curves are also displayed. This time period is
of great interest because of the Mount Pinatubo eruption in June 1991 (Robock 2002).

Figure 3. Daily measurements of total column ozone at 45.5◦N latitude, 0.625◦W longitude. Total Ozone Map-
ping Spectrometer, Nimbus 7 Satellite, July 17, 1990–May 5, 1993: moving window, smoothed median (solid
line), 0.1 and 0.9 quantile estimates (dashed lines).

http://toms.gsfc.nasa.gov/eptoms/ep.html
http://toms.gsfc.nasa.gov/eptoms/ep.html
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Figure 4. Moving window, smoothed IQR curve estimates for latitude 45.5◦N, longitudes ranging from
−179.375◦ to 145.625◦ .

It appears that the annual variability is very well captured. Figure 4 displays the moving
window, smoothed IQR curve estimates for six longitudes ranging from −179.375◦ to
145.625◦, at latitude 45.5◦N. Before the Mount Pinatubo eruption, starting in June 1991,
the variability measured through the IQR at different longitudes has a large spread, with
peak values in the 50–75 Dobson Units (DU) interval. After the eruption, the spread of the
IQRs for all of these longitudes decreases and the IQRs are generally lower. This illustrates
the overall dampening effect of Mount Pinatubo’s eruption across the globe.

Instead of studying a particular location at a specific latitude, geophysicists focus on
a zonal mean, which is usually an average over a latitude band. We can take advantage
of all the data in a specific latitude band to get insight on the uncertainty in our quantile
curve estimates. Thus, we compute 288 quantile curve estimates and rank them according
to a functional criterion, the so-called functional depth introduced in Fraiman and Muniz
(2001). Consider the univariate depth D(x) = 1 − |1/2 − F(x)|. If F is the cumulative
distribution function of a real random variable and x is a data point, the depth measures
the nearness to the median med, for which we have D(med) = 1. Consider functional data
Y(t), t ∈ [0,1] and a sample Y1(t), . . . , Yp(t) having the same distribution as Y(t). For
each sample point x, let Fp,t (x) = p−1 ∑p

j=1 1Yj (t)≤x and Dp,t (x) = 1 − |1/2 − Fp,t (x)|.
As in Fraiman and Muniz (2001), we classify our curves according to the integrated index
I (Y ) = ∫ 1

0 Dp,t (Y (t)) dt. The index I globally measures the closeness to the empirical
functional median, for which I attains its maximum. We estimate the median curves q̃0.5(t)

for these p = 288 time series. In Figure 5 we display the functional median of these esti-
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Figure 5. Spread of the median curve estimate for daily measurements of total column ozone at 45.5◦N latitude
and 288 locations ranging from 179.375◦W to 179.375◦E longitude, July 17, 1990–May 5, 1993. Solid line
represents the functional median of the 288 curves. Dashed lines are the 10% least close to the median ordered
curves according to the functional depth criterion.

mated median curves (bold line) together with the last 10% of the ordered median curves
(dashed).

The functional median can be interpreted as the most representative pattern of the tem-
poral changes in the daily total column ozone for this particular latitude band and time pe-
riod. It can be also seen that for this particularly downward trend in total column ozone, at
some longitudes total column ozone underwent a severe depletion after Mount Pinatubo’s
eruption, that is not shown in the most representative median curve. This means that ozone
depletion occurred with drastically different impacts at different latitudes. Note that for
changes associated with less localized events than volcanic eruption (such as halocarbons
emissions), one may expect less variability across longitude. Our technique could be ap-
plied to detect other geographically dependent phenomena.

6. DISCUSSION

We introduced several quantile curve estimation methods for a very general class
of stochastic processes. In particular we allow for nonstationarity, non-Gaussianity, and
processes that may have infinite second moments. We assumed that the observed time se-
ries has a nearly stationary structure and developed a data-driven algorithm for the choice
of the optimal block size. Our procedure proves to be fast in both simulations and ap-
plications. Another possibility for the choice of smoothing parameters would be to use
resampling methods to estimate MSE(q̂α(t)). For nearly stationary time series new meth-
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ods need to be developed, for example in the spirit of Künsch (1989). Alternatively, one
could focus on the choice of the optimal c in (2.16), for example by using the “second gen-
eration” methods discussed by Jones, Marron, and Sheather (1996), such as plug-in and
smoothed bootstrap techniques. The performance of the smoothed estimators could be im-
proved by considering time-varying bandwidths hn or by using modified boundary kernels
in (2.17). Future work will also include the extension of the concept of near stationarity to
spatial and space–time processes. From the applied point of view, it would be interesting to
examine the long-term trends of stratospheric ozone based on the direct median estimator.
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