

Threshold modelling of spatially-dependent non-stationary extremes

Paul Northrop
University College London
paul@stats.ucl.ac.uk

EVA Lyon 29th June 2011

This is joint work with Philip Jonathan

Outline

- Wave height data → design of safe marine structures.
- Spatial non-stationarity and dependence
- Thresholds for non-stationary extremes
- Model parameterisation
- Theoretical and simulation studies
- Wave height data

Wave heights from the Gulf of Mexico

- Hindcasts of Y storm peak significant wave height (in metres) in the Gulf of Mexico.
 - wave height: trough to the crest of the wave.
 - significant wave height: the average of the largest 1/3 wave heights. A measure of sea surface roughness.
 - storm peak: largest value from each storm (hurricane): declustering.
- a 6 \times 12 grid of 72 sites (\approx 14 km apart).
- Sep 1900 to Sep 2005 : 315 storms in total.
- average of 3 observations (storms) per year, at each site.

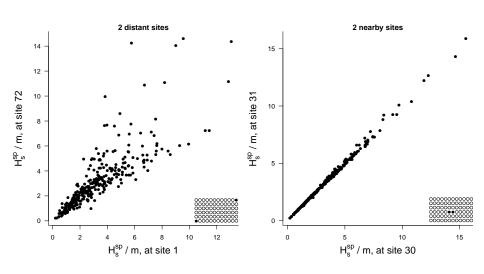
Hurricane Katrina: Aug 2005

Hurricane damage

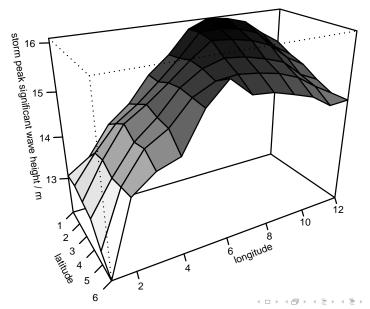
Hurricane damage

- Marginal EV regression modelling of Y, adjusting for spatial dependence.
- Spatial dependence not modelled explicitly: effect on marine structure is at one location.
- Estimate marginal extreme quantiles.

Spatial dependence



Spatial non-stationarity



Modelling approach

 Spatial non-stationarity: model spatial effects on EV parameters as Legendre polynomials in longitude and latitude.

Modelling approach

- Spatial non-stationarity: model spatial effects on EV parameters as Legendre polynomials in longitude and latitude.
- Threshold: Use quantile regression to achieve approx.
 constant probability p of threshold exceedance over space:

Model 100(1 - p)% quantile as a function of covariates.

Modelling approach

- Spatial non-stationarity: model spatial effects on EV parameters as Legendre polynomials in longitude and latitude.
- Threshold: Use quantile regression to achieve approx.
 constant probability p of threshold exceedance over space:
 - Model 100(1 p)% quantile as a function of covariates.
- Spatial dependence.
 - Estimate parameters assuming conditional independence of responses given covariate values.
 - Adjust standard errors etc. for spatial dependence.

Extreme value regression model

Conditional on covariates x_{ij} exceedances over a high threshold $u(x_{ij})$ follow a **2-dimensional non-homogeneous Poisson process**.

If responses Y_{ij} , $i=1,\ldots,72$ (space), $j=1,\ldots,315$ (storm) are conditionally independent:

$$L(\theta) = \prod_{j=1}^{315} \prod_{i=1}^{72} \exp \left\{ -\frac{1}{\lambda} \left[1 + \xi(\boldsymbol{x}_{ij}) \left(\frac{u(\boldsymbol{x}_{ij}) - \mu(\boldsymbol{x}_{ij})}{\sigma(\boldsymbol{x}_{ij})} \right) \right]_{+}^{-1/\xi(\boldsymbol{x}_{ij})} \right\} \times \prod_{j=1}^{315} \prod_{i:y_{ij} > u(\boldsymbol{x}_{ij})} \frac{1}{\sigma(\boldsymbol{x}_{ij})} \left[1 + \xi(\boldsymbol{x}_{ij}) \left(\frac{y_{ij} - \mu(\boldsymbol{x}_{ij})}{\sigma(\boldsymbol{x}_{ij})} \right) \right]_{+}^{-1/\xi(\boldsymbol{x}_{ij}) - 1}.$$

 λ : mean number of observations per year; $\mu(\mathbf{x}_{ij}), \sigma(\mathbf{x}_{ij}), \xi(\mathbf{x}_{ij})$: GEV parameters of annual maxima at \mathbf{x}_{ij} ; θ : vector of all model parameters:

Arguments for:

• Asymptotic justification for EV regression model : the threshold $u(\mathbf{x}_{ij})$ needs to be high for each \mathbf{x}_{ij} .

Arguments for:

- Asymptotic justification for EV regression model : the threshold $u(\mathbf{x}_{ij})$ needs to be high for each \mathbf{x}_{ij} .
- Design: spread exceedances across a wide range of covariate values.
- Parsimony: simpler model than with a constant threshold.

Arguments for:

- Asymptotic justification for EV regression model : the threshold $u(x_{ij})$ needs to be high for each x_{ij} .
- Design: spread exceedances across a wide range of covariate values.
- Parsimony: simpler model than with a constant threshold.

Set $u(\mathbf{x}_{ij})$ so that $P(Y > u(\mathbf{x}_{ij}))$, is approx. constant for all \mathbf{x}_{ij} .

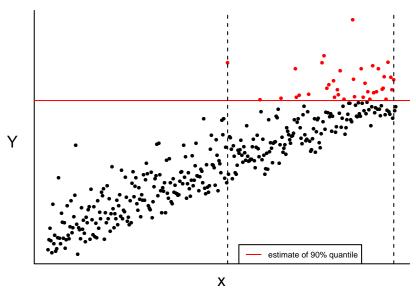
Arguments for:

- Asymptotic justification for EV regression model : the threshold $u(\mathbf{x}_{ij})$ needs to be high for each \mathbf{x}_{ij} .
- Design: spread exceedances across a wide range of covariate values.
- Parsimony: simpler model than with a constant threshold.

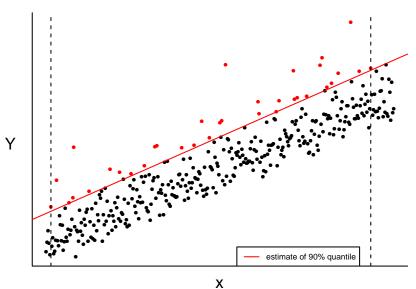
Set $u(\mathbf{x}_{ij})$ so that $P(Y > u(\mathbf{x}_{ij}))$, is approx. constant for all \mathbf{x}_{ij} .

- Set $u(\mathbf{x}_{ij})$ by trial-and-error or by discretising \mathbf{x}_{ij} , e.g. different threshold for different locations, months etc.
- Quantile regression (QR) : model quantiles of a response Y as a function of covariates.

Constant threshold



Quantile regression



Model parameterisation

Let $p(\mathbf{x}_{ij}) = P(Y_{ij} > u(\mathbf{x}_{ij}))$. Then, if $\xi(\mathbf{x}_{ij}) = \xi$ is constant,

$$p(\boldsymbol{x}_{ij}) \approx \frac{1}{\lambda} \left[1 + \xi \left(\frac{u(\boldsymbol{x}_{ij}) - \mu(\boldsymbol{x}_{ij})}{\sigma(\boldsymbol{x}_{ij})} \right) \right]^{-1/\xi}.$$

Model parameterisation

Let $p(\mathbf{x}_{ij}) = P(Y_{ij} > u(\mathbf{x}_{ij}))$. Then, if $\xi(\mathbf{x}_{ij}) = \xi$ is constant,

$$p(\boldsymbol{x}_{ij}) \approx \frac{1}{\lambda} \left[1 + \xi \left(\frac{u(\boldsymbol{x}_{ij}) - \mu(\boldsymbol{x}_{ij})}{\sigma(\boldsymbol{x}_{ij})} \right) \right]^{-1/\xi}.$$

If $p(\mathbf{x}_{ij}) = p$ is constant then

$$u(\mathbf{x}_{ij}) = \mu(\mathbf{x}_{ij}) + c \, \sigma(\mathbf{x}_{ij}).$$

Model parameterisation

Let $p(\mathbf{x}_{ij}) = P(Y_{ij} > u(\mathbf{x}_{ij}))$. Then, if $\xi(\mathbf{x}_{ij}) = \xi$ is constant,

$$p(\boldsymbol{x}_{ij}) \approx \frac{1}{\lambda} \left[1 + \xi \left(\frac{u(\boldsymbol{x}_{ij}) - \mu(\boldsymbol{x}_{ij})}{\sigma(\boldsymbol{x}_{ij})} \right) \right]^{-1/\xi}.$$

If $p(\mathbf{x}_{ij}) = p$ is constant then

$$u(\mathbf{x}_{ij}) = \mu(\mathbf{x}_{ij}) + c \, \sigma(\mathbf{x}_{ij}).$$

The form of $u(\mathbf{x}_{ij})$ is determined by the extreme value model:

- if $\mu(\mathbf{x}_{ij})$ and/or $\sigma(\mathbf{x}_{ij})$ are linear in \mathbf{x}_{ij} : linear QR;
- if $\log(\mu(\mathbf{x}_{ij}))$ and/or $\log(\sigma(\mathbf{x}_{ij}))$ is linear in \mathbf{x}_{ij} : non-linear QR.

Data-generating process: for covariate values x_1, \ldots, x_n

$$Y_i \mid X = x_i \stackrel{\text{indep}}{\sim} GEV(\mu_0 + \mu_1 x_i, \sigma, \xi).$$

Data-generating process: for covariate values x_1, \ldots, x_n

$$Y_i \mid X = x_i \stackrel{\text{indep}}{\sim} GEV(\mu_0 + \mu_1 x_i, \sigma, \xi).$$

Set threshold

$$u(x)=u_0+u_1\,x.$$

Data-generating process: for covariate values x_1, \ldots, x_n

$$Y_i \mid X = x_i \stackrel{\text{indep}}{\sim} GEV(\mu_0 + \mu_1 x_i, \sigma, \xi).$$

Set threshold

$$u(x)=u_0+u_1\,x.$$

Vary u_1 , set u_0 so that the expected proportion of exceedances is kept constant at p.

Data-generating process: for covariate values x_1, \ldots, x_n

$$Y_i \mid X = x_i \stackrel{\text{indep}}{\sim} GEV(\mu_0 + \mu_1 x_i, \sigma, \xi).$$

Set threshold

$$u(x)=u_0+u_1\,x.$$

Vary u_1 , set u_0 so that the expected proportion of exceedances is kept constant at p.

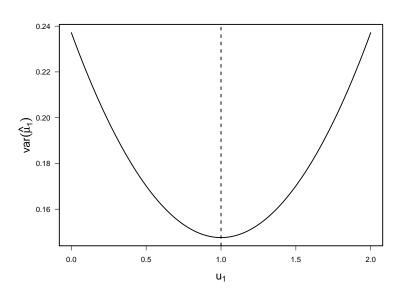
- Calculate Fisher expected information for $(\mu_0, \mu_1, \sigma, \xi)$.
- Invert to find asymptotic V-C of MLEs $\widehat{\mu}_0$, $\widehat{\mu}_1$, $\widehat{\sigma}$, $\widehat{\xi}$ and hence $\text{var}(\widehat{\mu}_1)$.
- Find the value of u_1 that minimises $var(\widehat{\mu}_1)$.

Preliminary findings

Let \tilde{u}_1 be the value of u_1 that minimises $var(\hat{\mu}_1)$.

• If covariate values x_1, \ldots, x_n are symmetrically distributed then $\tilde{u}_1 = \mu_1$ (quantile regression).

$\mu_1 = 1$: symmetric x

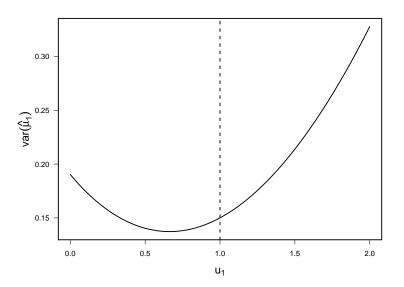


Preliminary findings

Let \tilde{u}_1 be the value of u_1 that minimises $var(\hat{\mu}_1)$.

- If covariate values x_1, \ldots, x_n are symmetrically distributed then $\tilde{u}_1 = \mu_1$ (quantile regression).
- If x_1, \ldots, x_n are positive (negative) skew then $\tilde{u}_1 < \mu_1$ $(\tilde{u}_1 > \mu_1)$.

$\mu_1=$ 1 : positive skew x (skewness = 1)



Preliminary findings

Let \tilde{u}_1 be the value of u_1 that minimises $var(\hat{\mu}_1)$.

- If covariate values x_1, \ldots, x_n are symmetrically distributed then $\tilde{u}_1 = \mu_1$ (quantile regression).
- If $x_1, ..., x_n$ are positive (negative) skew then $\tilde{u}_1 < \mu_1$ $(\tilde{u}_1 > \mu_1)$.
- ... but the loss in efficiency from using $\tilde{u}_1 = \mu_1$ is small.

Preliminary findings

Let \tilde{u}_1 be the value of u_1 that minimises $var(\hat{\mu}_1)$.

- If covariate values x_1, \ldots, x_n are symmetrically distributed then $\tilde{u}_1 = \mu_1$ (quantile regression).
- If $x_1, ..., x_n$ are positive (negative) skew then $\tilde{u}_1 < \mu_1$ $(\tilde{u}_1 > \mu_1)$.

... but the loss in efficiency from using $\tilde{u}_1 = \mu_1$ is small.

Extensions:

- More general models.
- Effect of model mis-specification due to low threshold;

Adjustment for spatial dependence

Independence log-likelihood:

$$I_{IND}(\theta) = \sum_{j=1}^{k} \sum_{i=1}^{72} \log f_{ij}(y_{ij}; \theta) = \sum_{j=1}^{k} I_{j}(\theta).$$
(storms) (space)

In regular problems, as $k \to \infty$,

$$\widehat{\theta} \rightarrow N(\theta_0, H^{-1} \ V \ H^{-1}),$$

- H =expected Hessian: $E\left(\frac{\partial^2}{\partial \theta^2} I_{IND}(\theta_0)\right);$
- $V = \text{var}\left(\frac{\partial}{\partial \theta} I_{IND}(\theta)\right)$

Adjustment of $I_{IND}(\theta)$

Estimate

- *H* by observed Hessian, at $\widehat{\theta}$;
- V by $\sum_{j=1}^{k} U_{j}(\widehat{\theta})^{T} U_{j}(\widehat{\theta})$, $U_{j}(\theta) = \frac{\partial I_{j}(\theta)}{\partial \theta}$.

Let
$$\widehat{H}_A = \left(-\widehat{H}^{-1} \ \widehat{V} \ \widehat{H}^{-1}\right)^{-1}$$
.

Chandler and Bate (2007):

$$I_{ADJ}(\theta) = I_{IND}(\widehat{\theta}) + \frac{(\theta - \widehat{\theta})' \widehat{H}_{A}(\theta - \widehat{\theta})}{(\theta - \widehat{\theta})' \widehat{H}(\theta - \widehat{\theta})} \left(I_{IND}(\theta) - I_{IND}(\widehat{\theta})\right),$$

Adjustment of $I_{IND}(\theta)$

Estimate

- *H* by observed Hessian, at $\widehat{\theta}$;
- V by $\sum_{j=1}^{k} U_{j}(\widehat{\theta})^{T} U_{j}(\widehat{\theta})$, $U_{j}(\theta) = \frac{\partial I_{j}(\theta)}{\partial \theta}$.

Let
$$\widehat{H}_A = \left(-\widehat{H}^{-1} \ \widehat{V} \ \widehat{H}^{-1}\right)^{-1}$$
.

Chandler and Bate (2007):

$$I_{ADJ}(\theta) = I_{IND}(\widehat{\theta}) + \frac{(\theta - \widehat{\theta})' \widehat{H}_{A}(\theta - \widehat{\theta})}{(\theta - \widehat{\theta})' \widehat{H}(\theta - \widehat{\theta})} \left(I_{IND}(\theta) - I_{IND}(\widehat{\theta})\right),$$

- Adjust $I_{IND}(\theta)$ so that its Hessian is H_A at $\widehat{\theta}$ rather than H.
- This adjustment preserves the usual asymptotic distribution of the likelihood ratio statistic.

Findings of a simulation study

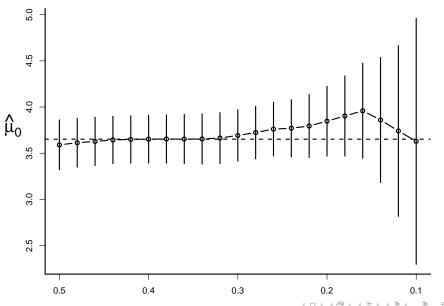
- Data simulated with spatial and temporal dependence and with spatial variation.
- Slight underestimation of standard errors: uncertainty in threshold ignored.
- Uncertainties in covariate effects of threshold are negligible compared to the uncertainty in the level of the threshold.
- Estimates of regression effects from QR and EV models are very close: both estimate extreme quantiles from the same data.
- To a large extent fitting the EV model accounts for uncertainty in the covariate effects at the level of the threshold.

Summary of wave height modelling

Threshold selection:

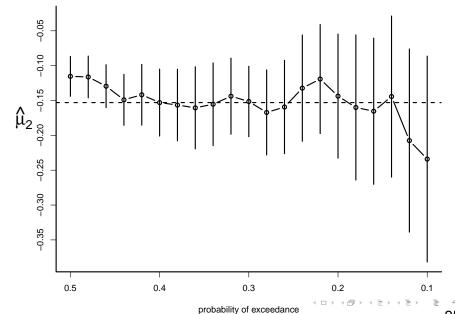
- Iterative: form of threshold depends on model.
- For given EV model set threshold using appropriate QR model.
- Choice of exceedance probability p: look for stability in parameter estimates.
- Based on μ (and u) quadratic in longtiude and latitude, σ and ξ constant . . .

Threshold selection : μ intercept

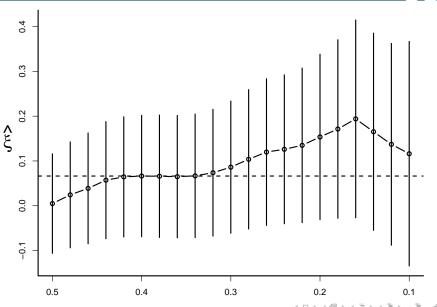


probability of exceedance

Threshold selection : μ coeff of latitude



Threshold selection : ξ

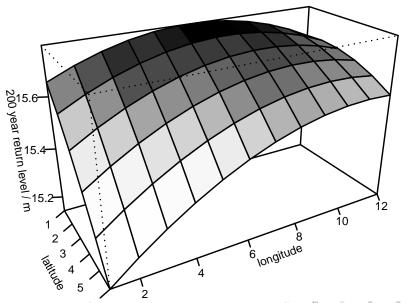


probability of exceedance

Summary of results

- Choice of p: look for stability in parameter estimates.
 Use p = 0.4.
- Model diagnostics: slight underestimation at very high levels, but consistent with estimated sampling variability.
- QR model and EV model agree closely.
- $\hat{\xi} = 0.066$, with 95% confidence interval (-0.052, 0.223).
- Estimated 200 year return level at (long=7, lat=1) is 15.78m with 95% confidence interval (12.90, 22.28)m.

Conditional 200 year return levels



Discussion

Quantile regression:

- a simple and effective strategy to set thresholds for non-stationary EV models;
- supported by simulation study;
- theoretical work is on-going;

Kyselý, J., et al. (2010): QR to set time-dependent thresholds.

Discussion

Quantile regression:

- a simple and effective strategy to set thresholds for non-stationary EV models;
- supported by simulation study;
- · theoretical work is on-going;

Kyselý, J., et al. (2010): QR to set time-dependent thresholds.

Comments

- Simple approach: relatively accessible to engineers.
- Simpler r-largest order statistic analysis preferable for these data - but not for irregularly-spaced covariates.
- $(\widehat{U}\widehat{H}^{-1})^T\widehat{U}\widehat{H}^{-1}$ more comp. stable than $\widehat{H}^{-1}\widehat{V}\widehat{H}^{-1}$.
- Wave direction; individual hurricane locations.

References

Chandler, R. E. and Bate, S. B. (2007) Inference for clustered data using the independence loglikelihood. *Biometrika* **94** (1), 167–183.

Kyselý, J., Picek, J. and Beranová, R. (2010) Estimating extremes in climate change simulations using the peaks-over-threshold method with a non-stationary threshold *Global and Planetary Change*, **72**, 55-68.

Northrop, P. J. and Jonathan, P. Threshold modelling of spatially-dependent non-stationary extremes with application to hurricane-induced wave heights. Published online in *Environmetrics*. **Discussion and rejoinder to follow shortly.**

Thank you for your attention.