

Local generalised method of moments: an application to point process-based rainfall models

Environmetrics 26 (4), 312-325

Jo Kaczmarska, Valerie Isham, Paul Northrop

Department of Statistical Science, University College London

26th Conference of The International Environmetrics Society Edinburgh 22 July 2016 The simulation of realistic artificial rainfall series at a given site Requirements:

- reproduce statistical properties of real data (mean, variance, skewness, autocorrelations; wet-dry properties; extreme values) at a range of temporal scales
- sub-daily, perhaps sub-hourly, resolution
- can reflect potential impacts of climate change

Such series are required for hydrological studies, e.g. urban drainage design needs sub-hourly data

GCMs: main tools for predicting future climate impacts from the increase of greenhouse gases in the atmosphere.

Problem: cannot reliably model local precipitation:

Solution: "statistical downscaling". Model relationships between large-scale climate variables of the GCM (or RCM) and local climate

Problem: Structure depends on specific division of time scale, usually daily (and not suitable at subdaily scales)*Solution*: Models based on point processes operate in continuous time, allowing aggregation to any timescales

Poisson-cluster process rainfall models

Represent the rainfall process in a simplified way with interpretable parameters

Problem: Models are stationary.

Current practice:

- Seasonality: fit model separately within each month
- Month just a proxy for climate variables. Seasonal patterns changing?

This work:

- · allow parameters to vary smoothly with covariates
- ... month, GCM variables: surface temperature, sea-level pressure (slp), zonal (west-east) wind, ...
- expect complicated relationships: use local modelling
- enables simulation of future rainfall for use in climate impact studies

Bartlett-Lewis Rectangular Pulse model

Bartlett-Lewis Poisson cluster process of cell origins:

Bartlett-Lewis Rectangular Pulse model

Bartlett-Lewis Poisson cluster process of cell origins:

Bartlett-Lewis Rectangular Pulse model

The cells have random durations and intensities.

Data

- 5-min rainfall totals from Bochum, Germany, 1931–1999
- Y_t : data in month $t, t = 1, \ldots, 624$
- From Jan 1948 : monthly NCEP reanalysis data (52.5N, 7.5E) plus NAO index
- 624 monthly fitting properties and covariate values
 - T(Y_t) = (T₁(Y_t),..., T_k(Y_t)) sample fitting properties
 [1h mean; 5 min, (1, 6, 24)h coeff. of variation, lag 1 autocorr., skewness]
 - $X_t = (X_{t_1}, X_{t_2}, \dots, m_t)$: monthly temperature, slp ..., month

Generalised Method of Moments (GMM)

- $\hat{\theta}$ minimises a (quadratic form) measure of discrepancy between sample $T(Y_t)$ and model $\tau(\theta)$ values
- Weight sample properties to account for their (co)variances
- Optimal weight matrix W is {cov[T(Y_t)]}⁻¹, but in practice diag{var[T_i(Y_t)]⁻¹} is close to optimal and easier to estimate reliably (Jesus and Chandler, 2011)

Local mean GMM

Estimator for month m

$$\widehat{\theta}_{m} = \operatorname{argmin}_{\theta_{m}} \left[\left\{ \frac{1}{\sum_{t=1}^{n} I(m_{t}=m)} \sum_{t=1}^{n} I(m_{t}=m) \left[T(Y_{t}) - \tau(\theta_{m}) \right] \right\}^{\mathrm{T}}$$
$$\widehat{W}_{m} \left\{ \frac{1}{\sum_{t=1}^{n} I(m_{t}=m)} \sum_{t=1}^{n} I(m_{t}=m) \left[T(Y_{t}) - \tau(\theta_{m}) \right] \right\} \right]$$

Estimator at covariate $X = x_0$

$$\widehat{\theta}(x_0) = \operatorname{argmin}_{\theta_{x_0}} \left[\left\{ \frac{1}{n} \sum_{t=1}^n K_h(X_t - x_0) \left[T(Y_t) - \tau(\theta_{x_0}) \right] \right\}^{\mathrm{T}} \right]$$

$$\widehat{W}_{x_0}\left\{\frac{1}{n}\sum_{t=1}^n K_h(X_t-x_0)\left[T(Y_t)-\tau(\theta_{x_0})\right]\right\}\right]$$

•
$$K_h(X_t - x_0) = \frac{1}{h} K\left(\frac{X_t - x_0}{h}\right)$$
, for a kernel function $K()$

• bandwidth h

Single covariate: effect of bandwidth

Bias-variance trade-off: a larger *h* gives a smoother, flatter curve, with lower variance, but higher bias

8/15

We use a *global* bandwidth: i.e. the same *h* across the whole curve

Choice of *h*; multiple covariates

Cross-validation (CV), using repeated random sub-sampling For each covariate

- For each of a set of candidate values of h ...
- Split 624 months into 399 (training) and 225 (test)
- Fit using training set then calculate mean weighted squared error (MWSE) on test set
- Repeat 25 times; find the best h (lowest MWSE) each time

Set 'optimal' h as an average of the best values

Multiple covariates

- use diagonal bandwidth matrix H: product kernels
- use CV to find choose an optimal multiple of a diagonal matrix of the optimal univariate bandwidths
- · curse of dimensionality restricts the number of covariates

Model Comparison: optimal covariates

We compare prediction errors with different covariates

LIC

sm.month : local kernel smoothing based on month

10/15

Optimal pair of covariates: slp and temp

Bandwidths: sea-level pressure: 2.0; temperature: 1.75

11/15

Comparison of fit v current approach

Covariate: Month

Comparison of fit v current approach

Covariates: Temperature, sea-level pressure and zonal wind

13/15

Interannual variability at Bochum

Simulated distributions of mean annual rainfall

- blue bands: (5, 10, 25, 50, 75, 90, 95) percentiles
- black line: sample values

Using covariate information has improved the representation of interannual variability

Local smoothing used to relate Poisson-cluster rainfall model parameters to covariates

Advantages

- covariates can replace, and improve, on month : once temperature is included, month adds no further benefit
- improved representation of interannual variability
- simulations can reflect future climate change scenarios

Local smoothing used to relate Poisson-cluster rainfall model parameters to covariates

Advantages

- covariates can replace, and improve, on month : once temperature is included, month adds no further benefit
- improved representation of interannual variability
- simulations can reflect future climate change scenarios

Thank you for your attention

References

Research presented here

- Kaczmarska, J. M., Isham, V. S. & Northrop, P. J. (2015), 'Local generalised method of moments: an application to point process-based rainfall models', *Environmetrics* 26 (4), 312-325
- Kaczmarska, J. M. (2013), 'Single-site point process-based rainfall models in a nonstationary climate', PhD thesis, University College London

Point process based models/GMM

- Onof, C., Chandler, R.E., Kakou, A., Northrop, P., Wheater, H.S. & Isham, V. (2000), 'Rainfall modelling using Poisson-cluster processes: a review of developments', *Stochastic Environmental Research and Risk Assessment*, 14, 384-411
- Jesus, J. & Chandler, R. E. (2011), 'Estimating functions and the generalized method of moments', *Interface Focus*, **1(6)**, 871-885

Local fitting

- Fan & Gijbels, L. (1996), *Local Polynomial Modelling and its Applications*, Chapman and Hall.
- Lewbel, A. (2007), 'A local generalized method of moments estimator', *Economics Letters* 94.
- Carroll, R. J., Ruppert, D. & Welsh, A. H. (1998), 'Local estimating equations', Journal of the American Statistical Association 93 (441), 214-227.