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Outline

• Simple example dataset
• Generalized Pareto (GP) modelling of threshold excesses
• Threshold selection methods

• parameter stability plots
• others

• Improved parameter stability plots
• (Automatic?) threshold selection on many datasets

Motivating (classic) example:
• 154 flow rates from the River Nidd (Yorkshire), 1934–1969
• peaks flows: ≈ independent, pre-processing has already

extracted extreme values
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River Nidd 1934-1969: 154 flow rates
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Threshold u = 90

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0 50 100 150

10
0

15
0

20
0

25
0

30
0

event number

flo
w

 r
at

e 
/ m

3 s−1

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

Background and motivation 4/29



Excesses of u = 90
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Threshold u = 110
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Excesses of u = 110
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Generalized Pareto model

• Set up: X1,X2, . . .Xn are i.i.d.
• Y = (X − u) | X > u: excess of threshold u
• Extreme value theory suggests the GP distribution as a

model for Y .

GP distribution function:

P(Y 6 y) = G(y) =

{
1− (1 + ξy/σu)

−1/ξ
+ , ξ 6= 0,

1− exp(−y/σu), ξ = 0,
(1)

where y > 0, x+=max(x ,0).

• For ξ > 0 we have y > 0;
• For ξ < 0 we have 0 < y < −σu/ξ.

(. . . how often the threshold is exceeded also matters)

GP model for threshold excesses 8/29



Threshold selection methods

Bias-variance trade-off:
• u too low: GP model inappropriate→ bias.
• u too high: fewer excesses→ unnecessary imprecision.

Review paper: Scarrott and MacDonald (2012).
• Parameter stability plot : σ̂u − ξ̂u vs. u and ξ̂ vs. u.

Estimates stable above u∗?
• Mean residual life plot : sample mean excess vs. u. Linear

above u∗?
• Goodness-of-fit test: AD or KS p-value vs. u. For which u

don’t we reject GP model?
• Extend model below u, make u a model parameter, make

inferences about u, e.g. Wadsworth and Tawn (2012).

Threshold selection 9/29



Parameter stability : modified scale
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Parameter stability : shape
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Problems with parameter stability plots

• ξ̂ and σ̂u − ξ̂u very strongly negatively associated across u:
only one plot needed.

• Estimates of ξ based on thresholds u1 and u2 are
depdendent (one datasets a subset of the other).

• viewer compares many pairs of thresholds
(multiple-testing).

• viewer invited to ask whether CIs overlap: not the
appropriate assessment.

• threshold choice rather subjective.

Aim: make assessment more formally, by testing (a discrete
version of)

H0 : ξ(x) = ξ(u), for x > u.

Improved parameter stability plots 12/29



Two-threshold GP model (cf. WT2012)

• Penultimate theory: GP model valid for lowish thresholds,
shape parameter ξ varies slowly with threshold.

• Notation: ξi is the GP shape local to threshold ui .
• Model ξ as piecewise constant in variable x :

ξ(x) =

{
ξ1, u1 < x < u2,

ξ2, x > u2.
(2)

Test H0 : ξi = ξj for all possible pairs (ui ,uj) from a set of
thresholds (u1, . . . ,um).

Drawbacks:
• Simulation required to test H0 : ξ1 = · · · = ξm by combining

pairwise tests.
• Very computationally-intensive : prohibitively so.

Improved parameter stability plots 13/29



Two-threshold model

x

f(
x)

u1 u2

ξ1

ξ2
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Plot of pairwise test results
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Multiple-threshold GP model (NC2014)

ξ(x) =

{
ξi , ui < x < ui+1, for i = 1, . . . ,m − 1,
ξm, x > um.

(3)

H0 : ξ1 = · · · = ξm vs HA : H0 not true .

• Scale parameters set to achieve a continuous p.d.f.
• Parameter vector: θ = (σ1, ξ1, . . . , ξm)

• θ̂0: MLE under H0.
• θ̂: MLE under HA.

General idea: do the data suggest a departure from H0
(standard GP model) in the direction of m-threshold GP model.

Improved parameter stability plots 16/29



m-threshold model (m = 5)
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Likelihood ratio and score tests
LR stat. : compare maximized log-likelihoods under H0 and HA

W = 2
{

l(θ̂)− l(θ̂0)
}
,

Score stat. : how far is the log-likelihood from being flat at θ̂0?

S = U(θ̂0)
T i−1(θ̂0)U(θ̂0),

• U(θ) is the score function: Ui = ∂l(θ)/∂θi

• i(θ) is the expected Fisher information matrix:
i(θ)ij = E

[
−∂2l(θ)/∂θi∂θj

]
.

• Derivation of U(θ) and i(θ) nasty: it made my head hurt!

If ξm > −1/2 then W and S are approx. χ2
m−1 under H0.

LLR test. Need to fit the full multiple-threshold GP model.
Score test. Only fit the null model, i.e. a single GP(σ, ξ) fit.

Improved parameter stability plots 18/29



LR, score and Wald test statistics

θ

l(θ
)

θ̂ θ0

U(θ0)
score
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Multiple threshold diagnostic plot
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Effect of number of thresholds
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Automatic threshold selection

How to make use of the p-values?
Consider H0 : ξi = · · · = ξm.
• Small p-value suggests that H0 isn’t true, i.e. ui isn’t high

enough.
• Large p-value : perhaps ui is high enough.

Possibilities
• Formal: set size of test beforehand, e.g. 5%. Reject ui as

too low if p-value is < 0.05.
• Informal: view the p-values as a measure of the

disagreement between the data and the null hypothesis
when inspecting plot.

Some multiple-testing remains: we perform tests with lowest
thresholds u1,u2, . . . ,um−1.

Improved parameter stability plots 22/29



Wave heights from the Gulf of Mexico

• Hindcasts of Hs storm peak significant wave height (in
metres) in the Gulf of Mexico.

• Data from Northrop and Jonathan (2011).
• wave height : trough to the crest of the wave.
• significant wave height : the average of the largest 1/3 wave

heights. A measure of sea surface roughness.
• storm peak: largest value from each (hurricane-induced)

storm.

• a 6 × 12 grid of 72 sites (≈ 14 km apart).
• Sep 1900 to Sep 2005 : 315 storms .
• average of 3 observations (storms) per year, at each site.
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Storm damage

• Interested in extremal behaviour of Hs at centre of data grid
• Pool (spatially-dependent) data over space.
• What level (quantile) of threshold is appropriate at site 1,

site 2, . . . , site 72?

Multiple datasets 24/29



Gulf of Mexico wave heights
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Automatic threshold selection

Suppose that we wish to automate the selection of a threshold
for each of the datasets, based on tests of size 5%, say.

Two strategies
1. Select the lowest threshold for which H0 is not rejected.

[However, the p-values are not constrained to be
non-decreasing in the lowest threshold.]

2. Select the lowest threshold with the property that H0 is not
rejected at it and at all the higher thresholds considered.

[We need to bear in mind that large variability is expected
at the very highest thresholds.]
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Automatic threshold selection

Quantile at which threshold chosen
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Concluding remarks

• Makes the (frequentist) fixed threshold selection part of
Wadsworth and Tawn (2012) quick.

• Parameter stability is only part of the story (model
checking).

• Threshold sensitivity vs. threshold uncertainty:
• u a tuning parameter vs. u is a model parameter
• sensitivity/uncertainty shouldn’t be ignored.

• Motivated by slide 28 of Jo’s talk:
• Chavez-Demoulin et al’s discussion of Northrop and

Jonathan (2011);
• r -largest order statistics model for in a multi-site analysis,

with (only) latitude and longitude as covariates;
• . . . no need to set explicitly a threshold u;
• . . . but what if there is a continuous covariate, such as

“distance to nearest gate”.

• Adjustment for serial dependence?
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Thank you for your attention.
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