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1. Wave height data — design of safe marine structures.
2. Threshold-based extreme value modelling.

3. Quantile regression — thresholds for extreme value
regression models.

4. Wave height data.
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Wave heights (at an unnamed location) .

Hindcasts of storm peak significant wave height (Y).

e wave height : trough to the crest of the wave;

¢ significant wave height : the average of the largest third of
wave heights. A measure of sea surface roughness;

e storm peak: largest value from each ‘storm’ identified;

e assume storms are approximately independent.

427 sites : within ~ 80km of site of interest.

1970 — 2007 : 76 storms .

Storms occur between November and May.

~ 2 storms per year, at each site, on average.

e Potential covariates: water depth, longitude, latitude.

For confidentiality Y has been scaled to [0, 100].

Wave heights 3/35



(Scaled) water depth and location .
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Storm damage #
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Storm damage b

At the centre of the grid of data (where scaled water depth = 0)
¢ How large will significant wave heights be in the next 100
years? ...or the next 1000 years?
e Estimate extreme quantiles (upper tail).
e Issues: pooling of spatially-dependent data over space;
effect of water depth; extrapolation.
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Spatial dependence in sig. wave height .
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Effect of water depth
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Storm peaks at centre of grid #
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Zoom in on upper tail #
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Extreme Value Modelling N

Possibilities:
e Fit a model to all the data. Extrapolate from this model.

... but (unless the link between typical and atypical
behaviour is well-understood) inferences about extremes
could be influenced adversely by the modelling of
non-extreme data.
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Extreme Value Modelling N

Possibilities:
e Fit a model to all the data. Extrapolate from this model.

... but (unless the link between typical and atypical
behaviour is well-understood) inferences about extremes
could be influenced adversely by the modelling of
non-extreme data.

e Base inferences about future extreme behaviour on
extreme data:
e block maxima;
o r-largest order statistics in a block;
e exceedances of a high threshold, u.

EV modelling 10/35



Block maxima 2

Assume that Y, Yo, ... arei.i.d..

Let My = max(Y1 yeeey YN)
e Any possible (non-degenerate) distribution of
Zny = (My — by)/any as N — oo is in the GEV (Generalised
Extreme Value) family, with c.d.f.

P(Zy < 2) :exp{ [1 +¢ (Z;:Nﬂj/g}

where x; = max(x,0) and o > 0.
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Block maxima 2

Assume that Y, Yo, ... arei.i.d..

Let My = max(Y1,. . YN)

e Any possible (non-degenerate) distribution of
Zny = (My — by)/any as N — oo is in the GEV (Generalised
Extreme Value) family, with c.d.f.

P(Zy < 2) :exp{ [1 +¢ (Z;:Nﬂj/g}

where x; = max(x,0) and o > 0.
e Suggests GEV(upn, on, &) as a model for My, for large N.
¢ Upper end point is finite for £ < 0 and infinite for £ > 0.
¢ Related asymptotic model for r-largest order statistics.
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Threshold exceedances, u=40 &
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Threshold excesses, u=40 &
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Threshold excesses, u=60 &
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Threshold exceedances | : binomial-GP .,

¢ How often is a (high) threshold u exceeded?

Let py = P(Y > u).
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Threshold exceedances | : binomial-GP .,

¢ How often is a (high) threshold u exceeded?
Let py = P(Y > u).
e Given that u is exceeded, by how much is it exceeded?

Any possible distribution of (Y —u) | Y >uasu— xisin
the Generalised Pareto (GP) family, with conditional c.d.f.

—1/¢
P(Y<u\Y>u)—1—<1+£y) ;
ou/,

where o, > 0.
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Threshold exceedances | : binomial-GP .,

¢ How often is a (high) threshold u exceeded?
Let py = P(Y > u).
e Given that u is exceeded, by how much is it exceeded?

Any possible distribution of (Y —u) | Y >uasu— xisin
the Generalised Pareto (GP) family, with conditional c.d.f.

—1/¢
P(Y<u\Y>u)—1—<1+£y) ;

ou/ 4
where o, > 0.

If Yi,Yo,...,Y,are independent then this suggests a
binomial-GP model, for sufficiently high u.
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Threshold exceedances Il : NHPP &

e We rescale time (storm number) to (0,1) and let M(t, t, u)
be the number of observations in [, 2] x (u, ).

e Asymptotic arguments lead to a 2D non-homogeneous
Poisson process NHPP(up, on, &) model, s.t.

— —1/¢
M(ty, t, u) ~ Poisson (Ir\;(tz —ty) [1 +¢ <UU:N>L ) _

e Here, we choose N = n = 76 so that (un, on, &) relate to
maximum on dataset.

Informally ...
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Threshold exceedances Il : NHPP &

e We rescale time (storm number) to (0,1) and let M(t, t, u)
be the number of observations in [, 2] x (u, ).

e Asymptotic arguments lead to a 2D non-homogeneous
Poisson process NHPP(up, on, &) model, s.t.

— -1/¢
M(t, b2, u) ~ Poisson (Ir\II(tz —ty) [1 +¢ <UMN>} ) _

ON n
e Here, we choose N = n = 76 so that (un, on, &) relate to
maximum on dataset.
Informally ...

1. Reparameterise: (pu,ou, &) — (un, on, ), Using
oy =on+&(U— pn);

N‘I u—un —1/¢
m e (5]
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Threshold exceedances Il : NHPP &

e We rescale time (storm number) to (0,1) and let M(t, t, u)
be the number of observations in [, 2] x (u, ).

e Asymptotic arguments lead to a 2D non-homogeneous
Poisson process NHPP(up, on, &) model, s.t.

— -1/¢
M(t, b2, u) ~ Poisson (Ir\II(tz —ty) [1 +¢ <UMN>} ) _

ON n
e Here, we choose N = n = 76 so that (un, on, &) relate to
maximum on dataset.
Informally ...

1. Reparameterise: (pu,ou, &) — (un, on, ), Using
oy =on+&(U— pn);

N1 U—pun —-1/¢
s ()]

2. Poisson ~ binomial, for large n, small p,.
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NHPP on (60, o) s
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Extreme value regression modelling N

What if we have covariate effects?

e Appeal to standard theory conditional on the covariates.

e Specify that extreme value parameters, e.g. un, on, & are
functions of the value of a covariate x, e.qg.

NHPP(1n(x), on(x), £(xX))-
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Extreme value regression modelling N

What if we have covariate effects?

e Appeal to standard theory conditional on the covariates.

e Specify that extreme value parameters, e.g. un, on, & are
functions of the value of a covariate x, e.qg.

NHPP(1n(x), on(x), £(xX))-

e The PP model has the advantage (over the bin-GP model)
that its parameters are invariant to u.

... but does a constant threshold still make sense?
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Covariate-dependent thresholds #

Arguments for:

o Asymptotic justification : the threshold u(x) needs to be
high for each x.
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Covariate-dependent thresholds #

Arguments for:

o Asymptotic justification : the threshold u(x) needs to be
high for each x.

e Design : spread exceedances across a wide range of
covariate values.

e Parsimony : simpler model than with a constant threshold
(Eastoe and Tawn, 2009).

Set u(x) so that py(x) = P(Y > u(x)), is approx. constant for
all x.

e Set u(x) by trial-and-error or by discretising x, e.g.
different threshold for different locations, months etc.

e Quantile regression (QR) : model quantiles of Y as a
function of covariates.
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Quantile regression b
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QR and NHPP model parameterisation

Let pu(x) = P(Y > u(x)). Then, if {(x) = £ is constant,

u(x) - M(X)>]_1/£_

a(x)

1
Pu(X) ~ N [1 +f<
If pu(x) = py is constant then

u(x) = p(x) + co(x).
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QR and NHPP model parameterisation

Let pu(x) = P(Y > u(x)). Then, if {(x) = £ is constant,

pu(X) ~ 1N [1 e <u(x)_u(x))]—1@

a(x)
If pu(x) = py is constant then
u(x) = p(x) + co(x).
The form of u(x) is determined by the extreme value model:

e if u(x) and/or o(x) are linear in x: linear QR ;
e if log u(x) and/or log o(x) is linear in x: non-linear QR .
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Return to significant wave height data

e Fit NHPP regression model using maximum likelihood:
model effects on EV parameters as simple functions of
(scaled) water depth x , e.g.

1(X) = pio + paX.

e Assume ¢ > —1/2 for regularity.

e Threshold : use quantile regression to achieve approx.
constant probability p, of threshold exceedance over
space:

Model 100(1 — py)% quantile as a function of covariates.

e Spatial dependence .
¢ Not modelled explicitly: interest in one location only.
¢ Initially, assume conditional independence of responses
given covariate values.
o Adjust standard errors etc. for spatial dependence.
e ...Chandler and Bate (2007): scale log-likelihood so that
Hessian at MLE matches “sandwich” estimator of var(MLE).
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Threshold selection &

e Threshold level (determined by p,): bias-variance trade-off.

e lterative: form of threshold depends on NHPP covariate
model.

e For given EV model set threshold using appropriate QR
model.

e Treat QR threshold as fixed: simulation study (Northrop
and Jonathan, 2011) suggests effect of ignoring
uncertainty is minimal.

e Choice of exceedance probability p,: look for stability in
parameter estimates.

¢ Final model: u linear in water depth, o and £ constant.
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MLEs of shape parameter ¢ vs. 1 — p. #

1.0

0.5

P S — HHHHHHHHHHH\

-0.5

shape parameter

-1.0

0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97

probability of non—exceedance

Wave heights 25/35



87% u(x) and NHPP: 99%, 99.9%, 99.99% .
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89% u(x) and NHPP: 99%, 99.9%, 99.99% .
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91% u(x) and NHPP: 99%, 99.9%, 99.99% .
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93% u(x) and NHPP: 99%, 99.9%, 99.99% .
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95% u(x) and NHPP: 99%, 99.9%, 99.99% .
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97% u(x) and NHPP: 99%, 99.9%, 99.99% .
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Approx. predictive DF of m-year maximum
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Approx. predictive DF of m-year maximum
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Concluding remarks N

Quantile regression

¢ A simple and effective strategy to set thresholds for
non-stationary EV models.
e Theoretical work (Nicolas Attalides):
o Suppose that pu(xi, ..., Xq) = po + .74 [1iXi-
¢ If each of the g covariates are distributed symmetically then
a QR-threshold minimizes the generalised asymptotic
variance of (i1, ..., [ig)-
e (...but this doesn’t address bias).
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Concluding remarks N

Quantile regression
¢ A simple and effective strategy to set thresholds for
non-stationary EV models.
e Theoretical work (Nicolas Attalides):

o Suppose that pu(xi, ..., Xq) = po + .74 [1iXi-
¢ |f each of the g covariates are distributed symmetically then
a QR-threshold minimizes the generalised asymptotic

variance of (i1, ..., [ig)-
e (...but this doesn’t address bias).

Ongoing work
e Address bias-variance tradeoff.

e Threshold sensitivity/uncertainty. Extend Wadsworth and
Tawn (2012) to regression siutation.
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Thank you for your attention.
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