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Simple example dataset
Generalized Pareto (GP) modelling of threshold excesses

Threshold selection methods

e parameter stability plots
o others

Improved parameter stability plots
(Automatic?) threshold selection on many datasets

Motivating (classic) example:
¢ 154 flow rates from the River Nidd (Yorkshire), 1934—1969

e peaks flows: ~ independent, pre-processing has already
extracted extreme values
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River Nidd 1934-1969: 154 flow rates &
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Threshold v = 90 &
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Excesses of u =90 &
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Threshold v = 110 &
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Excesses of u =110 2
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Generalized Pareto model N

e Setup: X1, Xo,... X, arei.i.d.
e Y= (X—u)| X > u: excess of threshold u

¢ Extreme value theory suggests the GP distribution as a

model for Y.

GP distribution function:

1—(1+&y/on) Vs, €+£0,

P(Y<y)=G(y) =
(Y <y)=G(y) {1 exp(_y/ou). c—o0.
where y > 0, x; =max(x, 0).

e For¢ > 0we have y > 0;
e Foré <Owehave 0 <y < —oy/€.

(... how often the threshold is exceeded also matters)

GP model for threcshold excesses
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Threshold selection methods &

Bias-variance trade-off:

e utoo low: GP model inappropriate — bias.

¢ U too high: fewer excesses — unnecessary imprecision.
Review paper: Scarrott and MacDonald (2012).

e Parameter stability plot : o, — Eu vs. U and gvs. u.
Estimates stable above u*?

¢ Mean residual life plot : sample mean excess vs. u. Linear
above u*?

e Goodness-of-fit test: AD or KS p-value vs. u. For which u
don’t we reject GP model?

e Extend model below u, make u a model parameter, make
inferences about u, e.g. Wadsworth and Tawn (2012).
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Parameter stability : modified scale

154 145 132 113 86 72 63 52 48 39 37 32 27 26 24
| | | | | | | | | | | | | | |

100 150 200
| | |

50

MLE of o, - ¢&u

=

-50

C,HHHMHH'IH'W”'H s

threshold / m3s™

Threshold selection 10/29



Parameter stability : shape
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Problems with parameter stability plots .

o Eand oy — Eu very strongly negatively associated across u:
only one plot needed.

e Estimates of £ based on thresholds vy and u» are
depdendent (one datasets a subset of the other).

e viewer compares many pairs of thresholds
(multiple-testing).

¢ viewer invited to ask whether Cls overlap: not the
appropriate assessment.

e threshold choice rather subjective.

Aim: make assessment more formally, by testing (a discrete
version of)
Ho : £(x) = &(u), for x > u.
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Two-threshold GP model (cf. WT2012)

e Penultimate theory: GP model valid for lowish thresholds,
shape parameter £ varies slowly with threshold.

¢ Notation: ¢; is the GP shape local to threshold u;.
¢ Model ¢ as piecewise constant in variable x:

£(x) = {51, Up < X < U, @)
fg, X > Uo.
Test Hp : & = &; for all possible pairs (uj, u;) from a set of
thresholds (uy, ..., um).
Drawbacks:
e Simulation required to test Hp : {1 = - -+ = &m by combining

pairwise tests.
o Very computationally-intensive : prohibitively so.
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Two-threshold model &

f(x)
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Plot of pairwise test results s
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Multiple-threshold GP model (NC2014) .

£(x) = &, U <X<Uyy, fori=1,...,m—1,
fm7 X>Um~

3)

H0:f1:---:§m VS Hp - Hy not true .

Scale parameters set to achieve a continuous p.d.f.
Parameter vector: 6 = (01,&1,...,ém)

0o: MLE under Hy.

e 0: MLE under Ha.

General idea: do the data suggest a departure from Hy
(standard GP model) in the direction of m-threshold GP model.
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Likelihood ratio and score tests &

LR stat. : compare maximized log-likelihoods under Hy and Hj
w =2{1(9) - 1(%0)}
Score stat. : how far is the log-likelihood from being flat at 50?

S = U(80)" i7" (o) U(o).

e U(0) is the score function: U; = 91(0)/00;
e i(0) is the expected Fisher information matrix:
i(0); = E [-021(0)/00,00;).
e Derivation of U(6) and i(#) nasty: it made my head hurt!
If ¢m > —1/2 then W and S are approx. x2, ; under Ho.

LLR test. Need to fit the full multiple-threshold GP model.
Score test. Only fit the null model, i.e. a single GP(s, ) fit.
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LR, score and Wald test statistics s
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Multiple threshold diagnostic plot s
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Effect of number of thresholds &
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Automatic threshold selection A

How to make use of the p-values?
Consider Hy : & = -+ - = &m.
e Small p-value suggests that Hp isn’t true, i.e. u; isn’t high
enough.

e Large p-value : perhaps u; is high enough.
Possibilities
e Formal: set size of test beforehand, e.g. 5%. Reject u; as
too low if p-value is < 0.05.

¢ Informal: view the p-values as a measure of the
disagreement between the data and the null hypothesis
when inspecting plot.
Some multiple-testing remains: we perform tests with lowest
thresholds uq, Us, ..., Up_1.
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Wave heights from the Gulf of Mexico

Hindcasts of Hs storm peak significant wave height (in
metres) in the Gulf of Mexico.
¢ Data from Northrop and Jonathan (2011).
e wave height : trough to the crest of the wave.
¢ significant wave height : the average of the largest 1/3 wave
heights. A measure of sea surface roughness.
e storm peak: largest value from each (hurricane-induced)
storm.

a6 x 12 grid of 72 sites (=~ 14 km apart).
Sep 1900 to Sep 2005 : 315 storms .
average of 3 observations (storms) per year, at each site.
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Storm damage b

¢ Interested in extremal behaviour of Hs at centre of data grid
¢ Pool (spatially-dependent) data over space.

e What level (quantile) of threshold is appropriate at site 1,
site 2, ..., site 727
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Automatic threshold selection A

Suppose that we wish to automate the selection of a threshold
for each of the datasets, based on tests of size 5%, say.
Two strategies
1. Select the lowest threshold for which Hy is not rejected.
[However, the p-values are not constrained to be
non-decreasing in the lowest threshold.]
2. Select the lowest threshold with the property that Hy is not
rejected at it and at all the higher thresholds considered.

[We need to bear in mind that large variability is expected
at the very highest thresholds.]
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Automatic threshold selection .

Quantile at which threshold chosen
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Concluding remarks N

e Makes the (frequentist) fixed threshold selection part of
Wadsworth and Tawn (2012) quick.

¢ Parameter stability is only part of the story (model
checking).
e Threshold sensitivity vs. threshold uncertainty:
e U atuning parameter vs. u is a model parameter
¢ sensitivity/uncertainty shouldn’t be ignored.
¢ Motivated by slide 28 of Jo’s talk:
e Chavez-Demoulin et afls discussion of Northrop and
Jonathan (2011);
o r-largest order statistics model for in a multi-site analysis,
with (only) latitude and longitude as covariates;
e ...Nno need to set explicitly a threshold u;
e ...but what if there is a continuous covariate, such as
“distance to nearest gate”.

¢ Adjustment for serial dependence?
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Thank you for your attention.
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