

A new approach to threshold selection in extreme value analysis

Paul Northrop and Claire Coleman University College London p.northrop@ucl.ac.uk

> RMS 22nd January 2014

Outline

- Simple example dataset
- Generalized Pareto (GP) modelling of threshold excesses
- Threshold selection methods
 - parameter stability plots
 - others
- Improved parameter stability plots
- (Automatic?) threshold selection on many datasets

Motivating (classic) example:

- 154 flow rates from the River Nidd (Yorkshire), 1934–1969
- peaks flows: \approx independent, pre-processing has already extracted extreme values

River Nidd 1934-1969: 154 flow rates

UCI

Background and motivation

Threshold u = 90

Excesses of u = 90

Background and motivation

Threshold u = 110

Excesses of u = 110

Generalized Pareto model

- Set up: *X*₁, *X*₂, ... *X_n* are i.i.d.
- Y = (X u) | X > u: excess of threshold u
- Extreme value theory suggests the GP distribution as a model for *Y*.

GP distribution function:

$$P(Y \leq y) = G(y) = \begin{cases} 1 - (1 + \xi y / \sigma_u)_+^{-1/\xi}, & \xi \neq 0, \\ 1 - \exp(-y / \sigma_u), & \xi = 0, \end{cases}$$
(1)

where y > 0, $x_+ = \max(x, 0)$.

- For $\xi \ge 0$ we have y > 0;
- For $\xi < 0$ we have $0 < y < -\sigma_u/\xi$.

(... how often the threshold is exceeded also matters)

GP model for threshold excesses

Bias-variance trade-off:

- *u* too low: GP model inappropriate \rightarrow bias.
- *u* too high: fewer excesses \rightarrow unnecessary imprecision.

Review paper: Scarrott and MacDonald (2012).

- Parameter stability plot : $\hat{\sigma}_u \hat{\xi}u$ vs. u and $\hat{\xi}$ vs. u. Estimates stable above u^* ?
- Mean residual life plot : sample mean excess vs. *u*. Linear above *u**?
- Goodness-of-fit test: AD or KS *p*-value vs. *u*. For which *u* don't we reject GP model?
- Extend model below *u*, make *u* a model parameter, make inferences about *u*, e.g. Wadsworth and Tawn (2012).

Parameter stability : modified scale

Parameter stability : shape

Threshold selection

11/29

Problems with parameter stability plots

- $\hat{\xi}$ and $\hat{\sigma}_u \hat{\xi}u$ very strongly negatively associated across *u*: only one plot needed.
- Estimates of ξ based on thresholds u₁ and u₂ are dependent (one datasets a subset of the other).
- viewer compares many pairs of thresholds (multiple-testing).
- viewer invited to ask whether CIs overlap: not the appropriate assessment.
- threshold choice rather subjective.

Aim: make assessment more formally, by testing (a discrete version of)

$$H_0: \xi(x) = \xi(u), \text{ for } x > u.$$

Improved parameter stability plots

Two-threshold GP model (cf. WT2012)

- Penultimate theory: GP model valid for lowish thresholds, shape parameter ξ varies slowly with threshold.
- Notation: ξ_i is the GP shape local to threshold u_i .
- Model ξ as piecewise constant in variable *x*:

$$\xi(x) = \begin{cases} \xi_1, & u_1 < x < u_2, \\ \xi_2, & x > u_2. \end{cases}$$
(2)

Test $H_0: \xi_i = \xi_j$ for all possible pairs (u_i, u_j) from a set of thresholds (u_1, \ldots, u_m) .

Drawbacks:

- Simulation required to test $H_0: \xi_1 = \cdots = \xi_m$ by combining pairwise tests.
- Very computationally-intensive : prohibitively so.

Improved parameter stability plots

Two-threshold model

Improved parameter stability plots

Plot of pairwise test results

Improved parameter stability plots

15/29

Multiple-threshold GP model (NC2014)

$$\xi(x) = \begin{cases} \xi_i, & u_i < x < u_{i+1}, & \text{for } i = 1, \dots, m-1, \\ \xi_m, & x > u_m. \end{cases}$$
(3)

 $H_0: \xi_1 = \cdots = \xi_m$ vs $H_A: H_0$ not true.

- Scale parameters set to achieve a continuous p.d.f.
- Parameter vector: $\theta = (\sigma_1, \xi_1, \dots, \xi_m)$
- $\hat{\theta}_0$: MLE under H_0 .
- $\widehat{\theta}$: MLE under H_A .

General idea: do the data suggest a departure from H_0 (standard GP model) in the direction of *m*-threshold GP model.

â

m-threshold model (m = 5)

Improved parameter stability plots

17/29

UC

Likelihood ratio and score tests

LR stat. : compare maximized log-likelihoods under H_0 and H_A

$$W = 2\left\{I(\widehat{\theta}) - I(\widehat{\theta}_0)\right\},$$

Score stat. : how far is the log-likelihood from being flat at $\hat{\theta}_0$?

$$S = U(\widehat{\theta}_0)^T i^{-1}(\widehat{\theta}_0) U(\widehat{\theta}_0),$$

- $U(\theta)$ is the score function: $U_i = \partial I(\theta) / \partial \theta_i$
- $i(\theta)$ is the expected Fisher information matrix: $i(\theta)_{ij} = \mathbb{E} \left[-\partial^2 I(\theta) / \partial \theta_i \partial \theta_j \right].$
- Derivation of $U(\theta)$ and $i(\theta)$ nasty: it made my head hurt!

If $\xi_m > -1/2$ then *W* and *S* are approx. χ^2_{m-1} under H_0 .

LLR test. Need to fit the full multiple-threshold GP model. **Score test**. Only fit the null model, i.e. a single $GP(\sigma, \xi)$ fit.

Improved parameter stability plots

LR, score and Wald test statistics

Improved parameter stability plots

Multiple threshold diagnostic plot

UC

Improved parameter stability plots

Effect of number of thresholds

Improved parameter stability plots

21/29

How to make use of the *p*-values?

Consider $H_0: \xi_i = \cdots = \xi_m$.

- Small *p*-value suggests that *H*₀ isn't true, i.e. *u_i* isn't high enough.
- Large *p*-value : perhaps u_i is high enough.

Possibilities

- Formal: set size of test beforehand, e.g. 5%. Reject *u_i* as too low if *p*-value is < 0.05.
- Informal: view the *p*-values as a measure of the disagreement between the data and the null hypothesis when inspecting plot.

Some multiple-testing remains: we perform tests with lowest thresholds $u_1, u_2, \ldots, u_{m-1}$.

Wave heights from the Gulf of Mexico

UCL

- Hindcasts of *H_s* storm peak significant wave height (in metres) in the Gulf of Mexico.
 - Data from Northrop and Jonathan (2011).
 - wave height : trough to the crest of the wave.
 - significant wave height : the average of the largest 1/3 wave heights. A measure of sea surface roughness.
 - storm peak: largest value from each (hurricane-induced) storm.
- a 6 \times 12 grid of 72 sites (\approx 14 km apart).
- Sep 1900 to Sep 2005 : 315 storms .
- average of 3 observations (storms) per year, at each site.

Storm damage

- Interested in extremal behaviour of H_s at centre of data grid
- Pool (spatially-dependent) data over space.
- What level (quantile) of threshold is appropriate at site 1, site 2, ..., site 72?

Multiple datasets

Gulf of Mexico wave heights

Multiple datasets

25/29

UCL

Suppose that we wish to automate the selection of a threshold for each of the datasets, based on tests of size 5%, say.

Two strategies

1. Select the lowest threshold for which H_0 is not rejected.

[However, the *p*-values are not constrained to be non-decreasing in the lowest threshold.]

2. Select the lowest threshold with the property that H_0 is not rejected at it and at all the higher thresholds considered.

[We need to bear in mind that large variability is expected at the very highest thresholds.]

Automatic threshold selection

Quantile at which threshold chosen

Multiple datasets

Concluding remarks

- Makes the (frequentist) fixed threshold selection part of Wadsworth and Tawn (2012) quick.
- Parameter stability is only part of the story (model checking).
- Threshold sensitivity vs. threshold uncertainty:
 - *u* a tuning parameter vs. *u* is a model parameter
 - sensitivity/uncertainty shouldn't be ignored.
- Motivated by slide 28 of Jo's talk:
 - Chavez-Demoulin *et al*'s discussion of Northrop and Jonathan (2011);
 - *r*-largest order statistics model for in a multi-site analysis, with (only) latitude and longitude as covariates;
 - ... no need to set explicitly a threshold *u*;
 - ... but what if there is a continuous covariate, such as "distance to nearest gate".
- Adjustment for serial dependence?

UCL

Northrop, P. J. and Coleman, C. L. Improved threshold diagnostic plots for extreme value analyses. *Extremes*. To appear.

Northrop PJ, Jonathan P (2011) Threshold modelling of spatially dependent nonstationary extremes with application to hurricane-induced wave heights. *Environmetrics* **22(7)**, 799809.

Scarrott C, MacDonald A (2012) A review of extreme value threshold estimation and uncertainty quantification. *REVSTAT* - Statistical Journal **10(1)**, 3360.

Wadsworth, J. and J. Tawn (2012). Likelihood-based procedures for threshold diagnostics and uncertainty in extreme value modelling. *Journal of the Royal Statistical Society - Series B: Statistical Methodology* **74 (3)**, 543–567.

Thank you for your attention.