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An oil platform
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Want to avoid this . . .
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Outline

• Significant wave height (HS) datasets; extrapolation

• Threshold-based extreme value (EV) modelling

• Selection of a single threshold

• Averaging inferences over many thresholds

• Predictive inferences using Bayesian computation: the role
of EV priors
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Hindcast storm peak sig. wave heights
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Extrapolation

A scenario for the Gulf of Mexico (105 years of data):

What level of storm peak HS is exceeded with
probability 0.05 in a 21-year period?

Assuming stationarity and independence between years
• level occurs approx. once every 20 × 21 = 420 years
• 105 years: a sample of size 5 of quantity of interest

(21-year maxima)
• w. p. 0.955 ≈ 0.77 this level is not attained in 105 years

We need to protect against conditions that are (probably) more
severe than on record
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Threshold-based EV models

. . . under very idealised assumptions, i.e.

X1,X2, . . . ,Xn
indep∼ with common CDF H

• set a threshold u
• model motivated by considering the possible limiting

distributions of (scaled) excesses of u as u →∞

(Xi − u) | Xi > u ∼.. GP(σu, ξ)

• Let pu = P(Xi > u) and Nu be the number of excesses of u

Nu ∼ binomial(n,pu)

Need u to be large enough that the bin-GP model(pu, σu, ξ)
might be useful
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GP(1,ξ) densities
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Hindcast storm peak sig. wave heights
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Threshold excesses
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Threshold diagnostics
Bias-variance trade-off :
• u too low : GP model inappropriate→ bias
• u too high : fewer excesses→ unnecessary imprecision

Review paper: Scarrott & MacDonald (2012)
• Estimates of ξ stable above some level of threshold?

[Drees et al. (2000), Wadsworth and Tawn (2012), Northrop and
Coleman (2014)]

• Goodness-of-fit of GP distribution
[Davison and Smith (1990), Dupuis (1998)]

• Minimize asymptotic MSE of estimates of ξ or extreme
quantiles under assumptions about H
[Ferreira, et al. (2003), Beirlant (2004)]

• Extend EV model below u and make u a model parameter
[Wadsworth and Tawn (2012), MacDonald et al. (2011)]
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Threshold stability plots
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Aims

• address bias-variance trade-off based on out-of-sample
prediction (cross-validation)

• . . . using the bin-GP model

• simple graphical diagnostic for single threshold selection

• account for uncertainty in threshold

• develop method than can be generalized: e.g. to
multivariate (MV) extremes
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Extrapolation, threshold level and priors

• physical considerations: Hs has a finite upper limit
• unless ξ > 0 is ruled out there is a limit to how far we can

extrapolate with realism

Types of prior
• ‘informative’, ‘full subjective’
• ‘regularizing’,‘weakly-informative’ (Gelman: “Keeping

things unridiculous”)
• formal rules: ‘weakly-informative’ (O’Hagan), ‘reference’

• expecting data to dominate prior
• may not be the case for high u
• high u → large uncertainty about ξ → high posterior

probability on large positive ξ → greater chance of
unrealistic inferences
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Training threshold u
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Validation threshold v >>> u

●

●

●●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

1 100 200 300 400 500 600 628

2

4

6

8

10

observation number

x

u

v

CV 13/31



Leave-one-out cross-validation
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Infer θ using x−62
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Prediction of non-exceedance of v
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Prediction of exceedance of v
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fv (x613 | x−613,u) =
∫

fv (x613 | θ,x−613)πu(θ | x−613) dθ

fv (x613 | θ,x−613) = pv (θ) fGP(x613 − v ;σv , ξ)
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Training and validation thresholds
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Compare u1, . . . ,uk based on predictions of data thresholded
at v = uk

= u6
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Choice of u1, . . . ,uk and v

Training thresholds u1, . . . ,uk

• needs to include range over which bias and variance
compete

• perhaps the most crucial aspect is the choice of uk

• rule-of-thumb: have no fewer than 50 excesses (Jonathan
and Ewans, 2013)

Validation threshold v
• choose v = uk

• if v > uk we
• lose validation information: if uk < x 6 v then value of x is

censored
• . . . and gain nothing: predictions of xs greater than v do not

change

CV 14/31



Comparing thresholds

Sample θ(r)1 , . . . , θ
(r)
m from πu(θ | x−r ) [R-o-U or MCMC]

f̂v (xr | x−r ,u) =
1
m

m∑
j=1

fv (xr | θ(r)j )

Measure of predictive performance at v when training at u

T̂v (u) =
n∑

r=1

log f̂v (xr | x−r ,u)

Normalize over training thresholds u1, . . . ,uk

wv (ui) = exp{T̂v (ui)}/
k∑

j=1

exp{T̂v (uj)}

Threshold weights: wv (u1), . . . ,wk (uk )

Choose threshold with largest threshold weight
CV 15/31



Importance sampling (IS)

• IS density h(θ)
[support of h(θ) must contain support of π(θ | x−r )]

• Let qr (θ) = πu(θ | x−r )/h(θ)

fv (xr | x−r ,u) =
∫

fv (xr | θ,x−r )qr (θ)h(θ) dθ, r = 1, . . . ,n

IS ratio estimator, based on sample θ1, . . . , θm from h(θ),

f̂v (xr | x−r ,u) =

∑m
j=1 fv (xr | θj)qr (θj)∑m

j=1 qr (θj)

Suppose that x1 < · · · < xn. Use

h(θ) =
{
πu(θ | x) for r = 1, . . . ,n − 1
πu(θ | x−n) for r = n

. . . so only need to sample from two posteriors

CV 16/31



GP priors: π(σu, ξ) ∝ σu
−1πξ(ξ)
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Comparing GP priors: simulation study

MN(θ): largest value in N years under a bin-GP(θ)

• P(MN(θ) 6 z) = F (z; θ)ny N

• P(MN 6 z | x) =
∫

F (z; θ)ny N πu(θ | x) dθ

If P(MN 6z | x)=P(MN(θ)6z) then P(MN 6MN(θ) | x) ∼ U(0,1)

1. simulate bin-GP(pu, σu, ξ) sample xsim, size 500:
(50 years, 10 observations per year)

2. simulate mN(θ) from F (z; θ)ny N

3. calculate P̂(MN 6 mN(θ) | xsim)

Repeat: putative sample of size 10,000 from a U(0,1)

Use Jeffreys’ prior, pu ∼ beta(1/2,1/2).

GP priors 18/31



GP priors: π(σu, ξ) ∝ σu
−1πξ(ξ)
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GP priors: π(σu, ξ) ∝ σu
−1πξ(ξ)
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flat
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underprediction

underprediction
(worse than MDI)

better?

MDI(0.6): π(σu, ξ) ∝ σ−1
u 0.6 e−0.6(ξ+1), σu > 0, ξ ∈ R
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Threshold weights & predictive inference
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GP posterior densities
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Reference priors appropriate

only when dominated by infor-
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GoM: P(ξ > 1/2 | x) ≈ 0.2
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Bayesian model averaging (BMA)
Used by Sabourin et al. (2013) for MV EV models

View k thresholds u1, . . . ,uk as defining k competing models
• Prior probabilities: P(ui) = 1/k , i = 1, . . . , k [. . . or something else]
• θi = (pi , σi , ξi) under model ui , with prior π(θi | ui)

Posterior threshold weights:

Pv (ui | x) =
fv (x | ui)P(ui)∑k
i=1 fv (x | ui)P(ui)

,

where
fv (x | ui) =

∫
fv (x | θi ,ui)π(θi | ui) dθi

f̂v (x | ui) =
∏n

r=1 fv (xr | x−r ,ui) = exp{T̂v (ui)} [Geisser and Eddy (1979)]

P̂v (ui | x) =
exp{T̂v (ui)}P(ui)∑k
j=1 exp{T̂v (uj)}P(uj)

[= wv (ui) ]
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Simulation study: single u and BMA

• Sample size 500: 50 years, 10 observations per year
• Training thresholds: (50,55, . . . ,90)% sample quantiles
• Validation threshold: 90% sample quantile
• Compare median of predictive distribution of MN with truth

Strategies:
• Threshold known/expected to be good
• Threshold known/expected to be bad
• Threshold with best CV weight
• BMA (averaging inferences over all thresholds)

Distributions:
• exp(1): GP(1,0) model holds for all thresholds
• N(0,1): GP false for all u, GP approx. improves as u ↑
• Uniform-GP hybrid: GP holds for u > 75% quantile
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Exponential (1000 simulated datasets)
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Normal
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Uniform-GP(ξ=0.1) hybrid
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CV weights: uk = 90% quantile (50 exc.)
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CV weights: uk = 85% quantile (75 exc.)
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Averaging inferences over thresholds
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Averaging inferences over thresholds
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A weakly-informative (Cauchy) prior
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Concluding remarks

• Cross-validation used to address bias-variance trade-off
• Could automate: pick ‘best’ threshold

• Threshold uncertainty : Bayesian model averaging
• Subjective inputs

• Priors: reference, weakly-informative, informative
• Training thresholds u1, . . . ,uk

• On-going . . .
• serial dependence
• multivariate extremes
• covariate effects
• choice of measurement scale

Thank you for your attention
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