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Overview

• Climate uncertainty and design of experiments

• Examples : 21st century

1. global temperature

2. regional temperature

3. regional precipitation

• Implications for the design of climate model 

experiments
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Design of climate model experiments

• Prediction from climate models is time-consuming

• We want to make best use of this time/effort

• Experimental design: how best to organise an 

experiment in order to answer the question(s) of 

interest with sufficient precision 

• Question: “Which sources of climate uncertainty 

are most important?”

– IPCC AR4 data

– Simple probability model

– Implications for design of climate experiments
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Some sources of uncertainty in climate 

predictions

• Climate model (GCM)

• SRES emission scenario (A1B, A2, B1, …)

• GCM run

The greater the variability in climate predictions 
over, say, GCMs, the more the choice of GCM 
matters.
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IPCC AR4 data

• WCRP CMIP3 Multi-Model Dataset Archive at 

PCMDI 

• 24 GCMs

• 3 scenarios: A1B, A2, B1

• Some GCMs have multiple runs per scenario; 

some have none.

• Not a designed experiment

• There is scope to increase the usefulness of runs
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Example 1 : 21st century global (surface air) 

temperature

• We define an index of temperature change

• Baseline: mean temperature in 1980-1999

• 2 time horizons:

1. Change in 2020-2049 mean from 1980-1999 mean

2. Change in 2069-2098 mean from 1980-1999 mean

• Units are °C throughout
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PCMDI data
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2-way random effects ANOVA
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Statistical inference

• Issues

1. Scenario has only 3 levels.  Lack of information about 

variability over scenarios (σS).

2. Lack of balance.

3. No runs for some GCM-scenario combinations

• REML (cf. posterior mode).  Gilmour & Goos 

(2009) argue against REML : σS tends to be 

underestimated.

• Bayesian inference (cf. posterior mean or median) 

with weakly-informative priors
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Weakly-informative priors for variance 

parameters 

• ... let the data speak for themselves, but 

downweight unrealistic possibilities

• The data provide little information about σS

• Gelman (2006) argues against improper uniform 

priors and the inverse-gamma family.

• ... and for a half-Cauchy prior 

• Idea: we choose the prior so that

1. It is weakly-informative for σS

2. It is non-informative for σG, σI and σR
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Global temperature 2020-2049
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Global temperature 2020-2049
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Global temperature 2020-2049
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Global temperature 2069-2098
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Example 2 : regional temperature

• 22 land regions (IPCC Data Distribution Centre)

• We repeat the Bayesian analysis with weakly-

informative priors within each region
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Summary for temperature

• 2020-2049 

– Global : variability over GCMs > scenario > runs

– Regional: runs matters more than scenario in some 

areas, e.g. In the north

• 2069-2098

– Scenario matters more as we move through the 21st

century (obviously!)

– Scenario is at least as important as GCM in most 

regions
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Example 3: regional precipitation

• Variable: precipitation flux, converted to mm/day

• Same idea as regional temperature

• Index of change is the % change in mean from the 

baseline period of 1980-1999
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Summary for precipitation

• 2020-2049

– Global : variability over GCMs largest, but relatively 

high variability over different runs from the same GCM

– Regional : a similar picture.  In some areas (e.g. 

Alaska) var. over runs > var. over GCMs

• 2069-2098

– Global : choice of scenario becoming more important as 

century progresses

– In many regions scenario is relatively unimportant
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Summary

• The relative importance of GCM, scenario and run 

depends on

1. climate variable

2. region

3. time horizon

4. season ?

• Implications for the efficient design of future 

climate experiments ...
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Experimental design (general idea)

• Probability model with parameters, e.g. σG,σS,σR

• Frame questions in terms of parameters

• Fixed resources : how do we collect data to 

estimate parameter(s) of interest with greatest 

precision, e.g. to minimize var(σ^G) ?

• Unlimited resources: what data are required to 

estimate parameter(s) with desired precision ?

• Use of stochastic simulation
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Experimental design (in current context) 

• Review of design for variance components 
estimation by Khuri (2000)

• Optimal design depends on σG,σS,σR 
(prior information.; adaptive designs?)

1. Fixed number of GCMs and scenarios
– Balanced design is optimal

2. Can choose numbers of GCMs and scenarios
– If σR is dominant balanced design is optimal

– If not, there are more efficient unbalanced designs 

– If σS >> σR we need large number of scenarios and 
small number of runs per scenario
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Concluding remarks

• Strategic planning of climate experiments can 

increase increase the cost-effectiveness and 

usefulness of climate model runs

• (Relatively) simple probability models can inform 

design

• Better representation of future conditions needed

• `Representative Concentration Pathways’ : 

“designed to span a wide range of outcomes” 

(Chandler et al. (2010)
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• KNMI Climate Explorer http://climexp.knmi.nl/
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Thank you for listening
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