

Using Statistics to assess climate uncertainty

Paul Northrop, University College London paul@stats.ucl.ac.uk

This is joint work with Richard Chandler.

Overview

- Climate uncertainty and design of experiments
- Examples : 21st century
 - 1. global temperature
 - 2. regional temperature
 - 3. regional precipitation
- Implications for the design of climate model experiments

Design of climate model experiments

- Prediction from climate models is time-consuming
- We want to make best use of this time/effort
- Experimental design: how best to organise an experiment in order to answer the question(s) of interest with sufficient precision
- Question: "Which sources of climate uncertainty are most important?"
 - IPCC AR4 data
 - Simple probability model
 - Implications for design of climate experiments

Some sources of uncertainty in climate predictions

- Climate model (GCM)
- SRES emission scenario (A1B, A2, B1, ...)
- GCM run

The greater the variability in climate predictions over, say, GCMs, the more the choice of GCM matters.

IPCC AR4 data

- WCRP CMIP3 Multi-Model Dataset Archive at PCMDI
- 24 GCMs
- 3 scenarios: A1B, A2, B1
- Some GCMs have multiple runs per scenario; some have none.
- Not a designed experiment
- There is scope to increase the usefulness of runs

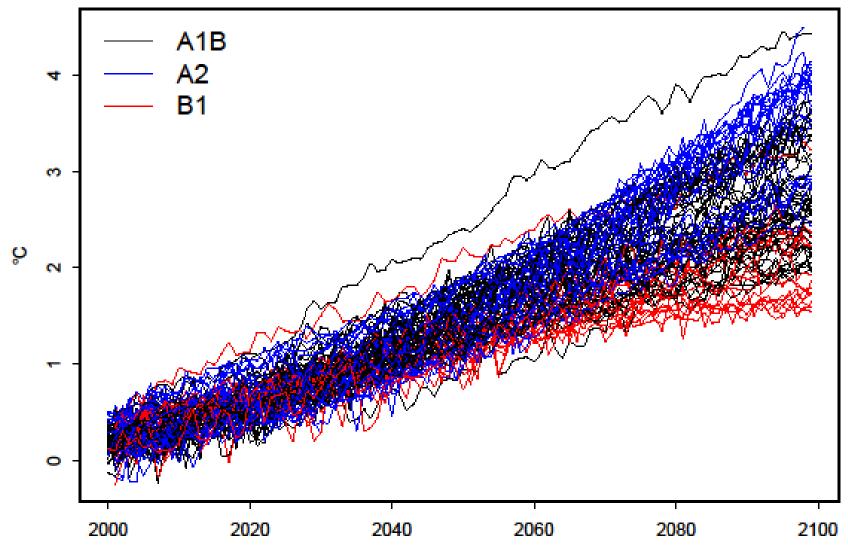
Example 1 : 21st century global (surface air) temperature

- We define an index of temperature change
- Baseline: mean temperature in 1980-1999
- 2 time horizons:
 - 1. Change in 2020-2049 mean from 1980-1999 mean
 - 2. Change in 2069-2098 mean from 1980-1999 mean
- Units are °C throughout

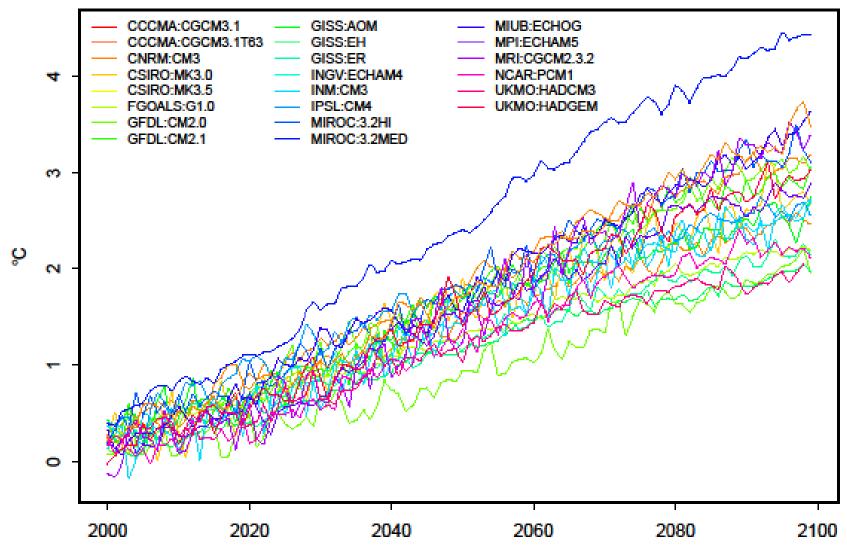
PCMDI data

CCM	A 1 D	A O	D1
GCM	A1B	A2	B1
bccr:bcm2:0	1	1	1
cccma:cgcm3:1	5	5	5
cccma:cgcm3:1:t63	1	0	1
cnrm:cm3	1	1	1
csiro:mk3:0	1	1	1
csiro:mk3:5	1	1	1
gfdl:cm2:0	1	1	1
gfdl:cm2:1	1	1	1
giss:aom	2	0	2
giss:model:e:h	3	0	0
giss:model:e:r	5	1	1
iap:fgoals1:0:g	3	0	3
ingv:echam4	1	1	0
inmcm3:0	1	1	1
ipsl:cm4	1	1	1
miroc3:2:hires	1	0	1
miroc3:2:medres	3	3	3
miub:echo:g	3	3	3
mpi:echam5	4	3	3
mri:cgcm2:3:2a	5	5	5
ncar:ccsm3:0	7	5	8
ncar:pcm1	4	4	4
ukmo:hadcm3	1	1	1
ukmo:hadgem1	1	1	0
	57	40	48

UCL

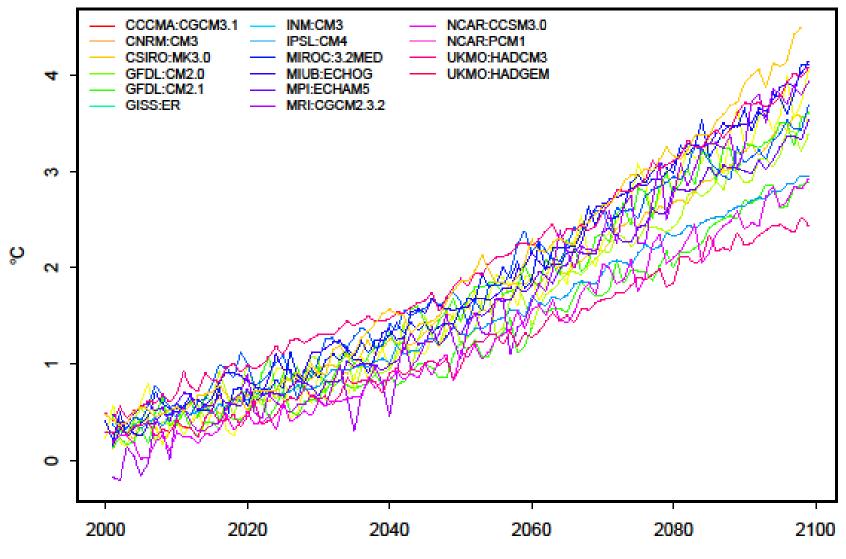


22 GCMs: 1 run each under scenario A1B

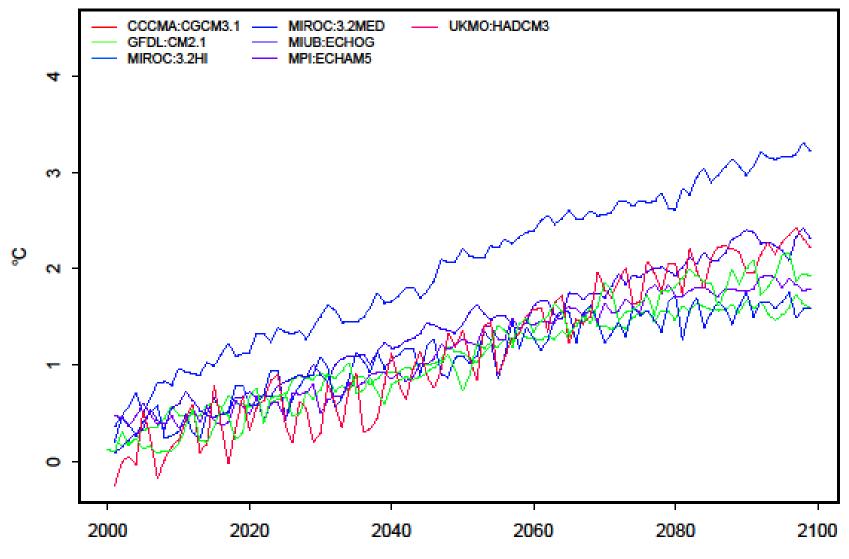


UCL

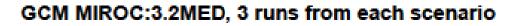
16 GCMs: 1 run each under scenario A2

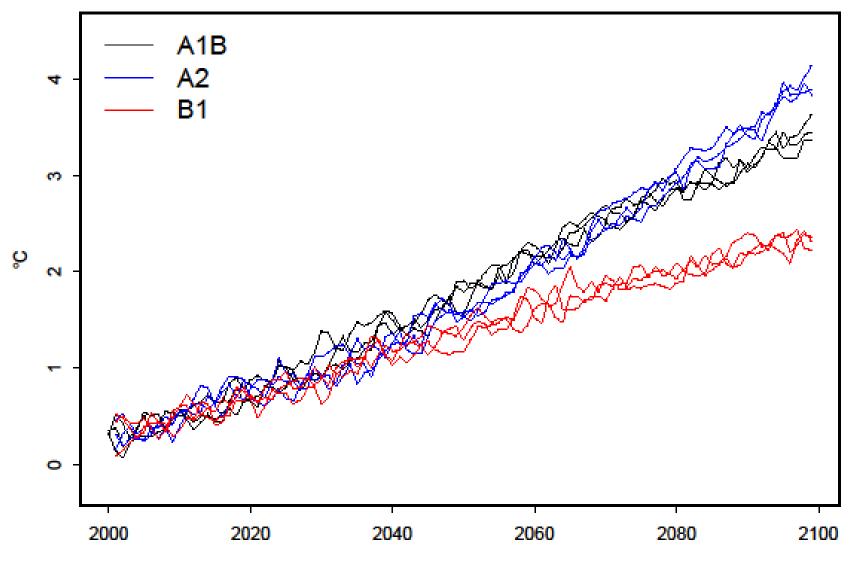


7 GCMs: 1 run each under scenario B1



UCL





2-way random effects ANOVA

 Y_{ijk} = measure of change for GCM *i*, scenario *j* and run *k*.

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk},$$

- μ overall mean change
- α_i adjustment for GCM *i*
- β_i adjustment for scenario j
- γ_{ij} scenario-specific adjustment for GCM *i*
- ϵ_{ijk} residual effect of variability over runs

$$\begin{array}{l} \alpha_{i} \stackrel{iid}{\sim} N\left(0,\sigma_{G}^{2}\right) \\ \beta_{j} \stackrel{iid}{\sim} N\left(0,\sigma_{S}^{2}\right) \\ \gamma_{ij} \stackrel{iid}{\sim} N\left(0,\sigma_{I}^{2}\right) \\ \epsilon_{ijk} \stackrel{iid}{\sim} N\left(0,\sigma_{R}^{2}\right) \end{array}$$

In particular, we are interested in the relative magnitudes of the variance components

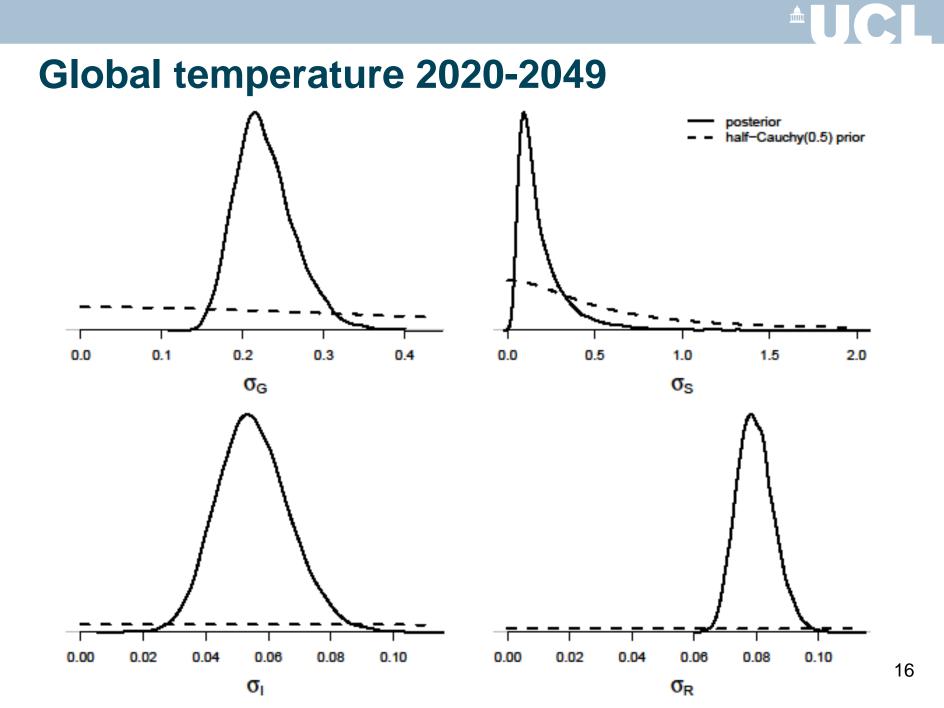
$$\sigma_{\!G}^2, \; \sigma_{\!S}^2$$
 and $\sigma_{\!R}^2$

Statistical inference

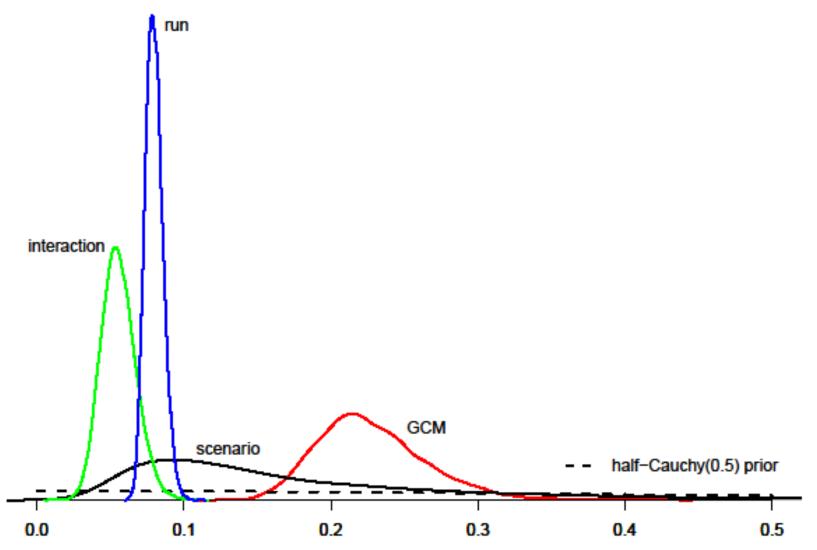
- Issues
 - 1. Scenario has only 3 levels. Lack of information about variability over scenarios (σ_s).
 - 2. Lack of balance.
 - 3. No runs for some GCM-scenario combinations
- REML (cf. posterior mode). Gilmour & Goos (2009) argue against REML : $\sigma_{\rm S}$ tends to be underestimated.
- Bayesian inference (cf. posterior mean or median) with weakly-informative priors

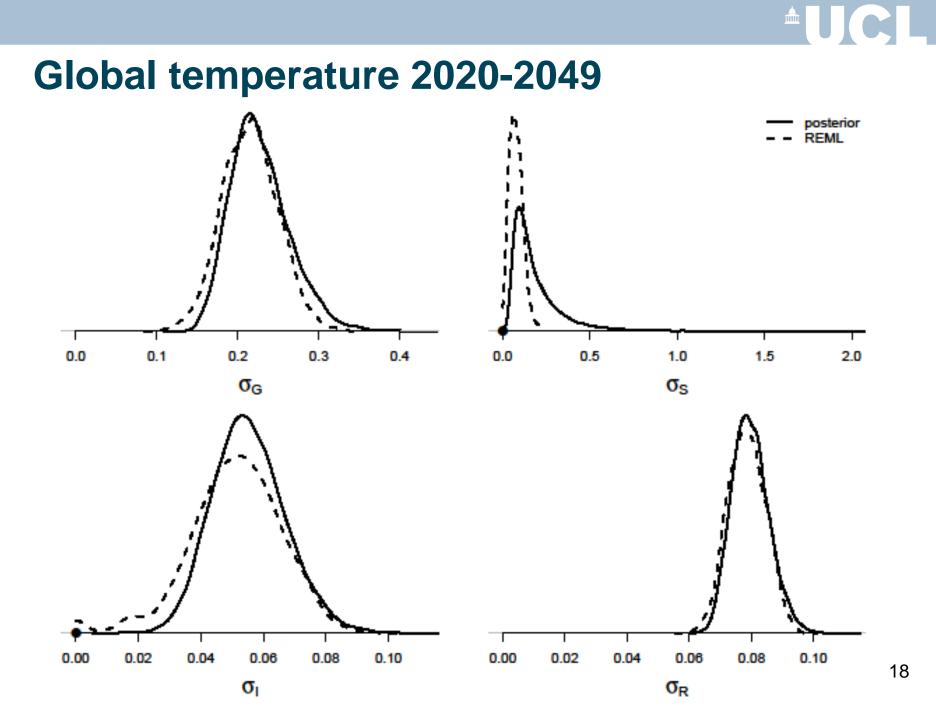
Weakly-informative priors for variance parameters

- ... let the data speak for themselves, but downweight unrealistic possibilities
- The data provide little information about σ_S
- Gelman (2006) argues against improper uniform priors and the inverse-gamma family.
- ... and for a half-Cauchy prior
- Idea: we choose the prior so that
 - 1. It is weakly-informative for σ_s
 - 2. It is non-informative for σ_G , σ_I and σ_R

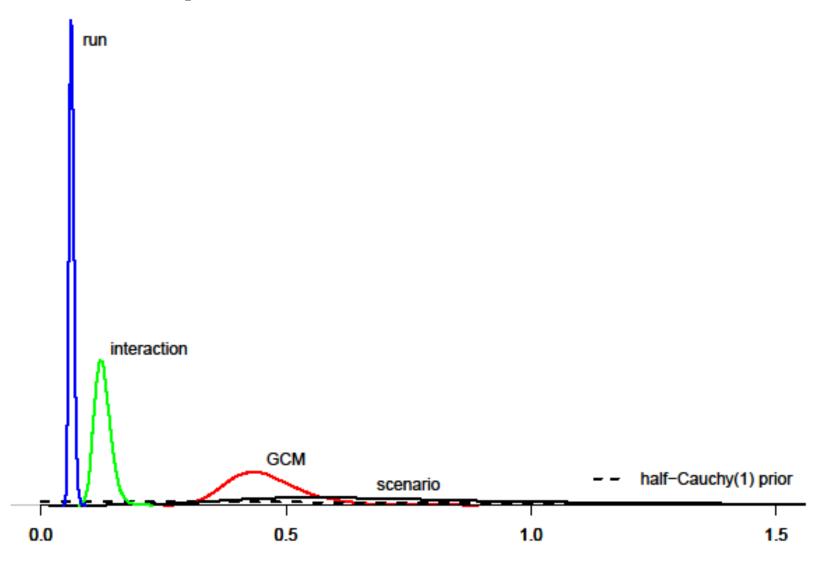


Global temperature 2020-2049



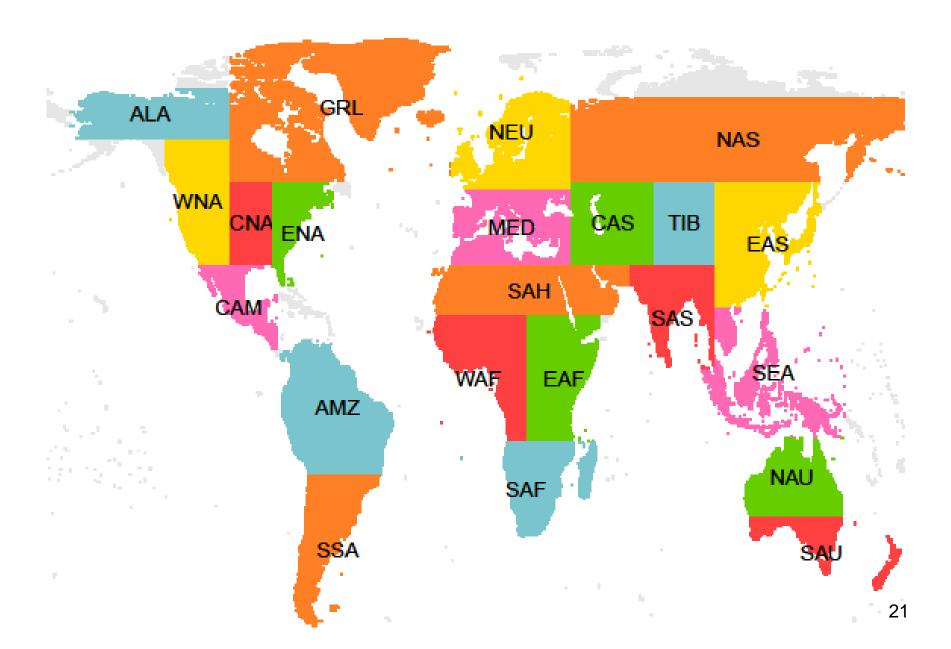


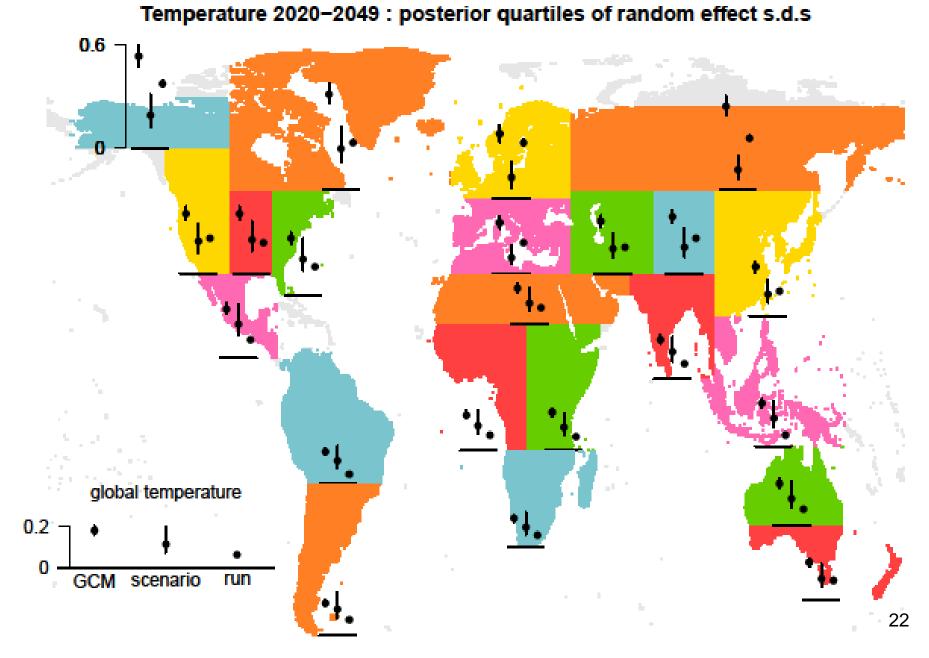
Global temperature 2069-2098



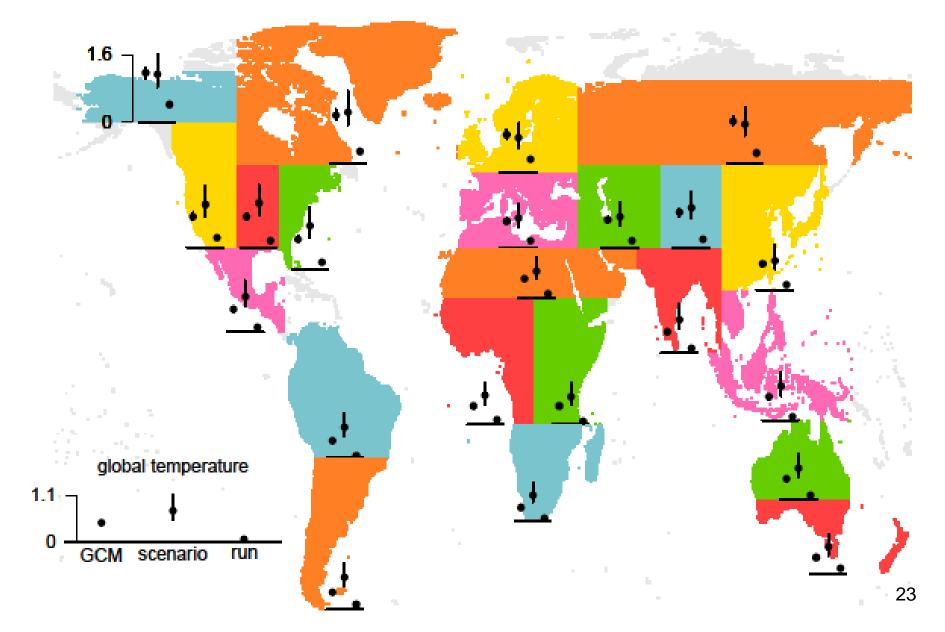
Example 2 : regional temperature

- 22 land regions (IPCC Data Distribution Centre)
- We repeat the Bayesian analysis with weaklyinformative priors within each region





Temperature 2069–2098 : posterior quartiles of random effect s.d.s



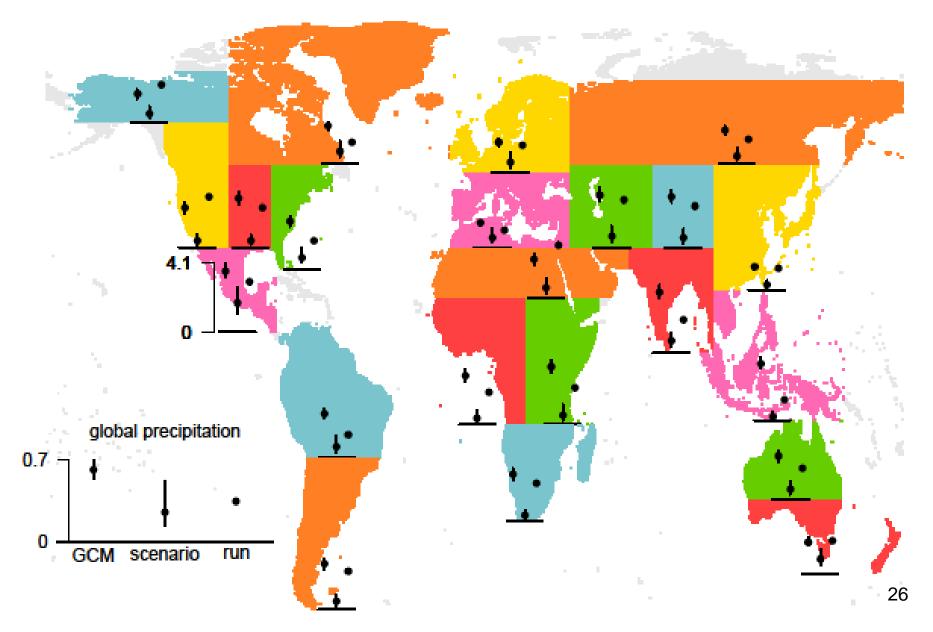
Summary for temperature

- 2020-2049
 - Global : variability over GCMs > scenario > runs
 - Regional: runs matters more than scenario in some areas, e.g. In the north
- 2069-2098
 - Scenario matters more as we move through the 21st century (obviously!)
 - Scenario is at least as important as GCM in most regions

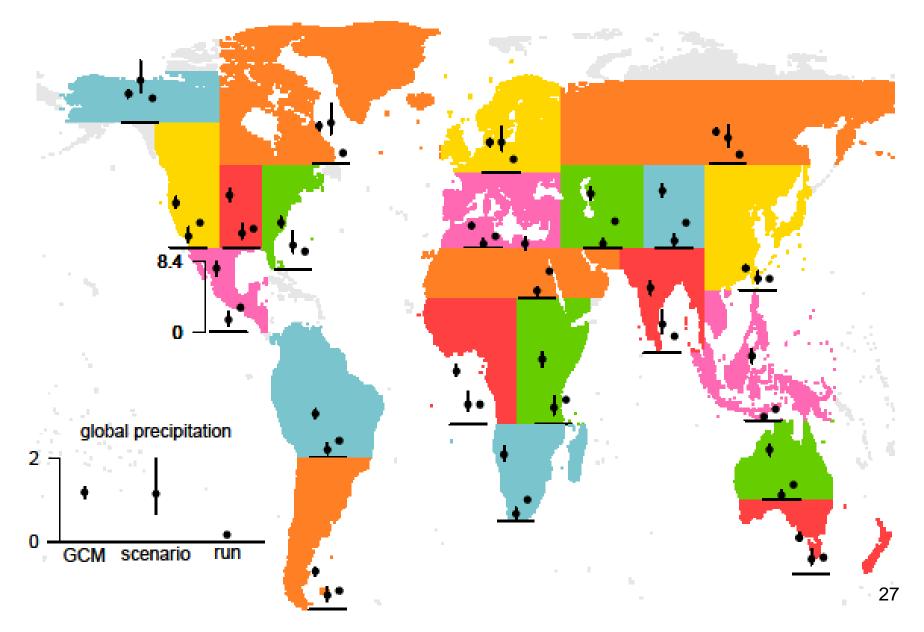
Example 3: regional precipitation

- Variable: precipitation flux, converted to mm/day
- Same idea as regional temperature
- Index of change is the % change in mean from the baseline period of 1980-1999

Precipitation 2020–2049 : posterior quartiles of random effect s.d.s



Precipitation 2069–2098 : posterior quartiles of random effect s.d.s



Summary for precipitation

- 2020-2049
 - Global : variability over GCMs largest, but relatively high variability over different runs from the same GCM
 - Regional : a similar picture. In some areas (e.g. Alaska) var. over runs > var. over GCMs
- 2069-2098
 - Global : choice of scenario becoming more important as century progresses
 - In many regions scenario is relatively unimportant

Summary

- The relative importance of GCM, scenario and run depends on
 - 1. climate variable
 - 2. region
 - 3. time horizon
 - 4. season?
- Implications for the efficient design of future climate experiments ...

Experimental design (general idea)

- Probability model with parameters, e.g. $\sigma_G, \sigma_S, \sigma_R$
- Frame questions in terms of parameters
- Fixed resources : how do we collect data to estimate parameter(s) of interest with greatest precision, e.g. to minimize $var(\hat{\sigma}_G)$?
- Unlimited resources: what data are required to estimate parameter(s) with desired precision ?
- Use of stochastic simulation

Experimental design (in current context)

- Review of design for variance components estimation by Khuri (2000)
- Optimal design depends on $\sigma_{G}, \sigma_{S}, \sigma_{R}$ (prior information.; adaptive designs?)
- 1. Fixed number of GCMs and scenarios
 - Balanced design is optimal
- 2. Can choose numbers of GCMs and scenarios
 - If σ_R is dominant balanced design is optimal
 - If not, there are more efficient unbalanced designs
 - If $\sigma_s >> \sigma_R$ we need large number of scenarios and small number of runs per scenario

Concluding remarks

- Strategic planning of climate experiments can increase increase the cost-effectiveness and usefulness of climate model runs
- (Relatively) simple probability models can inform design
- Better representation of future conditions needed
- `Representative Concentration Pathways' : "designed to span a wide range of outcomes" (Chandler *et al.* (2010)

References

- Chandler et al. (2010) Significance, 7(1), 9-12
- Gelman, A. (2006) *Bayesian Analysis*, 1(3), 515-533
- Gilmour, S.G. and Goos, P. (2009) Appl. Statist. 58(4), 467-484
- Khuri, A.I. (2000) Inst. Statist. Rev., 68(3),311-322
- Software. R : <u>http://www.R-project.org</u>
- WCRP CMIP3 Multi-Model Dataset Archive at PCMDI <u>https://esgcet.llnl.gov:8443/home/publicHomePage.do</u>
- KNMI Climate Explorer http://climexp.knmi.nl/

Thank you for listening