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Introduction

• d = 1. Sorry!

• Selection of a single (best?) threshold
• Threshold uncertainty : average inferences over many

thresholds u1,u2, . . . ,uk

• Application to ocean storm severity

• Univariate IID case. X1,X2, . . . ,Xn
indep∼ H

• P(Xi > u) = pu,

• (Xi − u) | Xi > u ∼ GP(σu, ξ)

• . . . but scope to generalize

Introduction 2/21



Introduction

• d = 1. Sorry!
• Selection of a single (best?) threshold
• Threshold uncertainty : average inferences over many

thresholds u1,u2, . . . ,uk

• Application to ocean storm severity

• Univariate IID case. X1,X2, . . . ,Xn
indep∼ H

• P(Xi > u) = pu,

• (Xi − u) | Xi > u ∼ GP(σu, ξ)

• . . . but scope to generalize

Introduction 2/21



Threshold diagnostics
Bias-variance trade-off :
• u too low : GP model inappropriate→ bias
• u too high : fewer excesses→ unnecessary imprecision

Review paper: Scarrott & MacDonald (2012)
• Estimates of ξ stable above some level of threshold?

[Drees et al. (2000), Wadsworth and Tawn (2012), Northrop and
Coleman (2014)]

• Goodness-of-fit of GP distribution
[Davison and Smith (1990), Dupuis (1998)]

• Minimize asymptotic MSE of estimates of ξ or extreme
quantiles under assumptions about H
[Ferreira, et al. (2003), Beirlant (2004)]

• Extend EV model below u and make u a model parameter
[Wadsworth and Tawn (2012), MacDonald et al. (2011)]
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Aims

• address the bias-variance trade-off based on
out-of-sample prediction at levels above u

• . . . using the bin-GP model

• produce a simple graphical diagnostic for single threshold
selection

• account for uncertainty in threshold

• develop method than can be generalized: e.g. to MV
extremes
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Hindcast storm peak sig. wave heights
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Threshold stability plots
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Threshold comparison using CV
• Raw (unthresholded) data x = (x1, . . . , xn)
• Training threshold u
• Parameter vector θ = (pu, σu, ξ)
• Prior π(θ). Consider reference priors in the first instance
• Validation threshold v > u

Leave-one-out cross-validation
• x−r = {xi , i 6= r}
• Posterior

πu(θ | x−r ) ∝ π(θ)
∏
i 6=r

fu(xi | θ)

where

fu(xi | θ) = (1− pu)
I(xi6u){pu g(xi − u : σu, ξ)}I(xi>u)

and

g(x ;σu, ξ) = σ−1
u

(
1 +

ξx
σu

)−(1+1/ξ)

+
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Gulf of Mexico data
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Training threshold u
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Validation threshold v >>> u
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Leave-one-out cross-validation
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Prediction of non-exceedance of v
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Prediction of non-exceedance of v
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Prediction of non-exceedance of v
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Prediction of exceedance of v
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Training and validation thresholds

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

1 50 100 150 200 250 300 315

0

5

10

15

observation number

x

u1

u2

u3

u4

u5

v

Compare u1, . . . ,uk based on predictions of data thresholded
at v

CV 8/21



Training and validation thresholds
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Comparing thresholds
Sample θ(r)1 , . . . , θ

(r)
m from πu(θ | x−r ) [R-o-U or MCMC]

f̂v (xr | x−r ,u) =
1
m

m∑
j=1

fv (xr | θ(r)j )

Measure of predictive performance at v when training at u

T̂v (u) =
n∑

r=1

log f̂v (xr | x−r ,u)

Normalize over training thresholds u1, . . . ,uk

wi(v) = exp{T̂v (ui)}/
k∑

j=1

exp{T̂v (uj)}

Threshold weights: w1(v), . . . ,wk (v)

CV 9/21



Importance sampling (IS)

• IS density h(θ)
[support of h(θ) must contain support of π(θ | x−r )]

• Let qr (θ) = πu(θ | x−r )/h(θ)

fv (xr | x−r ,u) =
∫

fv (xr | θ,x−r )qr (θ)h(θ) dθ, r = 1, . . . ,n

IS ratio estimator, based on sample θ1, . . . , θm from h(θ),

f̂v (xr | x−r ,u) =

∑m
j=1 fv (xr | θj)qr (θj)∑m

j=1 qr (θj)

Suppose that x1 < · · · < xn. Use

h(θ) =
{
πu(θ | x) for r = 1, . . . ,n − 1
πu(θ | x−n) for r = n

. . . so only need to sample from two posteriors.

CV 10/21



Priors: π(σu, ξ) ∝ σu
−1πξ(ξ), σu > 0, ξ ∈ R
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Threshold weights & predictive inference
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GP posterior densities

 0.001 

 0.01 

 0.1 

 0.25 

 0.5 

 0.75 

2.0 2.5 3.0 3.5

−
0.

4
−

0.
3

−
0.

2
−

0.
1  0.001 

 0.01 

 0.1 

 0.25 

 0.5 

 0.75 

σu

ξ

35% threshold

 0.001 
 0.01 

 0.1 

 0.25 

 0.5 

 0.75 

1.0 1.5 2.0 2.5 3.0
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

 0.001 
 0.01 

 0.1 

 0.25 

 0.5 

 0.75 

σu

ξ

65% threshold

 0.001 

 0.01 

 0.1 

 0.25 

 0.5 

0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

 0.001 

 0.01 

 0.1 

 0.25 

 0.5 

σu

ξ

95% threshold

 0.001 

 0.01 

 0.1 

 0.25 

 0.5 

0 2 4 6 8 10 12

−
1

0
1

2
3

 0.001 

 0.01 

 0.1 

 0.25 

 0.5 

σu

ξ

95% threshold

North Sea North Sea

Gulf of Mexico Gulf of Mexico

31 excesses

15 excesses

Reference priors appropriate

only when dominated by infor-

mation in the data

GoM: P̂(ξ > 1/2 | x) ≈ 0.2

and P(ξ > 1 | x) ≈ 0.05

Expect sig. wave heights to be

bounded above (ξ < 0)

Avoid small samples, or give

some information in prior, or

don’t extrapolate so far into the

future
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A weakly-informative (Cauchy) prior
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A weakly-informative (Cauchy) prior
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Bayesian model averaging (BMA)
Used by Sabourin et al. (2013) for MV EV models

View k thresholds u1, . . . ,uk as defining k competing models
• Prior probabilities: P(ui) = 1/k , i = 1, . . . , k [. . . or something else]
• θi = (pi , σi , ξi) under model ui , with prior π(θi | ui)

Posterior threshold weights:

Pv (ui | x) =
fv (x | ui)P(ui)∑k
i=1 fv (x | ui)P(ui)

,

where
fv (x | ui) =

∫
fv (x | θi ,ui)π(θi | ui) dθi

f̂v (x | ui) =
∏n

r=1 fv (xr | x−r ,ui) = exp{T̂v (ui)} [Geisser and Eddy (1979)]

P̂v (ui | x) =
exp{T̂v (ui)}P(ui)∑k
j=1 exp{T̂v (uj)}P(uj)

= wi(v)
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Simulation: exponential (v=95% quantile)
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Simulation: uniform-GP(ξ=0.1) hybrid
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Threshold weights
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Gulf of Mexico : BMA
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Concluding remarks

• Cross-validation used to address bias-variance trade-off
• Could automate: pick ‘best’ threshold

• Threshold uncertainty : Bayesian model averaging
• Subjective inputs

• Priors: reference, weakly-informative, informative
• Level of validation threshold v

• On-going . . .
• serial dependence
• multivariate extremes
• covariate effects
• choice of measurement scale

Thank you for your attention.
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