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1. Wave height data — design of safe marine structures.
2. Threshold-based extreme value modelling.

3. Quantile regression — thresholds for extreme value
regression models.

4. Adjustment for spatial dependence.
5. Wave height data.

2/30



Wave heights (at an unnamed location) .

Hindcasts of storm peak significant wave height (Y).

e wave height : trough to the crest of the wave;

¢ significant wave height : the average of the largest third of
wave heights (over 3 hour period).

o storm peak: largest value from each ‘storm’ identified;

e assume storms are approximately independent (cf.
declustering).

427 sites : within ~ 80km of site of interest.

1970 — 2007 : 76 storms .

Storms occur between November and May.

~ 2 storms per year, at each site, on average.
Potential covariates: water depth, longitude, latitude.

For confidentiality Y has been scaled to [0, 100].
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(Scaled) water depth and location .
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Storm damage #
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Storm damage b

At the centre of the grid of data (where scaled water depth = 0)
¢ How large will significant wave heights be in the next 100
years? ...or 1,000 years? ...or 10,000 years?
o Estimate extreme quantiles (upper tail).
e Issues: pooling of spatially-dependent data over space;
effect of water depth; extrapolation.
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Comments .

Measurement issues:

¢ Field measurement uncertainty greatest for extreme
values; long, homogeneous records in places of interest
are rare;

¢ Hindcast data are simulations based on pragmatic physics,
calibrated to historical observation.

In-house analyses:

e desire to pool data over space (precise track of
‘wave-causing events’ is somewhat random);

e ...but don’t account for strong spatial dependence;

e compromise: pool over a small number (5, say) of
non-contiguous sites ;

e potential covariate effects ignored.
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Spatial dependence in sig. wave height .
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Effect of water depth
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NHPP model .

e Consider responses Yi,..., Y, from a single site.

¢ Rescale time (storm number) to (0,1) and let M(t;, t>, u) be
the number of observations in [t1, &] x (u, o0).

¢ 2D non-homogeneous Poisson process NHPP (i, on, &)

model, s.t.
— —1/¢
M(t;, to, u) ~ Poisson (n(t2 —t) [1 +e <U MN>} ) |
N ON .
e un,on and ¢ are GEV parameters of max(Ys,..., Yn).

e Here, we choose N = n = 76 so that (un, on, &) relate to
maximum on dataset.
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Extreme value regression modelling N

What if anticipate have covariate effects, e.g. water depth?

e Appeal to standard theory conditional on the covariates.

e Specify that extreme value parameters, e.g. un, on, & are
functions of the value of a covariate x, e.qg.

NHPP(1n(x), on(x), £(xX))-
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Extreme value regression modelling N

What if anticipate have covariate effects, e.g. water depth?

e Appeal to standard theory conditional on the covariates.

e Specify that extreme value parameters, e.g. un, on, & are
functions of the value of a covariate x, e.qg.

NHPP(1n(x), on(x), £(xX))-

e The PP model has the advantage (over the bin-GP model)
that its parameters are invariant to u.

... but does a constant threshold still make sense?
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Covariate-dependent thresholds #

Arguments for:

e Asymptotic justification : the threshold u(x) needs to be
high for each x.
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Covariate-dependent thresholds #

Arguments for:

e Asymptotic justification : the threshold u(x) needs to be
high for each x.

e Design : spread exceedances across a wide range of
covariate values.

e Parsimony : simpler model than with a constant threshold
(Eastoe and Tawn, 2009).

Set u(x) so that py(x) = P(Y > u(x)), is approx. constant for
all x.
[Model u(x) for fixed p, rather than p,(x) for fixed u.]
e Set u(x) by trial-and-error or by discretising x, e.g.
different threshold for different locations, months etc.
e Quantile regression (QR) : model quantiles of Y as a
function of covariates.
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Quantile regression b
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QR and NHPP model parameterisation

Let pu(x) = P(Y > u(x)). Then, if {(x) = £ is constant,

u(x) - M(X)>]_1/£_

a(x)

1
Pu(X) ~ N [1 +f<
If pu(x) = py is constant then

u(x) = p(x) + co(x).
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QR and NHPP model parameterisation

Let pu(x) = P(Y > u(x)). Then, if {(x) = £ is constant,

pu(X) ~ 1N [1 e <u(x)_u(x))]—1@

a(x)
If pu(x) = py is constant then
u(x) = p(x) + co(x).
The form of u(x) is determined by the extreme value model:

e if u(x) and/or o(x) are linear in x: linear QR ;
e if log u(x) and/or log o(x) is linear in x: non-linear QR .
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Adjustment for spatial dependence

Independence log-likelihood:

427 k

k
Ino(0) = > Y logfi(yid, x) =Y (#).
j=1 =1 j=1
(storms) (space)

In regular problems, as k — oo,

¢ — N(¢o, H ' VH),

e H = expected Hessian: E (aanz I,ND(¢0)>;

o V=var (a% //ND(¢))
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Adjustment of IIND(¢) &

~

e H = observed Hessian, at $;

o (60 Ha(6—9) -
hou(®) = Ino(d) + " == "= (Ino(@) — Inol4))

e Adjust /jp(¢) so that its Hessian is Hy at ngb rather than H.

e Preserves the usual asymptotic distribution of the
likelihood ratio statistic.
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Return to significant wave height data

e Fit NHPP regression model using maximum likelihood:
model effects on EV parameters as simple functions of
(scaled) water depth x , e.g.

1(X) = po + prx.

e Assume ¢ > —1/2 for regularity.

e Threshold : use quantile regression to achieve approx.
constant probability p, of threshold exceedance over
space:

Model 100(1 — pu)% quantile as a function of covariates.

e Spatial dependence .

o Not modelled explicitly: interest in one location only.
¢ Use Chandler-Bate adjustment of independence
log-likelihood.
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Threshold selection &

e Threshold level (determined by p,): bias-variance trade-off.

e lterative: form of threshold depends on NHPP covariate
model.

e For given EV model set threshold using appropriate QR
model.

e Treat QR threshold as fixed: simulation study (Northrop
and Jonathan, 2011) suggests effect of ignoring
uncertainty is minimal.

e Choice of exceedance probability p,: look for stability in
parameter estimates.

e Final model: u linear in water depth, o and £ constant.
[No significant spatial effects.]
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MLEs of shape parameter ¢ vs. 1 — p.
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MLEs of coeff. of depth ;1 vs. 1 — p.
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87% u(x) and NHPP: 99%, 99.9%, 99.99% .
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89% u(x) and NHPP: 99%, 99.9%, 99.99% .

150

100

50

-0.6 -0.4 -0.2 0.0 0.2
water depth

Wave heights 22/30



91% u(x) and NHPP: 99%, 99.9%, 99.99% .
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93% u(x) and NHPP: 99%, 99.9%, 99.99% .
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95% u(x) and NHPP: 99%, 99.9%, 99.99% .
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97% u(x) and NHPP: 99%, 99.9%, 99.99% .
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Approx. predictive DF of m-year maximum
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Approx. predictive DF of m-year maximum
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Concluding remarks N

Quantile regression
¢ A simple and effective strategy to set thresholds for
non-stationary EV models.
e Simpler r—largest order statistics approach
(Chavez-Demoulin et al., 2011) for discrete covariates;
¢ Theoretical work (Nicolas Attalides):
e Suppose that ju(X1, ..., Xq) = po + D74 HiXi-
o If each of the g covariates are distributed symmetically then
a QR-threshold minimizes the generalised asymptotic
variance of (fi1, ..., [ig).
e (...but this doesn’t address bias).
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Concluding remarks N

Quantile regression
¢ A simple and effective strategy to set thresholds for
non-stationary EV models.
e Simpler r—largest order statistics approach
(Chavez-Demoulin et al., 2011) for discrete covariates;
¢ Theoretical work (Nicolas Attalides):
e Suppose that ju(X1, ..., Xq) = po + D74 HiXi-
o If each of the g covariates are distributed symmetically then
a QR-threshold minimizes the generalised asymptotic
variance of (fi1, ..., [ig).
e (...but this doesn’t address bias).
Ongoing work
¢ Address bias-variance tradeoff.
e Threshold sensitivity/uncertainty. Extend Wadsworth and
Tawn (2012) to regression situation.
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