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Wave heights from the Gulf of Mexico

Hindcasts of Y storm peak significant wave height (in
metres) in the Gulf of Mexico.
¢ wave height: trough to the crest of the wave.
¢ significant wave height: the average of the largest 1/3
wave heights. A measure of sea surface roughness.
o storm peak: largest value from each storm (hurricane):
declustering.

a6 x 12 grid of 72 sites (=~ 14 km apart).
Sep 1900 to Sep 2005 : 315 storms in total.
average of 3 observations (storms) per year, at each site.

3/30



Hurricane Katrina : Aug 2005 s




Hurricane damage s

o
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Hurricane damage s

e Marginal EV regression modelling of Y, adjusting for
spatial dependence.

e Spatial dependence not modelled explicitly: effect on
marine structure is at one location.

o Estimate marginal extreme quantiles.

RN Ge
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Spatial dependence
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Spatial non-stationarity
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Modelling approach &

e Spatial non-stationarity: model spatial effects on EV
parameters as Legendre polynomials in longitude and
latitude.
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e Spatial non-stationarity: model spatial effects on EV
parameters as Legendre polynomials in longitude and
latitude.

e Threshold: Use quantile regression to achieve approx.
constant probability p of threshold exceedance over space:

Model 100(1 — p)% quantile as a function of covariates.
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Modelling approach &

e Spatial non-stationarity: model spatial effects on EV
parameters as Legendre polynomials in longitude and
latitude.

e Threshold: Use quantile regression to achieve approx.
constant probability p of threshold exceedance over space:

Model 100(1 — p)% quantile as a function of covariates.

e Spatial dependence.

o Estimate parameters assuming conditional independence
of responses given covariate values.
o Adjust standard errors etc. for spatial dependence.
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Extreme value regression model #

Conditional on covariates x;; exceedances over a high
threshold u(x;) follow a 2-dimensional non-homogeneous
Poisson process.

If responses Yj;,i=1,...,72 (space), j=1,...,315 (storm)
are conditionally mdependent:

315 72 N ) .
o= [Hlleo 5 oo (55550)] )

j=1 i=1

315 —1/&(xj)—1
1 Yii — 1(Xj) ’
<11 11 , [1 +§(Xif)< .
J=1 iy>u(xy) J(X”) J(XU) +

A : mean number of observations per year;
w(xj), o(x;), £(x;) - GEV parameters of annual maxima at x;;
6 : vector of all model parameters:
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Covariate-dependent thresholds #

Arguments for:

o Asymptotic justification for EV regression model : the
threshold u(x;) needs to be high for each x;.
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Covariate-dependent thresholds #

Arguments for:

o Asymptotic justification for EV regression model : the
threshold u(x;) needs to be high for each x;.

e Design : spread exceedances across a wide range of
covariate values.

e Parsimony: simpler model than with a constant threshold.

Set u(x;) so that P(Y > u(xj)), is approx. constant for all x;;.

e Set u(xj) by trial-and-error or by discretising x;;, e.g.
different threshold for different locations, months etc.

¢ Quantile regression (QR) : model quantiles of a response
Y as a function of covariates.
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Model parameterisation b

Let p(x;) = P(Yj > u(xj)). Then, if {(x;;) = & is constant,

p(xj) ~ % [1 s (U(X/j)—u(xq')ﬂ—vs‘

o(xjj)
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Model parameterisation b

Let p(x;) = P(Yj > u(xj)). Then, if {(x;;) = & is constant,

u(xj) — M(m,-))] _1/5‘

o(xjj)

plx) ~ 3 |1+ ¢ (

If p(x;;) = p is constant then

u(x;) = p(xj) + co(x;).
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Model parameterisation b

Let p(x;) = P(Yj > u(xj)). Then, if {(x;;) = & is constant,

p(xj) ~ % [1 s <U(X/j)—u(xq')>]—1/s‘

o(xjj)

If p(x;;) = p is constant then

u(x;) = p(xj) + co(x;).

The form of u(x;;) is determined by the extreme value model:
o if u(xj) and/or o(xj;) are linear in x;;: linear QR;
o if log(x(x;) and/or log(o(x;) is linear in x;;: non-linear QR.
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Theoretical study (with Nicolas Attalides) .

Data-generating process: for covariate values x1, ..., X

inde
Yi| X =x =T GEV(uo + 1 Xi, 0, €).
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Data-generating process: for covariate values x1, ..., X
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Set threshold
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Theoretical study (with Nicolas Attalides) .

Data-generating process: for covariate values x1, ..., X

inde
Yi| X =x "~ GEV(uo + p1 Xj, 0,€).

Set threshold
u(x) = Up + uy x.

Vary uq, set up so that the expected proportion of exceedances
is kept constant at p.
o Calculate Fisher expected information for (uo, 1,0, €).

e Invert to find asymptotic V-C of MLEs jig, 111, 7, Eand
hence var(ji1).

e Find the value of uy that minimises var(ji1).
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Preliminary findings &

Let &y be the value of uy that minimises var(ji1).

e If covariate values xi, ..., X, are symmetrically distributed
then &y = p1 (quantile regression).
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Preliminary findings &

Let &y be the value of uy that minimises var(ji1).

e If covariate values xy, ..., x, are symmetrically distributed
then &y = u1 (quantile regression).

e If xy,..., X, are positive (negative) skew then iy < pq
(01 > p1).
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Preliminary findings &

Let &y be the value of uy that minimises var(ji1).

e If covariate values x4, ..., X, are symmetrically distributed
then 0y = uq (quantile regression).

e If x1,..., X, are positive (negative) skew then 0y < yu4
(U1 > p1).

... but the loss in efficiency from using &y = w1 is small.
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Preliminary findings &

Let &y be the value of uy that minimises var(ji1).
e If covariate values x4, ..., X, are symmetrically distributed
then 0y = uq (quantile regression).
e If x1,..., X, are positive (negative) skew then 0y < yu4
(U1 > p1).

... but the loss in efficiency from using &y = w1 is small.

Extensions:
¢ More general models.
o Effect of model mis-specification due to low threshold;
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Adjustment for spatial dependence

Independence log-likelihood:

Iino (0 Z Zlog fi(yi 0) = Z i(0).

J=1

x

(storms) (space)

In regular problems, as k — oo,

6 — N(6g, H ' VH),

e H = expected Hessian: E (59—;2 I,ND(00)>;
o V =var (% /IND(G))
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Adjustment of /;yp(0) .

Estimate
o H by observed Hessian, at 0;

. Vby zk: u,-(é)Tu,-(é), uo) = 219,
j=1

06
~ ~ ~ o~ —1
Let Ha= (—H'VH) .
Chandler and Bate (2007):

Iaps(8) = Inp(8) + ((90__%//%‘((;__%) (//ND(G) - IIND(§)> :
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Adjustment of /;yp(0) .

Estimate
o H by observed Hessian, at 0;

. Vby zk: u,-(é)Tu,-(é), Ui(0) = ag(:)'
j=1

—1

Let Hy = (—/?/—1 % /?H)
Chandler and Bate (2007):

o, (0—0) Ha(o
laps(0) = Iinp(0) + TR

99)) (//ND(G) - IIND(§)> :

e Adjust /jyp(0) so that its Hessian is Hy at 0 rather than H.

¢ This adjustment preserves the usual asymptotic
distribution of the likelihood ratio statistic.
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Findings of a simulation study

¢ Data simulated with spatial and temporal dependence and
with spatial variation.

¢ Slight underestimation of standard errors : uncertainty in
threshold ignored.

e Uncertainties in covariate effects of threshold are negligible
compared to the uncertainty in the level of the threshold.

e Estimates of regression effects from QR and EV models
are very close : both estimate extreme quantiles from the
same data.

¢ To a large extent fitting the EV model accounts for
uncertainty in the covariate effects at the level of the
threshold.
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Summary of wave height modelling

Threshold selection:
e lterative: form of threshold depends on model.

e For given EV model set threshold using appropriate QR
model.

¢ Choice of exceedance probability p: look for stability in
parameter estimates.

e Based on y (and u) quadratic in longtiude and latitude, o
and & constant ...
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Threshold selection : u intercept s
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Threshold selection : i coeff of latitude .
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Threshold selection : ¢
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Summary of results #

Choice of p: look for stability in parameter estimates.
Use p=0.4.

Model diagnostics : slight underestimation at very high
levels, but consistent with estimated sampling variability.

QR model and EV model agree closely.
¢ = 0.066, with 95% confidence interval (—0.052,0.223).

Estimated 200 year return level at (long=7, lat=1) is
15.78m with 95% confidence interval (12.90,22.28)m.
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Discussion &

Quantile regression:

¢ a simple and effective strategy to set thresholds for
non-stationary EV models;

e supported by simulation study;
e theoretical work is on-going;
Kysely, J., et al. (2010): QR to set time-dependent thresholds.
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Discussion &

Quantile regression:

¢ a simple and effective strategy to set thresholds for
non-stationary EV models;

e supported by simulation study;
e theoretical work is on-going;
Kysely, J., et al. (2010): QR to set time-dependent thresholds.

Comments
e Simple approach: relatively accessible to engineers.

o Simpler r-largest order statistic analysis preferable for
these data - but not for irregularly-spaced covariates.

e (UH-"TUH~" more comp. stable than H—'V H-.
e Wave direction; individual hurricane locations.
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Thank you for your attention.
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