

Quantifying sources of uncertainty in projections of future climate

Paul Northrop Richard Chandler Department of Statistical Science University College London

UCL Environment Institute Conference 17th June 2013

Human-induced climate change

Greenhouse gases (warming) CO₂ (fossil fuels, deforestation) methane (livestock), N₂O (fertilizers) **Industrial air pollution (cooling)** sulphates, soot

Increase in global temperature

Arctic shrinkage, sea level rise change in disease patterns, species extinctions

Changes in climate (long-term weather)

change in rainfall patterns, extreme weather? floods? drought?

UCL

Question: Is variability in projected climate variables due mainly to choice of

- General Circulaton Model GCM (climate simulator),
- future greenhouse gas emissions scenario, or
- GCM run (simulation number)?
- ... or a mixture of these?
- ... does it matter how far into the future we want to look?
- ... does the climate variable matter?
- ... does the region of the world matter?

Simple measures of climate change, e.g. global temperature

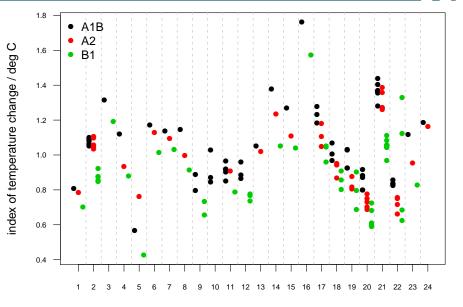
- 1. average change in 2020–2049 (relative to 1980–1999)
- 2. average change in 2069-2098 (relative to 1980-1999)

IPCC 4th Assessment Report 2007 data

		scenario		
GCM number	GCM name	A1B	A2	B1
1	bccr:bcm2:0	1	1	1
2	cccma:cgcm3:1	5	5	5
3	cccma:cgcm3:1:t63	1	0	1
4	cnrm:cm3	1	1	1
5	csiro:mk3:0	1	1	1
6	csiro:mk3:5	1	1	1
7	gfdl:cm2:0	1	1	1
8	gfdl:cm2:1	1	1	1
9	giss:aom	2	0	2
10	giss:model:e:h	3	0	0
11	giss:model:e:r	5	1	1
12	iap:fgoals1:0:g	3	0	3
13	ingv:echam4	1	1	0
14	inmcm3:0	1	1	1
15	ipsl:cm4	1	1	1
16	miroc3:2:hires	1	0	1
17	miroc3:2:medres	3	3	3
18	miub:echo:g	3	3	3
19	mpi:echam5	4	3	3
20	mri:cgcm2:3:2a	5	5	5
21	ncar:ccsm3:0	7	5	8
22	ncar:pcm1	4	4	4
23	ukmo:hadcm3	1	1	1
24	ukmo:hadgem1	1	1	0
total	· · · ·	57	40	48

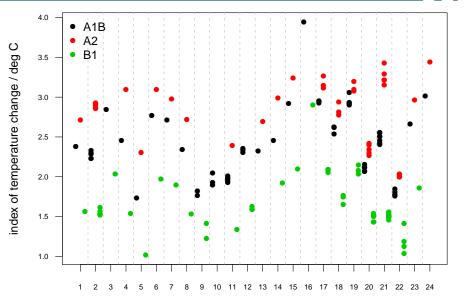
No design. Lack of balance. Zero cells. Complicates analysis. Each run takes approx. 1 month.

Global temperature change 2020–2049



GCM number

Global temperature change 2069–2098



GCM number

A 2-way random effects ANOVA

 Y_{ijk} = measure of change for **GCM** *i*, scenario *j* and run *k*.

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk},$$

- μ overall mean change
- α_i adjustment for GCM *i*
- β_j adjustment for scenario j
- γ_{ij} scenario-specific adjustment for GCM *i*
- ϵ_{ijk} residual effect of variability over runs

 $\begin{array}{l} \alpha_{i} \stackrel{\textit{iid}}{\sim} N\left(0, \sigma_{g}\right) \\ \beta_{j} \stackrel{\textit{iid}}{\sim} N\left(0, \sigma_{s}\right) \\ \gamma_{ij} \stackrel{\textit{iid}}{\sim} N\left(0, \sigma_{gs}\right) \\ \epsilon_{ijk} \stackrel{\textit{iid}}{\sim} N\left(0, \sigma_{g}\right) \end{array}$

- α_i ^{iid} ~ N(0, σ_G) means α₁, α₂,... are independent and normally distributed with mean 0 and st. dev. σ_G.
- Imagine a population of GCMs, each producing a separate effect on *Y*_{ijk}.
- We assume that all random variables are independent.

- μ overall temperature change (headline value)
- σ_{G} variability over GCMs
- σ_S variability over scenarios
- σ_{GS} variability of scenario-specific adjustment for GCM
- σ_R variability over runs
 - Large value of σ ⇒ variable makes a big difference to predictions of global temperature:
 e.g. if σ_G is large then the choice of GCM really matters.
 - Large variability \Rightarrow large uncertainty.

Issues

- 1. Lack of balance.
- 2. No runs for some GCM-scenario combinations.
- 3. Scenario has only 3 levels. Little information in data about variability over scenarios σ_S .
 - Benefit from incorporating information about σ_S .
 - Bayesian inference
 - (independent) prior distributions for θ = (μ, σ_G, σ_S, σ_{GS}, σ_R): distribution of θ in absence of data y
 - posterior distribution π(θ | y) ∝ L(y; θ) π(θ) = likelihood × prior.
 - sample from $\pi(\theta \mid \mathbf{y})$ using Markov Chain Monte Carlo (MCMC).

Use a prior distribution that is

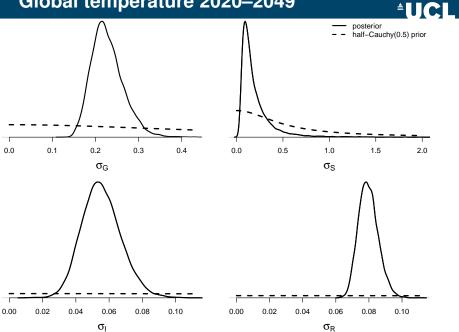
- weakly-informative for σ_S , and
- (effectively) uninformative for $\sigma_G, \sigma_{GS}, \sigma_R$ (and μ).

Idea

- downweight unrealistic values of σ_S because the data aren't informative enough to discount these values;
- ... e.g. unlikely that end of 21st century projections from two different scenarios differ by as much as 20°C;
- otherwise let the data speak for themselves;
- use half-Cauchy priors for the σ s (Gelman, 2006);

ش ا

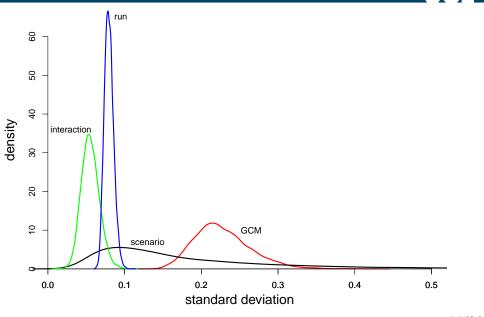
Global temperature 2020–2049



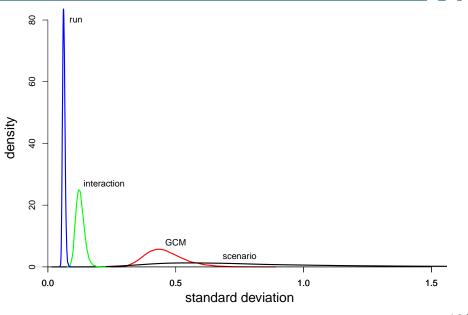
 σ_{l}

10/20

Global temp. 2020–2049: posterior distns LUCI

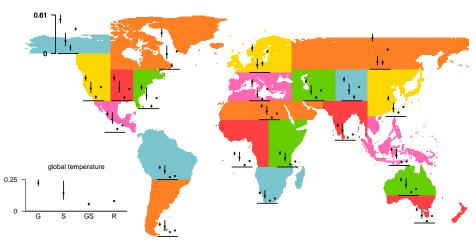


Global temp. 2069–2098: posterior distns



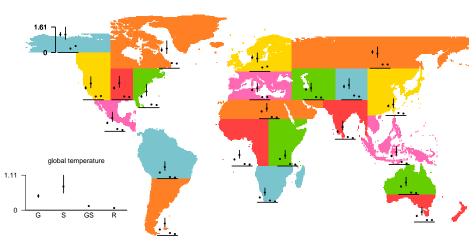
12/20

Regional temperature: 2020–2049



median (•) and line between quartiles

Regional temperature: 2069–2098



median (•) and line between quartiles

2020-2049

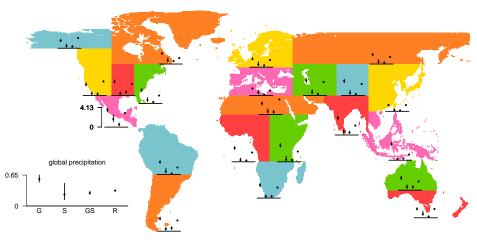
- Global : variability over GCMs > scenario > runs
- Regional: runs matters more than scenario in some areas, e.g. In the north

2069-2098

- Scenario matters more as we move through the 21st century (obviously!)
- Scenario is at least as important as GCM in most regions

Regional rainfall: 2020-2049

Percentage change in mean from 1980–1999

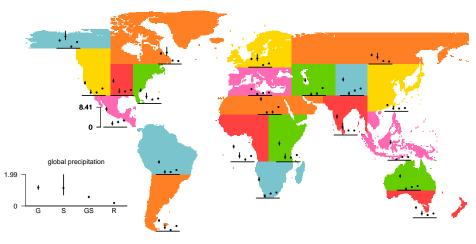


median (•) and line between quartiles

UC

Regional rainfall: 2069–2098

Percentage change in mean from 1980–1999



median (•) and line between quartiles

2020-2049

- Global : variability over GCMs largest, but relatively high variability over different runs from the same GCM
- Regional : a similar picture. In some areas (e.g. Alaska) var. over runs > var. over GCMs

2069-2098

- Global : choice of scenario becoming more important as century progresses
- In many regions scenario is relatively unimportant

1. Climate uncertainty depends on

- the variable of interest;
- the region of the world;
- the time horizon.
- 2. Simple statistical models are useful.
- 3. Scope to improve design of climate experiments.
- 4. How best to combine projections from multiple climate simulators? See Marianna Demetriou's poster.

- Gelman, A. (2006) Prior distributions for variance parameters in hierarchical models. *Bayesian Analysis*, 1(3), 515–533
- Chandler, R. E., Rougier, J. and Collins, M. (2010) Climate change: making certain what the uncertainties are *Significance*, **7**(1), 9-12
- WCRP CMIP3 Multi-Model Dataset Archive at PCMDI https://esgcet.llnl.gov: 8443/home/publicHomePage.do
- Northrop, P. J. and Chandler, R. E. Quantifying sources of uncertainty in projections of future climate. *Available very soon*

Thank you for your attention

(Educated) guesses at what the world will be like over the next 100 years.

- **B1**: low emissions, clean and efficient technologies, global sustainability, population peaks in 2050.
- **A2**: medium-high emissions, economic growth on regional scales, increasing population.
- A1B: high emissions (a balance across all fuel sources), very rapid economic growth, market forces dominate, population peaks in 2050.

... and many others.

Experimental design (2-way RE ANOVA)

- Review of design for variance components estimation: Khuri, A.I. (2000) Inst. Statist. Rev., 68(3),311–322
- Optimal design depends on *σ_G*, *σ_S*, *σ_R* (prior information; adaptive designs?)
- 1. Fixed number of GCMs and scenarios
 - Balanced design is optimal
- 2. Can choose numbers of GCMs and scenarios
 - If *σ_R* is dominant, balanced design is optimal
 - · If not, there are more efficient unbalanced designs
 - If σ_S >> σ_R we need large number of scenarios and small number of runs per scenario.

