
Quantifying sources of uncertainty in
projections of future climate
Paul Northrop and Richard Chandler
Department of Statistical Science, University College London
p.northrop@ucl.ac.uk, r.chandler@ucl.ac.uk

Abstract
Projections of future climate are often based on General Circulation Models (GCMs), determinis-
tic models of the earth’s atmosphere and oceans. Projections can vary greatly between GCMs,
the greenhouse gas emissions scenario envisaged for the future, and model simulations based
on different initial conditions. See Chandler et al. (2010) for background information. We use
a Bayesian analysis of a two-way random effects ANOVA model to assess which of these three
sources of uncertainty are of greatest importance, and the extent to which this depends on climate
variable, region of the world and time horizon. Given that projections are only available under 3
scenarios a weakly-informative half-Cauchy prior distribution is used to downweight the posterior
probability of physically implausible values.

Sources of climate uncertainty

Is variability in a projected climate variable due mainly to choice of
• General Circulaton Model GCM (climate simulator),
• future greenhouse gas emissions scenario, or
• GCM run (simulation number)?
. . . or a mixture of these?
. . . does it matter how far into the future we want to look?
. . . does the climate variable matter?
. . . does the region of the world matter?

21st century climate projections

We use data from the World Climate Research Programme’s (WCRP’s) Coupled Model Intercom-
parison Project phase 3 (CMIP3) multi-model dataset (Meehl et al., 2007).

scenario
GCM number GCM name A1B A2 B1
1 bccr:bcm2:0 1 1 1
2 cccma:cgcm3:1 5 5 5
3 cccma:cgcm3:1:t63 1 0 1
4 cnrm:cm3 1 1 1
5 csiro:mk3:0 1 1 1
6 csiro:mk3:5 1 1 1
7 gfdl:cm2:0 1 1 1
8 gfdl:cm2:1 1 1 1
9 giss:aom 2 0 2
10 giss:model:e:h 3 0 0
11 giss:model:e:r 5 1 1
12 iap:fgoals1:0:g 3 0 3
13 ingv:echam4 1 1 0
14 inmcm3:0 1 1 1
15 ipsl:cm4 1 1 1
16 miroc3:2:hires 1 0 1
17 miroc3:2:medres 3 3 3
18 miub:echo:g 3 3 3
19 mpi:echam5 4 3 3
20 mri:cgcm2:3:2a 5 5 5
21 ncar:ccsm3:0 7 5 8
22 ncar:pcm1 4 4 4
23 ukmo:hadcm3 1 1 1
24 ukmo:hadgem1 1 1 0

total 57 40 48

Numbers of runs for each combination of 24 GCMs and
three socio-economic scenarios (A1B, A2, B1) for the cli-
mate experiments in the CMIP3 archive.

• No design (“ensemble of opportunity”);
• Lack of balance.
• Zero cells.
• Scenario has only 3 levels.
• Each run takes approx. 1 month.

Simple indices of climate change

1. 2020-2049 mean − 1980-1999 mean.
2. 2069-2098 mean − 1980-1999 mean.
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Global temperature change: 2020–2049
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Global temperature change: 2068–2098

Related work
Yip et al. (2011) create balance, by using data only from the 7 GCMs that have multiple for each
scenario, followed by a classical ANOVA decomposition of variability. We seek to avoid discarding
data using a Bayesian analysis of a two-way random effects ANOVA model.

A two-way random effects ANOVA

Let Yijk = measure of change for GCM i, scenario j and run k.

Yijk = µ + αi + βj + γij + εijk,

µ overall mean change

αi adjustment for GCM i αi
i.i.d.∼ N

(
0, σ2

G

)
βj adjustment for scenario j βj

i.i.d.∼ N
(
0, σ2

S

)
γij scenario-specific adjustment for GCM i γij

i.i.d.∼ N
(
0, σ2

GS

)
εijk residual effect of variability over runs εijk

i.i.d.∼ N
(
0, σ2

R

)
We assume that all random variables are independent.

View the GCMs and scenarios as random samples from notional super-populations of GCMs and
scenarios.

Inference

• Little information about variability over scenarios σS (only 3 levels). Data highly unbalanced.
• REML tends to underestimate σS; σ̂S = 0 is common (Gilmour and Goos, 2009).
• Bayesian inference with a weakly-informative prior for σS (Gelman, 2006):

–N(0, 106) prior for µ; independent half-Cauchy(A) priors for the super-population SDs:

π(σ) =
2

πA

(
1 +

σ2

A2

)−1

, σ > 0;

–A chosen to downweight unrealistic values of σS, e.g. for 2020–2049 consider 4σS = 10◦C to
be very unlikely.

– Gelman (2006) argues against an improper uniform prior for σS (posterior unrealistically
broad) and inverse-gamma(ε, ε) (posterior sensitive to ε).

– Also look at finite-population SDs sG, sS, sGS and sR, e.g. s2
G = (1/23)

∑24
i=1 (αi − ᾱ)2.

– Use R package arm (Gelman et al., 2010) (calls winBUGS) to perform MCMC.

Global temperature change
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2020–2049. Prior densities and posterior samples.
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• Choice of GCM matters more than choice of GCM run;
• Choice of scenario matters more later in the century;
• Posterior median of σS increases (slowly) with A (and posterior becomes increasingly heavy-

tailed). Other posteriors are insensitive to A.

Regional temperature change 2020–2049
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Posterior medians and 50% CIs of super-population SDs.

• Choice of GCM matter most;
• Choice of GCM run matters more than

scenario in some (northern) regions;
• Large uncertainty about variability σS of

scenario super-population;
• (As expected) scenario matters more for

the late-century index (plot not shown).

Regional precipitation change (% change from 1980–1999 mean) 2020–2049
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Posterior medians and 50% CIs of super-population SDs.

• Choice of GCM run matters more than for
temperature. . . . and more than choice of
GCM in Alaska;

• In many regions choice of scenario is rel-
atively unimportant (even in late-century
plot, not shown).

Remarks

1. Climate uncertainty depends on: climate variable; region; time horizon.
2. Scope to improve design of climate experiments.
3. Bayesian analysis copes with non-orthogonal design and a factor with a small number of levels.
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