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Outline

• Wave height data→ design of safe marine structures.
• Spatial non-stationarity and dependence
• Thresholds for non-stationary extremes
• Model parameterisation
• Theoretical and simulation studies
• Wave height data
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Wave heights from the Gulf of Mexico

• Hindcasts of Y storm peak significant wave height (in
metres) in the Gulf of Mexico.

• wave height: trough to the crest of the wave.
• significant wave height: the average of the largest 1/3

wave heights. A measure of sea surface roughness.
• storm peak: largest value from each storm (hurricane):

declustering.

• a 6 × 12 grid of 72 sites (≈ 14 km apart).
• Sep 1900 to Sep 2005 : 315 storms in total.
• average of 3 observations (storms) per year, at each site.
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Hurricane Katrina : Aug 2005
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Hurricane damage

• Marginal EV regression modelling of Y , adjusting for
spatial dependence.

• Spatial dependence not modelled explicitly: effect on
marine structure is at one location.

• Estimate marginal extreme quantiles.
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Spatial dependence
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Spatial non-stationarity
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Modelling approach

• Spatial non-stationarity: model spatial effects on EV
parameters as Legendre polynomials in longitude and
latitude.

• Threshold: Use quantile regression to achieve approx.
constant probability p of threshold exceedance over space:

Model 100(1− p)% quantile as a function of covariates.

• Spatial dependence.
• Estimate parameters assuming conditional independence

of responses given covariate values.
• Adjust standard errors etc. for spatial dependence.
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Extreme value regression model

Conditional on covariates x ij exceedances over a high
threshold u(x ij) follow a 2-dimensional non-homogeneous
Poisson process.

If responses Yij , i = 1, . . . ,72 (space), j = 1, . . . ,315 (storm)
are conditionally independent:

L(θ) =
315∏
j=1

72∏
i=1

exp

{
−1
λ

[
1 + ξ(x ij)

(
u(x ij)− µ(x ij)

σ(x ij)

)]−1/ξ(x ij )

+

}

×
315∏
j=1

∏
i:yij>u(x ij )

1
σ(x ij)

[
1 + ξ(x ij)

(
yij − µ(x ij)

σ(x ij)

)]−1/ξ(x ij )−1

+

.

λ : mean number of observations per year;
µ(x ij), σ(x ij), ξ(x ij) : GEV parameters of annual maxima at x ij ;
θ : vector of all model parameters:
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Covariate-dependent thresholds

Arguments for:
• Asymptotic justification for EV regression model : the

threshold u(x ij) needs to be high for each x ij .

• Design : spread exceedances across a wide range of
covariate values.

• Parsimony: simpler model than with a constant threshold.

Set u(x ij) so that P(Y > u(x ij)), is approx. constant for all x ij .

• Set u(x ij) by trial-and-error or by discretising x ij , e.g.
different threshold for different locations, months etc.

• Quantile regression (QR) : model quantiles of a response
Y as a function of covariates.
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Constant threshold
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Quantile regression

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●●

●

●

●

●

●

●
●
●

●

●
●
●
●
●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

estimate of 90% quantile

x

Y

12/30



Model parameterisation

Let p(x ij) = P(Yij > u(x ij)). Then, if ξ(x ij) = ξ is constant,

p(x ij) ≈
1
λ

[
1 + ξ

(
u(x ij)− µ(x ij)

σ(x ij)

)]−1/ξ

.

If p(x ij) = p is constant then

u(x ij) = µ(x ij) + c σ(x ij).

The form of u(x ij) is determined by the extreme value model:
• if µ(x ij) and/or σ(x ij) are linear in x ij : linear QR;
• if log(µ(x ij) and/or log(σ(x ij) is linear in x ij : non-linear QR.
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Theoretical study (with Nicolas Attalides)

Data-generating process: for covariate values x1, . . . , xn

Yi | X = xi
indep∼ GEV (µ0 + µ1 xi , σ, ξ).

Set threshold
u(x) = u0 + u1 x .

Vary u1, set u0 so that the expected proportion of exceedances
is kept constant at p.

• Calculate Fisher expected information for (µ0, µ1, σ, ξ).
• Invert to find asymptotic V-C of MLEs µ̂0, µ̂1, σ̂, ξ̂ and

hence var(µ̂1).
• Find the value of u1 that minimises var(µ̂1).
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Preliminary findings

Let ũ1 be the value of u1 that minimises var(µ̂1).

• If covariate values x1, . . . , xn are symmetrically distributed
then ũ1 = µ1 (quantile regression).
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µ1 = 1 : symmetric x
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µ1 = 1 : positive skew x (skewness = 1)
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Preliminary findings

Let ũ1 be the value of u1 that minimises var(µ̂1).
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• If x1, . . . , xn are positive (negative) skew then ũ1 < µ1
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. . . but the loss in efficiency from using ũ1 = µ1 is small.

Extensions:
• More general models.
• Effect of model mis-specification due to low threshold;
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Adjustment for spatial dependence

Independence log-likelihood:

lIND(θ) =
k∑

j=1

72∑
i=1

log fij(yij ; θ) =
k∑

j=1

lj(θ).

(storms) (space)

In regular problems, as k →∞,

θ̂ → N(θ0,H−1 V H−1),

• H = expected Hessian: E
(
∂2

∂θ2 lIND(θ0)
)

;

• V = var
(
∂
∂θ lIND(θ)

)
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Adjustment of l IND(θ)

Estimate
• H by observed Hessian, at θ̂;

• V by
k∑

j=1

Uj

(
θ̂
)T

Uj

(
θ̂
)

, Uj(θ) =
∂lj(θ)
∂θ

.

Let ĤA =
(
−Ĥ−1 V̂ Ĥ−1

)−1
.

Chandler and Bate (2007):

lADJ(θ) = lIND(θ̂) +
(θ − θ̂)′ ĤA (θ − θ̂)
(θ − θ̂)′ Ĥ (θ − θ̂)

(
lIND(θ)− lIND(θ̂)

)
,

• Adjust lIND(θ) so that its Hessian is HA at θ̂ rather than H.
• This adjustment preserves the usual asymptotic

distribution of the likelihood ratio statistic.
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)−1
.

Chandler and Bate (2007):

lADJ(θ) = lIND(θ̂) +
(θ − θ̂)′ ĤA (θ − θ̂)
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Findings of a simulation study

• Data simulated with spatial and temporal dependence and
with spatial variation.

• Slight underestimation of standard errors : uncertainty in
threshold ignored.

• Uncertainties in covariate effects of threshold are negligible
compared to the uncertainty in the level of the threshold.

• Estimates of regression effects from QR and EV models
are very close : both estimate extreme quantiles from the
same data.

• To a large extent fitting the EV model accounts for
uncertainty in the covariate effects at the level of the
threshold.
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Summary of wave height modelling

Threshold selection:
• Iterative: form of threshold depends on model.
• For given EV model set threshold using appropriate QR

model.
• Choice of exceedance probability p: look for stability in

parameter estimates.
• Based on µ (and u) quadratic in longtiude and latitude, σ

and ξ constant . . .
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Threshold selection : µ intercept
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Threshold selection : µ coeff of latitude
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Threshold selection : ξ
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Summary of results

• Choice of p: look for stability in parameter estimates.
Use p = 0.4.

• Model diagnostics : slight underestimation at very high
levels, but consistent with estimated sampling variability.

• QR model and EV model agree closely.
• ξ̂ = 0.066, with 95% confidence interval (−0.052,0.223).
• Estimated 200 year return level at (long=7, lat=1) is

15.78m with 95% confidence interval (12.90,22.28)m.
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Conditional 200 year return levels
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Discussion

Quantile regression:
• a simple and effective strategy to set thresholds for

non-stationary EV models;
• supported by simulation study;
• theoretical work is on-going;

Kyselý, J., et al. (2010): QR to set time-dependent thresholds.

Comments
• Simple approach: relatively accessible to engineers.
• Simpler r -largest order statistic analysis preferable for

these data - but not for irregularly-spaced covariates.
• (Û Ĥ−1)T Û Ĥ−1 more comp. stable than Ĥ−1V̂ Ĥ−1.
• Wave direction; individual hurricane locations.
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