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Abstract
We introduce a general framework that constructs estimators with reduced variance for random walk Metropolis and
Metropolis-adjusted Langevin algorithms. The resulting estimators require negligible computational cost and are derived
in a post-process manner utilising all proposal values of the Metropolis algorithms. Variance reduction is achieved by pro-
ducing control variates through the approximate solution of the Poisson equation associated with the target density of the
Markov chain. The proposed method is based on approximating the target density with a Gaussian and then utilising accurate
solutions of the Poisson equation for the Gaussian case. This leads to an estimator that uses two key elements: (1) a control
variate from the Poisson equation that contains an intractable expectation under the proposal distribution, (2) a second control
variate to reduce the variance of a Monte Carlo estimate of this latter intractable expectation. Simulated data examples are
used to illustrate the impressive variance reduction achieved in the Gaussian target case and the corresponding effect when
target Gaussianity assumption is violated. Real data examples on Bayesian logistic regression and stochastic volatility models
verify that considerable variance reduction is achieved with negligible extra computational cost.

Keywords Bayesian inference · Control variates · Markov chain Monte Carlo · Logistic regression · Poisson equation ·
Stochastic volatility

1 Introduction

Statistical methods for reducing the bias and the variance of
estimators haveplayed aprominent role inMonteCarlo based
numerical algorithms.Variance reduction via control variates
has a long and well studied history introduced as early as the
work of Kahn and Marshall (1953), whereas an early non-
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parametric estimate of bias, subsequently renamed jackknife
and broadly used for bias reduction, was first presented by
Quenouille (1956). However, the corresponding theoretical
developments in the more complicated, but extremely pop-
ular and practically important, estimators based on MCMC
algorithms has been rather limited. The major impediment is
the fact that theMCMC estimators are based on ergodic aver-
ages of dependent samples produced by simulating aMarkov
chain.

We provide a general methodology to construct con-
trol variates for any discrete time random walk Metropo-
lis (RWM) and Metropolis-adjusted Langevin algorithm
(MALA)Markovchains that can achieve, in a post-processing
manner and with a negligible additional computational cost,
impressive variance reduction when compared to the stan-
dard MCMC ergodic averages. Our proposed estimators are
based on an approximate, but accurate, solution of the Pois-
son equation for amultivariate Gaussian target density of any
dimension.

Suppose that we have a sample of size n from an ergodic
Markov chain {Xn}n≥0 with continuous state spaceX ⊆ Rd ,
transition kernel P and invariant measure π . A standard
estimator of the mean Eπ [F] := π(F) = ∫

Fdπ of a real-
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valued function F defined on X under π is the ergodic mean

μn(F) := 1

n

n−1∑

i=0

F(Xi ).

which satisfies, for any initial distribution of X0, a central
limit theorem of the form

√
n [μn(F) − π(F)]

= n−1/2
n−1∑

i=0

[F(Xi ) − π(F)]
D→ N (0, σ 2

F ),

with the asymptotic variance given by

σ 2
F := lim

n→∞ nEπ

[
(μn(F) − π(F))2

]
.

Interesting attempts on variance reduction methods for
Markov chain samplers include the use of antithetic variables
(Barone and Frigessi 1990; Green and Han 1992; Craiu et al.
2005), Rao-Blackwellization (Gelfand andSmith 1990), Rie-
mann sums (Philippe and Robert 2001) or autocorrelation
reduction (Mira and Geyer 2000; Van Dyk and Meng 2001;
Yu and Meng 2011).

Control variates have played an outstanding role in the
MCMC variance reduction quiver. A strand of research is
based on Assaraf and Caffarel (1999) who noticed that a
Hamiltonian operator together with a trial function are suffi-
cient to construct an estimator with zero asymptotic variance.
They considered aHamiltonian operator of Schrödinger-type
that led to a series of zero-variance estimators studied by
Valle and Leisen (2010), Mira et al. (2013) and Papamarkou
et al. (2014). The estimation of the optimal parameters of the
trial function is conducted by ignoring theMarkov chain sam-
ple dependency, an issue that was dealt with by Belomestny
et al. (2020) by utilizing spectral methods. The main barrier
for the wide applicability of zero-variance estimators is that
their computational complexity increases with d, see South
et al. (2018). Another approach to construct control vari-
ates is a non-parametric version of the methods presented
by Mira et al. (2013) and Papamarkou et al. (2014) which
lead to the construction of control functionals (Oates et al.
2017; Barp et al. 2018; South et al. 2020). Although their
computational cost with respect to d is low, their general
applicability is prohibited due to the cubic computational
cost with respect to n (South et al. 2018; Oates et al. 2019)
and the possibility to suffer from the curse of dimensional-
ity that is often met in non-parametric methods (Wasserman
2006). Finally, Hammer and Tjelmeland (2008) proposed
constructing control variates by expanding the state space
of the Metropolis-Hastings algorithm.

An approach which is closely related to our proposed
methodology attempts to minimise the asymptotic variance

σ 2
F . This seems a hard problem since a closed form expres-

sion of σ 2
F is not available and therefore a loss function to

be minimised is not readily available; see, for example, Fle-
gal et al. (2010). However, there has been a recent research
activity based on the following observation by Andradóttir
et al. (1993). If a solution F̂ to the Poisson equation for F
was available, that is if for every x ∈ X

F(x) + P F̂(x) − F̂(x) = π(F) (1)

where

PF(x) := Ex [F(X1)] := Ex [F(X1)|X0 = x],

then one could construct a function equal to F(x)+P F̂(x)−
F̂(x) which is constant and equal to π(F). It is then imme-
diate that a zero-variance and zero-bias estimator for F is
given by

μn,F̂ (F) := 1

n

n−1∑

i=0

{F(Xi ) + P F̂(Xi ) − F̂(Xi )}

which can be viewed as an enrichment of the estimatorμn(F)

with the (optimal) control variate P F̂ − F̂ . Of course, solv-
ing (1) is extremely hard for continuous state space Markov
chains, even if we assume that Eπ [F] is known, because it
involves solving a non-standard integral equation. Interest-
ingly, a solution of this equation (also called the fundamental
equation) produces zero-variance estimators suggested by
Assaraf and Caffarel (1999) for a specific choice of Hamil-
tonian operator. One of the rare examples that (1) has been
solved exactly for discrete timeMarkov chains is the random
scan Gibbs sampler where the target density is a multivariate
Gaussian density, see Dellaportas and Kontoyiannis (2012),
Dellaportas and Kontoyiannis (2009). They advocated that
this solution provides a good approximation to (1) for pos-
terior densities often met in Bayesian statistics that are close
to multivariate Gaussian densities. Indeed, since direct solu-
tion of (1) is not available, approximating F̂ has been also
suggested by Andradóttir et al. (1993), Atchadé and Perron
(2005), Henderson (1997), Meyn (2008).

Tsourti (2012) attempted to extend the work by Del-
laportas and Kontoyiannis (2012) to RWM samplers. The
resulting algorithms produced estimatorswith lower variance
but the computational cost required for the post-processing
construction of these estimators counterbalance the variance
reduction gains.We build on the work by Tsourti (2012) here
but we differ in that (i) we build new, appropriately chosen
to facilitate analytic computations, non-linear d-dimensional
approximations to F̂(x) rather than linear combinations of
1-dimensional functions and (ii) we produce efficient Monte
Carlo approximations of the d-dimensional integral P F̂(x)
so that no extra computation is required for its evaluation.
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Finally, Mijatović et al. (2018) approximate numerically the
solution of (1) for 1-dimensional RWM samplers and Mija-
tović and Vogrinc (2019) construct control variates for large
d by employing the solution of (1) that is associated with the
Langevin diffusion in which the Markov chain converges as
the dimension of its state space tends to infinity (Roberts et al.
1997); this requires very expensive Monte Carlo estimation
methods so it is prohibited for realistic statistical applica-
tions.

We follow this route and add to this literature by extend-
ing the work of Dellaportas and Kontoyiannis (2012) and
Tsourti (2012) to RWM and MALA algorithms by produc-
ing estimators for the posterior means of each co-ordinate
of a d-dimensional target density with reduced asymptotic
variance and negligible extra computational cost. Our Monte
Carlo estimator to compute the expectation π(F) makes use
of three components:

(a) An approximation G(x) to the solution of the Poisson
equation associated with the target π(x), transition ker-
nel P and function F(x).

(b) An approximation of the target π(x) with a Gaussian
density π̃(x) = N (x |μ,�) and then specifying G(x)
in (a) by an accurate approximation to the solution of the
Poisson equation for the approximate target π̃(x).

(c) An additional control variate, referred to as static control
variate, that is based on the same Gaussian approxima-
tion π̃(x) and allows to reduce the variance of a Monte
Carlo estimator for the intractable expectation PG(x).

In Section 2 we provide full details of the above steps. We
start by discussing, in Section 2.1, how all the above ingre-
dients are put together to eventually arrive at the general
form of our proposed estimator in equation (7). In Section
3 we present extensive simulation studies that verify that
our methodology performs very well with multi-dimensional
Gaussian targets and it stops reducing the asymptotic vari-
ance when we deal with a multimodal 50-dimensional target
density with distinct, remote modes. Moreover, we apply our
methodology to real data examples consisting of a series of
logistic regression examples with parameter vectors up to
25 dimensions and two stochastic volatility examples with
53 and 103 parameters. In all cases we have produced esti-
mators with considerable variance reduction with negligible
extra computational cost.

1.1 Some notation

In the remainder of the paper we use a simplified nota-
tion where both d-dimensional random variables and their
values are denoted by lower case letters, such as x =
(x (1), . . . , x (d)) and where x ( j) is the j th dimension or coor-

dinate, j = 1, . . . , d; the subscript i refers to the i th sample
drawn by using an MCMC algorithm, that is x ( j)

i is the i th
sample for the j th coordinate of x ; the density of the d-
variate Gaussian distribution with mean m and covariance
matrix S is denoted by N (·|m, S); for a function f (x) we
set ∇ =: (∂ f /∂x (1), . . . , ∂ f /∂x (d)); Id is the d × d identity
matrix and the superscript 	 in a vector or matrix denotes its
transpose; || · || denotes the Euclidean norm; all the vectors
are understood as column vectors.

2 Metrolopis–Hastings estimators with
control variates from the Poisson equation

2.1 The general form of estimators for arbitrary
targets

Consider an arbitrary intractable targetπ fromwhichwehave
obtained a set of correlated samples by simulating a Markov
chain with transition kernel P obtained by a Metropolis-
Hastings kernel invariant to π . To start with, assume a
function G(x). By following the observation of Henderson
(1997) the function PG(x)−G(x) has zero expectation with
respect toπ because the kernel P is invariant toπ . Therefore,
given n correlated samples from the target, i.e. xi ∼ π with
i = 0, . . . , n − 1, the following estimator is unbiased

μn,G(F) := 1

n

n−1∑

i=0

{F(xi ) + PG(xi ) − G(xi )︸ ︷︷ ︸
Poisson control variate

}. (2)

For general Metropolis-Hastings algorithms the kernel P is
such that the expectation PG(x) takes the form

PG(x) =
∫

P(x, dy)G(y)

=
∫

α(x, y)q(y|x)G(y)dy

+
(
1 −

∫
α(x, y)q(y|x)dy

)
G(x)

= G(x) +
∫

α(x, y)(G(y) − G(x))q(y|x)dy, (3)

where

α(x, y) = min
{
1, r(x, y)

}
, r(x, y) = π(y)q(x |y)

π(x)q(y|x) (4)

and q(y|x) is the proposal distribution. By substituting (3)
back into estimator (2) we obtain
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μn,G(F) := 1

n

n−1∑

i=0

{

F(xi )

+
∫

α(xi , y)(G(y) − G(xi ))q(y|xi )dy
︸ ︷︷ ︸

Poisson control variate

}

. (5)

To use this estimator we need to overcome two obstacles:
(i) we need to specify the function G(x) and (ii) we need to
deal with the intractable integral associated with the control
variate.

Regarding (i) there is a theoretical best choice which is to
set G(x) to the function F̂(x) that solves the Poisson equa-
tion,

∫
α(x, y)(F̂(y) − F̂(x))q(y|x)dy = −F(x) + π(F), (6)

for every x ∼ π , where we have substituted in the general
form of the Poisson equation from (1) the Metropolis-
Hastings kernel. For such optimal choice for G the estimator
in (5) has zero variance, i.e. it equals to the exact expectation
π(F). Nevertheless, getting F̂ for general high-dimensional
intractable targets is not feasible, and hence we need to
compromise with an inferior choice for G that can only
approximate F̂ . To get such G, we make use of a Gaussian
approximation to the intractable target, as indicated by the
assumption below.

Assumption 1 The target π(x) is approximated by a mul-
tivariate Gaussian π̃(x) = N (x |μ,�) and the covariance
matrix of the proposal q(y|x) is proportional to �.

The main purpose of the above assumption is to establish
the ability to construct an efficient RWM or MALA sam-
pler. Indeed, it is well-known that efficient implementation
of these Metropolis-Hastings samplers when d > 1 requires
that the covariancematrix ofq(y|x) should resemble asmuch
as possible the shape of �. In adaptive MCMC (Roberts and
Rosenthal 2009), such a shape matching is achieved during
the adaptive phase where � is estimated. If π(x) is a smooth
differentiable function,� could be alternatively estimated by
a gradient-based optimisation procedure and it is then cus-
tomary to choose a proposal covariance matrix of the form
c2� for a tuned scalar c.

We then aim to solve the Poisson equation for theGaussian
approximation by finding the function F̂π̃ (x) that satisfies,

∫
α̃(x, y)(F̂π̃ (y) − F̂π̃ (x))q(y|x)dy = −F(x) + π̃(F),

for every x ∼ π̃ . It is useful to emphasize the difference
between this new Poisson equation and the original Poisson
equation in (6). This new equation involves the approxi-
mateGaussian target π̃ and the corresponding “approximate”

Metropolis-Hastings transition kernel P̃ ,which nowhas been
modified so that the ratio α̃(x, y) is obtained by replacing
the exact target π with the approximate target π̃ while the
proposal q(y|x) is also modified if needed.1 Clearly, this
modification makes P̃ invariant to π̃ . When π̃ is a good
approximation to π , we expect also F̂π̃ to closely approx-
imate the ideal function F̂ . Therefore, in our method we
propose to set G to F̂π̃ (actually to an analytic approxima-
tion of F̂π̃ ) and then use it in the estimator (5).

Having chosen G(x), we now discuss the second chal-
lenge (ii), i.e. dealing with the intractable expectation∫

α(xi , y)(G(y) − G(xi ))q(y|xi )dy. Given that for any
drawn sample xi of the Markov chain there is also a cor-
responding proposed sample yi that is generated from the
proposal, we can unbiasedly approximate the integral with a
single-sample Monte Carlo estimate,

∫
α(xi , y)(G(y) − G(xi ))q(y|xi )dy
≈ α(xi , yi )(G(yi ) − G(xi )),

where yi ∼ q(y|xi ). Although α(xi , yi )(G(yi ) − G(xi )) is
a unbiased stochastic estimate of the Poisson-type control
variate, it can have high variance that needs to be reduced.
We introduce a second control variate based on some function
h(xi , yi ), that correlates well with α(xi , yi )(G(yi )−G(xi )),
and it has analytic expectation Eq(y|xi )[h(xi , y)]. We refer
to this control variate as static since it involves a standard
Monte Carlo problem with exact samples from the tractable
proposal density q(y|x). To construct h(xi , y) we rely again
on the Gaussian approximation π̃(x) = N (x |μ,�) as we
describe in Sect. 2.3.

With G(x) and h(x, y) specified, we can finally write
down the general form of the proposed estimator that can be
efficiently computed only from the MCMC output samples
{xi }n−1

i=0 and the corresponding proposed samples {yi }n−1
i=0 :

μn,G(F) := 1

n

n−1∑

i=0

{

F(xi ) + α(xi , yi )(G(yi ) − G(xi ))︸ ︷︷ ︸
Stochastic Poisson control variate

+ h(xi , yi ) − Eq(y|xi )[h(xi , y)]
︸ ︷︷ ︸

Static control variate

}

.

(7)

In practice we use a slightly modified version of this estima-
tor by adding a set of adaptive regression coefficients θn to
further reduce the variance following Dellaportas and Kon-
toyiannis (2012); see Sect. 2.4.

1 For the standard RWM algorithm q(y|x) remains exactly the same,
while for MALA it needs to be modified by replacing the gradient
∇ logπ(x) with ∇ log π̃(x).
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2.2 Approximation of the Poisson equation for
Gaussian targets

2.2.1 Standard Gaussian case

In this section we construct an analytical approximation to
the exact solution of the Poisson equation for the standard
Gaussian d-variate target π̃0(x) = N (x |0, Id) and for the
function F(x) = x ( j) where 1 ≤ j ≤ d. We use the function
F(x) = x ( j) in the remainder of the paper which corre-
sponds to approximating the mean value Eπ [x ( j)], while
other choices of F are left for future work. We denote the
exact unknown solution by F̂π̃0 and the analytical approxi-
mation by G0. Given this target and some choice for G0 we
express the expectation in (3) as

PG0(x) = G0(x)(1 − a(x)) + ag(x),

where

a(x) =
∫

min

{

1, e− 1
2 (y	y−x	x) q(x |y)

q(y|x)
}

q(y|x)dy, (8)

ag(x) =
∫

min

{

1, e− 1
2 (y	y−x	x) q(x |y)

q(y|x)
}

G0(y)q(y|x)dy.
(9)

The calculation of PG0(x) reduces thus to the calculation of
the integrals a(x) and ag(x). In both integrals x	x is just a
constant since the integration is with respect to y. Moreover,
the MCMC algorithm we consider is either RWM or MALA
with proposal

q(y|x) = N (y|r x, c2 I ), (10)

where r = 1 corresponds to RWM and r = 1 − c2/2 to
MALAwhile c > 0 is the step-size. Both a(x) and ag(x) are
expectations under the proposal distribution q(y|x).

One key observation is that for any dimension d, y	y
is just an univariate random variable with law induced by
q(y|x). Then, y	y together with log q(x |y)

q(y|x) can induce an
overall tractable univariate random variable so that the com-
putation of a(x) in (8) can be performed analytically. The
computation of ag(x) is more involved since it depends on
the form ofG0. Therefore, we propose an approximateG0 by
first introducing a parametrised family that leads to tractable
and efficient closed form computation of ag(x). In particu-
lar, we consider the following weighted sum of exponential
functions

K∑

k=1

wk exp{β	
k x − γk(x − δk)

	(x − δk)}, (11)

where wk and γk are scalars whereas βk and δk are d-
dimensional vectors. It turns out that using the form in (11)
for G0 we can analytically compute the expectation PG0 as
stated in Proposition 1. The proof of this proposition and the
proofs of all remaining propositions and remarks presented
throughout Sect. 2 are given in the “Appendix”.

Proposition 1 Let a(x) and ag(x) given by (8) and (9)
respectively and G0 in ag(x) to have the form in (11). Then,

a(x) = E f
[
min

(
1, exp

{ − c2τ 2( f −x	x/c2)
2

})]
,

where τ 2 = 1 in the case of RWM and τ 2 = c2/4 in the case
of MALA and f follows the non-central chi-squared distri-
bution with d degrees of freedom and non-central parameter
x	x/c2, and

ag(x) =
K∑

k=1

Ak(x)E fk,g
[
min{1, exp{− τ 2s2k

2 ( fk,g − x	x/s2k )}}],

where fk,g follows the non-central chi-squared distribu-
tion with d degrees of freedom and non-central parameter

mk(x)	mk(x)/c2 and Ak(x) = (1 + 2c2γk)−d/2 exp

{

−
r2x	x
2c2

−γkδ
	
k δk+mk (x)	mk (x)

2c2(1+2γkc2)

}

,mk(x)= r x + c2(βk + γkδk)

1 + 2c2γk
and s2k = c2/(1 + 2c2γk).

Proposition 1 states that the calculation of ag(x) and a(x) is
based on the cdf of the non-central chi-squared distribution
and allows, for d-variate standard normal targets, the exact
computation of the modified estimator μn,G given by (2).

Having a family of functions for which we can calculate
analytically the expectation PG0 we turn to the problem of
specifying a particular member of this family to serve as an
accurate approximation to the solution of the Poisson equa-
tion for the standard Gaussian distribution. We first provide
the following proposition which states that F̂π̃0 satisfies cer-
tain symmetry properties.

Proposition 2 Given F(x) = x ( j), the exact solution F̂π̃0(x)
is: (i) (holds for d ≥ 1) Odd function in the dimension x ( j).
(ii) (holds for d ≥ 2) Even function over any remaining
dimension x ( j ′), j ′ �= j . (iii) (holds for d ≥ 3) Permutation
invariant over the remaining dimensions.

To construct an approximation model family that incorpo-
rates the symmetry properties of Proposition 2 we make
the following assumptions for the parameters in (11). We
set K = 4 and we assume that wk ∈ R and γk > 0
for each k = 1, 2, 3, 4 whereas we set w1 = −w2 = b0,
w3 = −w4 = c0, γ1 = γ2 = b2 and γ3 = γ4 = c1. More-
over, for the d-dimensional vectors βk and δk we assume that
β1 = −β2, β3 = β4 = δ1 = δ2 = 0 and δ3 = −δ4; we
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Fig. 1 Numerical solution of the
Poisson equation (black solid
lines) and its approximation (red
dashed lines) in the case of
univariate standard Gaussian
target simulated by using the
random walk Metropolis
(RWM) algorithm and the
Metropolis-adjusted Langevin
algorithm (MALA). (Color
figure online)
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set the vectors β1 and δ3 to be filled everywhere with zeros
except from their j th element which is equal to b1 and c2
respectively. We specify thus the function G0 : Rd → R as

G0(x) = b0(e
b1x ( j) − e−b1x ( j)

) × e−b2||x ||2

+ c0(e
−c1(x ( j)−c2)2 − e−c1(x ( j)+c2)2)

× e−c1
∑

j ′ �= j (x
( j ′))2

.

(12)

We note that the above choices for the parameters of G0

are not the only ones that result in a function that obeys
the symmetries properties of Proposition 2. By imposing,
however, the described restrictions on the parameters of G0,
we keep the number of free parameters low allowing, thus,
the efficient identification of optimal parameter values.

To identify optimal parameters for the function G0 in (12)
such that G0 ≈ F̂π̃0 we first simulate a Markov chain with
large sample size n from the d-variate standard Gaussian dis-
tribution by employing the RWM algorithm and the MALA.
Then, for each algorithm we minimize the loss function

L = (1/n)

n∑

i=1

(G0(xi ) − PG0(xi ) − x (1)
i )2, (13)

with respect to the parameters b0, b1, b2, c0, c1 and c2 by
employing the Broyden-Fletcher-Goldfarb-Shanno method
(Broyden 1970) as implemented by the routine optim in the
statistical software R (R Core Team 2021). Figure 1 provides
an illustration of the achieved approximation to F̂π̃0 in the
univariate case where d = 1 and the model in (12) simplifies
as

G0(x) = b0(e
b1x−b2x2 − e−b1x−b2x2)

+ c0(e
−c1(x−c2)2 − e−c1(x+c2)2).

For such case, we can visualize our optimised G0 and com-
pare it against the numerical solution from Mijatović et al.
(2018). Figure 1 shows this comparison which provides clear
evidence that for d = 1 our approximation is very accurate.

2.2.2 General Gaussian case

Given the general d-variateGaussian target π̃ (x) = N (x |μ,

�) we denote by F̂π̃ the exact solution of the Poisson equa-
tion and byG the approximation thatwewish to construct. To
approximate F̂π̃ we apply a change of variables transforma-
tion from the standard normal, as motivated by the following
proposition and remark.

Proposition 3 Suppose the standard normal target π̃0(x) =
N (x |0, Id), the function F(x) = x (1) and F̂π̃0 the associ-
ated solution of the Poisson equation for either RWM with
proposal q(y|x) = N (y|x, c2 I ) or MALA with proposal
q(y|x) = N (y|(1 − c2/2)x, c2 I ). Then, the solution F̂π̃

for the general Gaussian target π̃(x) = N (x |μ,�) and
Metropolis-Hastings proposal

q(y|x) =
{
N (y|x, c2�) if RWM

N (y|x + (c2/2)�∇ log π̃(x), c2�) if MALA,

(14)

is F̂π̃ (x) = L11 F̂π̃0(L
−1(x − μ)), where L is a lower tri-

angular Cholesky matrix such that � = LLT and L11 is its
first diagonal element.

Remark 1 To apply Proposition 3 for F(x) = x ( j), j �= 1,
the vector x needs to be permuted such that x ( j) becomes its
first element; the corresponding permutation has also to be
applied to the mean μ and covariance matrix �.

Proposition 3 implies that we can obtain the exact solution
of the Poisson equation for any d-variate Gaussian target by
applying a change of variables transformation to the solution
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of the standard normal d-variate target. Therefore, based on
this theoretical result we propose to obtain an approximation
G of the Poisson equation in the general Gaussian case by
simply transforming the approximation G0 in (12) from the
standard normal case so as

G(x) = G0(L
−1(x − μ)). (15)

The constant L11 is omitted since it can be absorbed by the
regression coefficient θ ; see Sect. 2.4. Note that Remark 1
provides guidelines for the solution of the Poisson equation
associated with π̃ for F(x) = x ( j) for any j = 2, . . . , d.
However, if we need to perform variance reduction in the
estimation of themeans of all or a large subset of themarginal
distributions of a high-dimensional target, a computationally
more efficient method to conduct the desired variance reduc-
tions is available: see “Appendix D” for details.

2.3 Construction of the static control variate h(x, y)

Suppose we have constructed a Gaussian approximation
π̃(x) = N (x |μ,�), where � = LL	, to the intractable
target π(x) and also have obtained the function G from (15)
needed for the proposed, general, estimator in (7). What
remains is to specify the function h(x, y), labelled as static
control variate in (7), which should correlate well with
α(x, y)(G(y) −G(x)). The intractable term in this function
is the Metropolis-Hastings probability α(x, y) in (4) where
theMetropolis-Hastings ratio r(x, y) contains the intractable
target π . This suggests to choose h(x, y) as

h(x, y) = min{1, r̃(x, y)}[G(y) − G(x)
]
, (16)

where r̃(x, y) is the acceptance ratio in aM-H algorithm that
targets the Gaussian approximation π̃(x), that is

r̃(x, y) = min

{

1,
π̃(y)q̃(x |y)
π̃(x)q̃(y|x)

}

, (17)

and q̃(·|·) is the proposal distribution that we would use
for the Gaussian target π̃(x) as defined by equation (14).
Importantly, by assuming that π̃ serves as an accurate approx-
imation to π , the ratio r̃(x, y) approximates accurately the
exact M-H ratio r(x, y) and Eq [h(x, y)] can be calculated
analytically. In particular, using (15) we have that

Eq [h(x, y)] =
∫

h(x, y)q(y|x)dy

=
∫

min{1, r̃(x, y)}[G0(L
−1(y − μ))

− G0(L
−1(x − μ))

]
q(y|x)dy.

This integral can be computed efficiently as follows. We
reparametrize the integral according to the new variable
ỹ = L−1(y − μ) and also use the shortcut x̃ = L−1(x − μ)

where x is an MCMC sample. After this reparametrization,
the above expectation becomes under the distribution

q(ỹ|x̃) =
{
N (ỹ|x̃, c2 I ) if RWM

N (ỹ|x̃ + c2
2 L	∇ logπ(x), c2 I ) if MALA,

(18)

where we condition on x̃ with a slightly abuse of notation
since the term∇ logπ(x) is the exact pre-computed gradient
for the sample x of the intractable target. Thus, the calcula-
tion of Eq [h(x, y)] reduces to the evaluation of the following
integral

∫
min

{

1, exp{−1

2
(ỹ	 ỹ − x̃	 x̃)} q̃(x̃ |ỹ)

q̃(ỹ|x̃)
}

[
G0(ỹ) − G0(x̃)

]
q(ỹ|x̃)d ỹ. (19)

Note also that inside the Metropolis-Hastings ratio q̃(ỹ|x̃) =
N (ỹ|r x̃, c2 I ) with r as in (10). In the case of RWM and
by noting that the density q(ỹ|x̃) in (18) coincides with the
density q̃(ỹ|x̃) in (10) we have that the calculation of the
integral in (19) reduces to the calculation of the integrals in
(8) and (9) and, thus, can be conducted by utilizing Proposi-
tion 1. The calculation of the integral in (19) for the MALA
is slightly different as highlighted by the following remark.

Remark 2 In the case of MALA the mean of the density
q(ỹ|x̃) in (18) is different from the mean of q̃(ỹ|x̃) due to
the presence of the term c2

2 L	∇ logπ(x) and the formulas
in Proposition (1) are modified accordingly.

Finally, we note that except from the tractability in the cal-
culations which is offered by the particular choice of h(x, y),
there is also the following intuition for its effectiveness. If
the Gaussian approximation is exact, then the overall control
variate, defined in equation (7) as the sum of a stochastic and
a static control variate, becomes the exact “Poisson control
variate” that we would compute if the initial target was actu-
ally Gaussian. Thus, we expect that the function h(x, y), as a
static control variate in a non-Gaussian target, enables effec-
tive variance reduction under the assumption that the target
is well-approximated by a Gaussian distribution.

2.4 Themodified estimator with regression
coefficients

As pointed out by Dellaportas and Kontoyiannis (2012) the
fact that the proposed estimator μn,G(F) is based on an
approximationG of the true solution F̂π of the Poisson equa-
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tion implies that we need to modify μn,G(F) as

μn,G(F
θ̂n

) := 1

n

n−1∑

i=0

{

F(xi ) + θ̂n
{

α(xi , yi )(G(yi ) − G(xi ))︸ ︷︷ ︸
Stochastic Poisson control variate

+ h(xi , yi ) − Eq(y|xi )[h(xi , y)]
︸ ︷︷ ︸

Static control variate

}
}

(20)

where θ̂n estimates the optimal coefficient θ that further min-
imizes the variance of the overall estimator. Dellaportas and
Kontoyiannis (2012) show that for reversible MCMC sam-
plers, the optimal estimator θ̂n of the true coefficient θ can
be constructed solely from the MCMC output. By re-writing
the estimator in (20) as

μn,G(F
θ̂n

) := 1

n

n−1∑

i=0

{F(xi ) − θ̂n{G(xi ) −̂PG(xi )}},

where the term

̂PG(xi ) = G(xi ) + a(xi , yi )(G(yi ) − G(xi )) + h(xi , yi )

− Eq(y|xi )[h(xi , y)], (21)

approximates PG(xi ), we can estimate θ̂n as

θ̂n = μn(F(G +̂PG)) − μn(F)μn(G +̂PG)

1
n

∑n−1
i=1

(
G(xi ) −̂PG(xi−1)

)2 . (22)

Notice that, as in the case of control variates for Monte Carlo
integration (Glasserman 2004), the denominator in (22) is
the standard empirical estimator of the variance of the con-
trol variate G(xi ) − ̂PG(xi ). However, in contrast to the
standard Monte Carlo case, the numerator is not the usual
estimator of the covariance between the function F and the
control variate since this latter covariance, in the case of a
Markov Chain, is non-tractable. Therefore, the numerator in
(22) has been constructed by Dellaportas and Kontoyiannis
(2012) based on an alternative, tractable, form of the station-
ary covariance between the function F and the control variate
G(xi ) −̂PG(xi ).

The resulting estimator μn,G(F
θ̂n

) in (20) is evaluated by
using solely the output of the MCMC algorithm and under
some regularity conditions converges toπ(F) a.s. asn → ∞,
see Tsourti (2012).

2.5 Algorithmic summary

In summary, the proposed variance reduction approach can
be applied a posteriori to the MCMC output samples {xi }n−1

i=0
obtained from either RWM or MALA with proposal den-
sity given by (14). The extra computations needed involve

the evaluation of ̂PG(xi ) given by (21). This is efficient
since it relies on quantities that are readily available such
as the values G(xi ) and G(yi ), where yi is the value gen-
erated from the proposal q(y|xi ) during the main MCMC
algorithm, as well as on the acceptance probability a(xi , yi )
which has been also computed and stored at each MCMC
iteration. The evaluation of ̂PG(xi ) requires also the con-
struction of the static control variate h(xi , yi ) defined by (16).
This depends on the ratio r̃(x, y) given by (17) and on the
expectation Eq(y|xi )[h(xi , y)]. The calculation of the latter
expectation is tractable since r̃(x, y) is the acceptance ratio
of Metropolis-Hastings algorithm that targets the Gaussian
target π̃(x) = N (x |μ,�), where μ and � are estimators
of the mean and covariance matrix respectively of the target
π(x); see Assumption 1. It is important to note that the cal-
culation of the covariance matrix � as well as its Cholesky
factor L do not increase the computational cost of the pro-
posed variance reduction technique since they are calculated
during the main MCMC algorithm. Finally, we compute θ̂n
using (22) and evaluate the proposed estimator μn,G(F

θ̂n
)

from (20). Algorithm 1 summarizes the steps of the variance
reduction procedure.

Algorithm 1 Variance reduction for Metropolis-Hasting
samplers
Inputs: The samples xi , i = 0, . . . , n− 1, simulated by using RWM or
MALA with proposal distribution given by (14); the proposed samples
yi generated from the proposal during the MCMC; the M-H probabili-
ties α(xi , yi ) calculated during the MCMC; estimators μ and � of the
mean and covariance matrix respectively of the target.
Returns: An estimate for the mean of the j th coordinate of the tar-
get.
1: Set F(x) = x ( j).
2: Calculate h(xi , yi ) given by (16).
3: Calculate Eq(y|xi )[h(xi , y)] by utilising Propositions 1 and 3.

4: CalculatêPG(xi ) given by (21) for each i = 1, . . . , n.
5: Calculate θ̂n given by (22).
6: Return μn,G(F

θ̂n
) given by (20).

3 Application on real and simulated data

We present results from the application of the proposed
methodology on real and simulated data examples. First we
consider multivariate Gaussian targets for which we have
shown that the function G in (12) allows the explicit cal-
culation of the expectation PG defined by (3). Section 3.1
presents variance reduction factors in the case of d-variate
standard Gaussian densities, simulated by employing the
RWM and MALA, up to d = 100 dimensions. In Sects.
3.2, 3.3 and 3.4 we examine the efficiency of our proposed
methodology in targets that depart from the Gaussian distri-
bution and the expectation PG is not analytically available.
Assumption 1 and Algorithm 1 suggest that our proposed

123



Statistics and Computing             (2023) 33:6 Page 9 of 20     6 

methodology depends on estimators μ and � of the mean
and covariance matrix of the target distribution respectively.
Since the technique that we developed is a post-processing
procedure which takes as input samples drawn by either the
MALA or the RWM algorithm, we utilise these samples to
estimate μ, the variance of which we aim to reduce without
spending more computational resources than those used to
run the MCMC algorithm. The choice of � is implied by the
construction of the proposed methodology and it is required
to be the covariance matrix of the proposal distribution of the
MCMC algorithm.

To conduct all the experiments we set the parameters
b0, b1, b2, c0, c1 and c2 of the function G0 in (12) in the
values given by Table 1 which were estimated by minimiz-
ing the loss function in (13) for d = 2. In practice we observe
that such values lead to good performance across all real data
experiments, including those with d > 2.

To estimate the variance of μn(F) in each experiment we
obtained T = 100 different estimatesμ

(i)
n (F), i = 1, . . . , T ,

for μn(F) based on T independent MCMC runs. Then, the
variance of μn(F) has been estimated by

1

T − 1

T∑

i=1

{μ(i)
n (F) − μ̄n(F)}2,

where μ̄n(F) is the average of μ
(i)
n (F). We estimated simi-

larly the variance of the proposed estimator μn,G(F).

3.1 Simulated data: Gaussian targets

The target distribution is a d-variate standardGaussian distri-
bution and we are interested in estimating the expected value
of the first coordinate of the target by setting F(x) = x (1).
Samples of size n were drawn from target densities by util-
ising the proposal distribution in (10) with c2 = 2.382/d for
the RWM case and by tuning c2 during the burn-in period to
achieve acceptance rate between 55% and 60% in theMALA

case; we initiated all the MCMC algorithms by drawing
an initial parameter vector from the stationary distribution.
Table 2 presents factors by which the variance of μn(F) is
greater than the variance ofμn,G(F) in the case of the RWM
and MALA. Variance reduction is considerable even for
d = 100. Figure 2 shows typical realizations of the sequences
of estimates obtained by the standard estimators μn(F) and
the proposed μn,G(Fθ ) for different dimensions of the stan-
dard Gaussian target and Fig. 3 provides a visualization of
the distribution of the estimators μn(F) and μn,G(Fθ ). Note
that in these experiments the covariance matrix of the tar-
get is assumed known; In the “Appendix” we repeat these
experiments by relaxing this assumption.

3.2 Simulated data: mixtures of Gaussian
distributions

It is important to investigate how our proposed methodology
performs when the target density departs from normality. We
used as π(x) a mixture of d-variate Gaussian distributions
with density

π(x) = 1

2
N (x |m, �) + 1

2
N (x | − m, �), (23)

where, following Mijatović and Vogrinc (2019), we set m to
be the d-dimensional vector (h/2, 0, . . . , 0) and � is d × d
covariance matrix randomly drawn from an inverse Wishart
distribution by requiring its largest eigenvalue to be equal
to 25. More precisely, we simulated one matrix � for each
different value of d and we used the same matrix across the
different choices for h.

We drew samples from the target distribution by using
theMetropolis-Hastings algorithmwith proposal distribution
q(y|x) = N (y|x, c2�) where by setting c2 = 2.382/d we
achieve an acceptance ratio between 23% and 33%. We also
note that the covariance matrix � of the target was fixed
across the T independent MCMC runs used to estimate the

Table 1 Optimal values for the
parameters of the function G0 in
(12)

b0 b1 b2 c0 c1 c2

RWM 8.7078 0.2916 0.0001 −3.5619 0.1131 3.9162

MALA 7.6639 0.0613 0.0096 −14.8086 0.3431 −0.0647

Table 2 Estimated factors by
which the variance of μn(F) is
larger than the variance of
μn,G(F) for standard Gaussian
d-variate target

RWM MALA
d = 2 d = 10 d = 30 d = 100 d = 2 d = 10 d = 30 d = 100

n = 1000 93 26 10 5 1345 64 57 97

n = 10,000 278 173 112 27 3572 81 88 316

n = 50,000 541 445 177 94 4628 92 103 274

n = 500,000 531 820 370 263 4997 83 157 286

We collect n samples after the first 10,000 iterations of the RWM and the MALA
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Fig. 2 Sequence of the standard ergodic averages (black solid lines) and
the proposed estimates (blue dashed lines). The red lines indicate the
mean of the d-variate standard Gaussian target. The values are based on

samples drawn by employing either the RWM (top row) or the MALA
(bottom row) with 10,000 iterations discarded as burn-in period. (Color
figure online)
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Fig. 3 Each pair of boxplots is consisted of 100 values for the estima-
torsμn(F) (left boxplot) andμn,G(Fθ ) (right boxplot) for the d-variate
standard Gaussian target. The estimators have been calculated by using

n × 103 samples drawn by employing either the RWM (top row) or the
MALA (bottom row) and discarded the first 10,000 samples as burn-in
period
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Table 3 Estimated factors by
which the variance of μn(F) is
larger than the variance of
μn,G(F) for a mixture of
d-variate Gaussian distributions
with density given by (23) for
different values of the mean m

h = 2 h = 4 h = 6

d = 10 20.73 2.39 1.26

d = 50 7.88 1.35 1.01

We collect n = 200,000 samples
after the first 10,000 iterations of
the RWM algorithm

variance of μn(F) and μn,G(Fθ ). When h > 6 the MCMC
algorithm struggles to converge. Table 3 presents the factors
by which the variance of μn(F) is greater than the variance
of the modified estimator μn,G(F) for dimensions d = 10
and d = 50 and for different values of h. It is very reassuring
that even in the very non-Gaussian scenario (h = 6) our
modified estimator achieved a slight variance reduction.

3.3 Real data: Bayesian logistic regressions

We tested the variance reduction of our modified estimators
on five datasets that have been commonly used in MCMC
applications, see e.g. Girolami and Calderhead (2011), Tit-
sias and Dellaportas (2019). They are consisted of one
N -dimensional binary response variable and an N×d matrix
with covariates including a column of ones; see Table 4 for
the names of the datasets and details on the specific sam-
ples sizes and dimensions. We consider a Bayesian logistic
regression model by setting an improper prior for the regres-
sion coefficients γ ∈ Rd of the form p(γ ) ∝ 1.

3.3.1 Variance reduction for RWM

We draw samples from the posterior distribution of γ by
employing the Metropolis-Hastings algorithm with proposal
distribution

q(γ ′|γ ) = N (γ ′|γ, c2�̂),

where c2 = 2.382/d and �̂ is the maximum likelihood esti-
mator of the covariance of γ . Table 5 presents the range of
factors by which the variance of μn(F) is greater than the
variance of μn,G(F) for all parameters γ . It is clear that our
modified estimators achieve impressive variance reductions
when compared with the standard RWM ergodic estimators.

Table 4 Summary of datasets
for logistic regression

Dataset d N

Ripley 3 250

Pima Indian 8 532

Heart 14 270

Australian 15 690

German 25 1000

3.3.2 Variance reduction for MALA

We draw samples from the posterior distribution of γ by
employing the Metropolis-Hastings algorithm with proposal
distribution

q(γ ′|γ ) = N (γ ′|γ + 1
2c

2�̂∇ logπ(γ ), c2�̂),

where c2 is tuned during the burn-in period in order to achieve
an acceptance ratio between 55% and 60%, �̂ is maximum
likelihood estimator of the covariance of γ and π(γ ) denotes
the density of the posterior distribution of γ . Table 6 presents
the range of factors bywhich the variance ofμn(F) is greater
than the variance of μn,G(F) for all parameters γ . Again,
there is considerable variance reduction for all modified esti-
mators.

3.4 Simulated data: a stochastic volatility model

We use simulated data from a standard stochastic volatility
model often employed in econometric applications to model
the evolution of asset prices over time (Kim et al. 1998;
Kastner and Frühwirth-Schnatter 2014). By denoting with
rt , t = 1, . . . , N , the t th observation (usually log-return of
an asset) the model assumes that rt = exp{ht/2}εt , where
εt ∼ N (0, 1) and ht is an autoregressiveAR(1) log-volatility,
process: ht = m+φ(ht−1−m)+sηt , ηt ∼ N (0, 1) and h0 ∼
N (m, s2/(1 − φ2)). To conduct Bayesian inference for the
parametersm ∈ R, φ ∈ (−1, 1) and s2 ∈ (0,∞) we specify
commonly used prior distributions (Kastner and Frühwirth-
Schnatter 2014; Alexopoulos et al. 2021): m ∼ N (0, 10),
(φ + 1)/2 ∼ Beta(20, 1/5) and s2 ∼ Gam(1/2, 1/2). The
posterior of interest is

π(m, φ, s2, h) = p(m, φ, s2, h|r)
∝ p(m)p(s2)p(φ)N (h0|m, s2/(1 − φ2))

×
N∏

t=1

N (rt |0, eht )N (ht |m + φ(ht−1 − m), s2),

(24)

where h = (h0, . . . , hN ) and r = (r1, . . . , rN ).
To assess the proposed variance reduction methods we

simulated daily log-returns of a stock for d days by using val-
ues for the parameters of themodel that have been previously
estimated in real data applications (Kim et al. 1998; Alex-
opoulos et al. 2021) φ = 0.98, μ = −0.85 and s = 0.15.
To draw samples from the d-dimensional, d = N + 3, target
posterior in (24) we first transform the parameters φ and s2

to real-valued parameters φ̃ and s̃2 by taking the logit and
logarithm transformations and we assign Gaussian prior dis-
tributions by matching the first twomoments of the Gaussian
distributionswith the correspondingmoments of the beta and
gamma distributions used as priors for the parameters of the
original formulation. Then, we set x = (m, φ̃, s̃2, h) and we
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Table 5 Range of estimated
factors by which the variance of
μn(F) is larger than the
variance of μn,G(Fθ ) for the
posterior distribution of logistic
regression models applied on
the datasets indicated by the first
column

Dataset n = 1000 n = 10,000 n = 50,000 n = 200,000

Ripley 27.07–34.06 26.89–91.96 34.42–105.35 34.48–137.68

Pima Indian 14.62–25.91 84.16–137.35 99.38–218.06 99.16–241.38

Heart 8.26–13.70 16.63–40.81 23.53–64.07 18.68–76.62

Australian 6.14–15.27 25.91–80.65 33.43–89.56 23.43–92.76

German 4.72–10.20 19.61–54.63 33.60–119.73 25.61–148.54

We collect n samples after the first 10,000 iterations of the RWM algorithm

Table 6 Estimated factors by
which the variance of μn(F) is
larger than the variance of
μn,G(Fθ ) for the posterior
distribution of logistic
regression models applied on
the datasets indicated by the first
column

Dataset n = 1000 n = 10,000 n = 50,000 n = 200,000

Ripley 10.89–15.99 14.83–24.76 12.13–26.06 10.38–20.14

Pima Indian 23.50–51.64 34.95–52.42 34.78–73.51 36.64–72.75

Heart 10.04–17.31 7.74–18.36 10.11–18.07 11.83–20.51

Australian 9.32–22.78 8.56–22.92 6.86–18.93 7.45–21.74

German 11.79–33.29 11.39–42.46 9.80–52.24 8.21–40.72

We collect n samples after the first 10,000 iterations of the MALA

Table 7 Estimated factors by which the variance of μn(F) is larger than the variance of μn,G(F) for the parameters of d-dimensional stochastic
volatility model

n = 10,000 n = 50,000 n = 200,000

h m φ s2 h m φ s2 h m φ s2

d = 50 7.18–15.24 14.07 17.44 4.36 7.49–15.92 13.02 19.27 2.86 7.46–16.36 16.97 14.16 2.43

d = 100 1.06–7.66 7.99 3.46 1.26 1.09–7.02 6.50 7.80 1.69 1.52–9.54 5.40 4.44 1.07

We collect n samples after the first 10,000 of the MALA

draw the desired samples using a Metropolis-Hastings algo-
rithm with proposal distribution

q(y|x) = N (y|x + c2
2 �̂∇ logπ(x), c2�̂),

where y = (m′, φ̃′, s̃2′
, h′) are the proposed values, c2 is

tuned during the burn-in period in order to achieve an accep-
tance ratio between 55% and 60% and �̂ is the maximum a
posteriori estimate of the covariance matrix of (m, φ, s2, h).
Table 7 presents the factors bywhich the variance ofμn(F) is
greater than the variance of the proposed estimatorμn,G(Fθ ).
We report variance reduction for all static parameters of the
volatility process and the range of reductions achieved for the
N -dimensional latent path h. All estimators have achieved
considerable variance reduction.

3.5 Comparison with alternativemethods

We compare the proposed variance reduction methodology
with the zero variance (ZV) estimators considered, among
others, by Mira et al. (2013) and South et al. (2018). We
consider the first order ZV control variates as a competitive
variance reduction method since their computational cost is
less than all the other ZV estimators and, thus, comparable

with the negligible computational cost of our methodol-
ogy. The comparison that we perform is twofold. First, we
compare the computational complexity of our proposed tech-
niques with the one of the first order ZV estimators and then
we present the mean squared error (MSE) in the estimation
of the mean π(F) obtained by the two different approaches.

We compare the computational efficiency of the twometh-
ods by assuming that it is determined by their computational
complexity based on target (and its derivatives) evaluations.
First note that our proposed technique relies on the following
three ingredients: (i) a Monte Carlo integration with sample
size one, (ii) the computation of the cdf of the non-central chi-
squared distribution and (iii) the calculation of the coefficient
θ̂n in Eq. (22). All these steps do not require any extra tar-
get and/or gradient evaluations rather than the pre-computed
evaluations required by the RWM algorithm. The computa-
tion of the transformation L−1(x − μ) can be also achieved
by an efficient post-processing manner without extra target
evaluations, see “Appendix F” for details.

On the other hand, although the first order ZV control
variates do not depend on extra evaluations of the target,
they require the extra (in the case of the RWM algorithm)
evaluation of its gradients. Furthermore, the first order ZV
methods are based on polynomials in which the number of
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Fig. 4 MSEs of the estimatorμn,G(F) over MSEs of the first order ZV
estimator for a mixture of d-variate Gaussian distributions with density
given by Eq. (23) for different values of the mean m indicated by the
choice of the parameter h in the x-axis. The red dotted line indicates
the value 1 in the y-axis. (Color figure online)

terms increases with the dimension of the target and thus the
inversion of a d×d matrix is required for each sample drawn
from the target distribution.

We additionally compare the two methods in terms of
mean squared error (MSE) when estimating π(F). In par-
ticular, by using the MCMC output we calculate, for each
one of the examples in Sects. 3.2–3.4, the MSEs of the pro-
posed estimatorμn,G(F) and of the first order ZV estimator;
we employed the R-package developed by South (2021) to
conduct the calculation of the first order ZV estimators.

Figure 4 displays the ratio of theMSEof the proposed esti-
mator μn,G(F) over the MSE of the first order ZV estimator

for the mixture of d-variate Gaussian distributions with den-
sity given by Eq. (23). It indicates that the proposed variance
methodology is more robust with respect to non-Gaussian
targets as well as to the dimension of the target. In particular,
the ratio of the MSEs is getting closer to one as the dimen-
sion d and/or the parameter h of the target increase. Notice
that given the difference of the computational complexity, a
ratio of MSEs less or equal than one implies better overall
efficiency for the proposed estimator μn,G(F). We also note
that the closer the target to the Gaussian distribution (small
h), the lowerMSE for the ZV estimator compared to our pro-
posed estimator. This is a consequence of the fact that the ZV
estimators are exact in the case of Gaussian targets. Tables
8, 9, 10 present ratios of the MSEs of the estimators that we
compare in the case of the logistic regression and stochastic
volatility models described in Sects. 3.3 and 3.4 respectively.

The combination of the ratios displayed by the Tables
together with the computational complexity analysis of the
competitive variance reductions methods provides evidence
of the overall advantage of our variance reduction techniques
over the first order ZV estimators for the estimation of the
mean π(F).

4 Discussion

Typical variance reduction strategies for MCMC algorithms
study ways to produce new estimators which have smaller
variance than the standard ergodic averages by performing
a post-processing manipulation of the drawn samples. Here
we studied amethodology that constructs such estimators but
our development was based on the essential requirement of
a negligible post-processing cost. In turn, this feature allows
the effortless variance reduction for MCMC estimators that

Table 8 Range of MSEs of the
estimator μn,G(F) over MSEs
of the first order ZV estimator in
logistic regression models
applied to the datasets indicated
by the first column

Dataset n = 1000 n = 10,000 n = 50,000 n = 200,000

Ripley 0.86–2.21 0.59–0.93 0.70–0.78 0.84–1.02

Pima Indian 2.41–27.09 0.81–4.59 1.02–2.96 0.98–1.27

Heart 2.43–9.79 1.20–2.84 1.00–2.04 1.04–1.91

Australian 2.03–17.78 0.99–6.50 0.82–3.81 0.98–3.18

German 2.29–75.40 0.93–20.60 0.94–9.53 0.93–5.33

The MSEs are based on n samples collected after the first 10,000 iterations of the RMW algorithm

Table 9 Range of MSEs of the
estimator μn,G(F) over MSEs
of the first order ZV estimator in
logistic, where the MSEs are
based on n samples collected
after the first 10,000 iterations
of MALA

Dataset n = 1000 n = 10,000 n = 50,000 n = 200,000

Ripley 1.99–4.46 1.58–2.70 0.84–7.83 0.48–12.22

Pima Indian 2.11–8.85 1.20–6.40 0.86–3.30 0.82–1.58

Heart 2.33–5.99 2.03–8.09 0.53–5.76 0.89–4.42

Australian 2.83–16.56 1.71–12.21 0.73–12.18 0.57–10.21

German 1.80–29.48 1.31–28.20 1.09–13.54 0.96 7.29
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Table 10 Range of MSEs of the estimator μn,G(F) over MSEs of the first order ZV estimator for the parameters of d-dimensional stochastic
volatility model

n = 10,000 n = 50,000 n = 200,000

h m φ s2 h m φ s2 h m φ s2

d=50 3.15–14.66 54.95 <0.01 1.44 1.08–11.17 12.92 <0.01 1.42 0.45–17.09 3.37 <0.01 1.37

d=100 0.02–0.79 0.04 0.01 <0.01 0.01–0.23 0.01 <0.01 <0.01 <0.01–0.06 0.01 <0.01 <0.01

We collect n samples after the first 10,000 iterations of MALA

are used in a wide spectrum of Bayesian inference applica-
tions. We investigated both the applicability of our strategy
in high dimensions and the robustness to departures of nor-
mality in the target densities by using simulated and real data
examples.

There are many directions for future work. We limited
ourselves to the simplest cases of linear functions such as
F(x) = x ( j), but higher moments and indicator functions
seem interesting avenues to be investigated next. The exten-
sion of the proposed method for other functions F requires
the construction of an approximation of the solution F̂π̃0 of
the Poisson equation associatedwith a standardGaussian tar-
get, i.e, a function which will play the role of the function
G defined by Eq. (15). Importantly, this function should be
chosen such that the integral in Eq. (9) can be calculated ana-
lytically.We think that the formofG used in the present paper
can serve as a starting point for this direction of research.

The developed variance reduction technique can be
applied on any output from the MALA and the RWM algo-
rithm. Other Metropolis samplers such as the independent
Metropolis or the Metropolis-within-Gibbs are also obvi-
ous candidates for future work. Finally, an issue that was
discussed in some detail in Dellaportas and Kontoyiannis
(2009) but has not yet studied with the care it deserves is
the important problem of reducing the estimation bias of the
MCMC samplers which depends on the initial point of the
chain X0 = x and vanishes asymptotically. As also noted by
Dellaportas and Kontoyiannis (2009), control variables have
probably an important role to play in this setting.

Supplementary information The R code for reproducing
the experiments is available at https://gitlab.com/aggelisalex
opoulos/variance-reduction.
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is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
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A Proof of Proposition 1

Proof We need to calculate the integrals a(x) and ag(x) in
Eq. (8) and (9) for G0(x) given by (12). We have that for
q(y|x) given by (10)

exp
{
− 1

2 (y	y − x	x)
} q(x |y)
q(y|x) = exp

{ − τ 2

2 (y	y − x	x)
}
,

where τ 2 = 1 in the case of RWM and τ 2 = c2/4 in the case
of MALA.

To compute a(x) we set z = (y − r x)/c, where r as in
(10). Then, we have that

exp
{
− τ 2

2 (y	y − x	x)
}

= exp
{ − τ 2c2

2 [(z + κ)	(z + κ) − x	x/c2]}, (25)

where κ = r x/c. By setting f = (z + κ)	(z + κ) we have
that f follows the non-central chi-squared distribution with
d degrees of freedom and non-central parameter r2x	x/c2.
Eq. (25) implies that α(x) in (8) becomes

a(x) =
∫

min{1, exp{− τ 2c2
2 [ f − x	x/c2}}p( f )d f

= E f
[
min{1, e− c2τ 2

2 ( f −x	x/c2)}]

=
∫ x	x

c2

−∞
e− c2τ 2

2 ( f −x	x/c2) p( f )d f +
∫ ∞
x	x
c2

p( f )d f

(26)

where p( f ) is the density of the randomvariable f andwrites

p( f ) =
∞∑

j=0

Pois
(
j |κ/2

)
Gam( f ; d/2 + j, 2).

Notice that the second term in (26) can be calculated by
using the cdf of the non-central chi squared distribution. For
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the first term after some algebra we have that

e− c2τ 2
2 ( f −x	x/c2) p( f )

=
∞∑

j=0

Pois
(
j |κ/2

)

(c2τ 2 + 1)d/2+ j
Gam

(
f ; d/2 + j, 2

c2τ 2+1

)
. (27)

To compute ag(x) we first note that

ag(x) =
K∑

k=1

wkagk (x), (28)

where

agk (x) =
∫

min
{
1, exp

{
− 1

2 (y
	y − x	x)

}

q(x |y)
q(y|x)

}

gk(y)q(y|x)dy,

and gk(x) = exp{β	
k x − γk(x − δk)

	(x − δk)}.
Then, we calculate the agk (x) by noting that

gk(y)q(y|x) = Ak(x)N
(
y|mk(x), s

2
k

)
,

where

Ak(x) = (1 + 2c2γk)
−d/2

exp

{

− r2x	x
2c2

− γkδ
	
k δk + mk(x)	mk(x)

2c2(1 + 2γkc2)

}

,

mk(x) = r x + c2(βk + γkδk)

1 + 2c2γk
and s2k = c2/(1 + 2c2γk).

By setting zk,g = (x − mk(x))/s and fk,g = (zk,g +
ζk,g)

	(zk,g + ζk,g), where ζk,g = mk(x)/sk , we work as
in (25) and have that

agk (x) = Ak(x)
∫

min

{

1, exp{− τ 2s2k
2 [ fk,g

− x	x/s2k ]}
}

p( fk,g)d fk,g

= Ak(x)E fk,g
[
min{1, exp{− τ 2s2k

2 ( fk,g − x	x/s2k )}}],

where the random variable fk,g follows the chi-squared
distribution with d degrees of freedom and non-central
parameters mk(x)	mk(x)/s2k and the expectation is calcu-
lated by utilizing the cdf of fk,g as in Eq. (26)-(27). Finally,
from Eq. (28) we have that

ag(x) =
K∑

k=1

Ak(x)E fk,g

[
min{1, exp{− τ 2s2k

2 ( fk,g

−x	x/s2k )}}
]
. (29)

��

B Proof of Proposition 2

Proof Letq(y|x)be the proposal distribution definedby (10).
We have that

π̃0(y)q(x |y)
π̃0(x)q(y|x) = exp{−τ 2

2
(y	y − x	x)},

where τ 2 = 1 in the case of RWM and τ 2 = c2/4 in the case
of MALA. We assume that F(x) = x ( j) and we show that
i) F̂0

π̃ (−x ( j), x ( j ′)) = −F̂0
π̃ (x) and that ii) F̂0

π̃ (x ( j), x ( j ′)) =
F̂0

π̃ (x ( j),�x ( j ′)), where x ( j ′) denotes the vector x ∈ Rd

without its j th coordinate and � is a permutation matrix.
Since F̂0

π̃ satisfies the Poisson equation we have that

∫
min

{
1, exp{−τ 2

2
(y	y − x	x)}}

[F̂0
π̃ (x) − F̂0

π̃ (y)]q(y|x)dy = x ( j), (30)

which implies that

−F̂0
π̃ (x)

∫
α(x, y)q(y|x)dy

−
∫

α(x, y)[−F̂0
π̃ (y)]q(y|x)dy = −x ( j), (31)

where α(x, y) = min
{
1, exp{− τ 2

2 (y	y − x	x)}}. Let also
z and z̃ be d-dimensional vectors such that z( j) = −x ( j) and
z(− j) = x (− j) and z̃( j) = −y( j), z̃( j

′) = y( j ′). Then, by
noting that the Jacobian of the transformations is equal to
one, (31) becomes

− F̂0
π̃ (−z( j), z( j

′))
∫

α(z, z̃)q(z̃|z)dz̃

−
∫

α(z, z̃)[−F̂0
π̃ (−z( j), z( j

′))]q(z̃|z)dz̃ = z( j), (32)

where α(z, z̃) = min
(
1, e− c2+r2−1

2c2
(z̃	 z̃−z	z)) and q(z̃|z) =

N (z̃|r z, c2 I ). Equation (32) implies that −F̂0
π̃ (−z( j), z( j

′))
is solution of the Poisson equation and from the uniqueness
of the solution we have i).

To prove ii) we denote by z the d-dimensional vector such
that z( j) = x ( j) and z( j

′) = �x ( j ′) and we apply the fol-
lowing transformation on (30); we set z̃ to be d-dimensional
vector such that z̃( j) = y( j) and z̃( j

′) = �y( j ′). Then, we
have that

F̂0
π̃ (z( j),�−1z( j

′))
∫

α(z, z̃)q(z̃|z)dz̃

−
∫

α(z, z̃)[F̂0
π̃ (z( j),�−1z( j

′))]q(z̃|z)dz̃ = z( j), (33)
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where α(z, z̃) and q(z̃|z) as in (32) since they are invariant to
arbitrary permutations of z and/or z̃ and �−1 is permutation
matrix such that �−1�z( j

′) = z( j
′). From (33) we have that

F̂0
π̃ (z( j),�−1z( j

′)) is solution of the Poisson equation and
then ii) holds again due to the uniqueness of the solution of
the Poisson equation. ��

C Proof of Proposition 3

Proof Let π̃(z) = N (z|0, I ) be the target of a Metropolis-
Hastings algorithm with proposal q(z̃|z) = N (z̃|r z, c2 I ), it
easy to see that r = 1 corresponds to the RWM algorithm
and r = 1 − c2/2 to MALA. Let also F̂π̃0 the solution of
the associated Poisson equation and π̃(x) = N (x |μ,�)

be a bivariate Gaussian density with mean μ and covariance
matrix�. We assume that F(z) = z(1) in (1) which becomes

( ∫
αz(z, z̃)q(z̃|z)dz̃

)

F̂π̃0(z)

−
∫

αz(z, z̃)q(z̃|z)F̂π̃0(z̃)dz̃ = z(1), (34)

where

αz(z, z̃) = min

{

1, e
− c2+r2−1

2c2
(z̃	 z̃−z	z)

}

(35)

Let x = μ + Lz and y = μ + Lz̃, where L such that � =
LL	. From the properties of the Gaussian distribution we
have that

q(y|x) = N (y|r(x − μ) + μ, c2�)

Moreover, equation (35) becomes

αz
(
L−1(x − μ), L−1(y − μ)

)

= min

{

1, e
− c2+r2−1

2c2
[
(y−μ)	�−1(y−μ)−(x−μ)	�−1(x−μ)

]}

= α̃(x, y)

Then, Eq. (34) becomes
( ∫

α̃(x, y)q(y|x)dy
)

F̂π̃0

(
L−1(x − μ)

)

−
∫

α̃(x, y)q(y|x)F̂π̃0

(
L−1(y − μ)

)
dy = L−1

11 (x (1) − μ(1)),

(36)

where L11 is the first diagonal element of L . Since L11 =
1/L−1

11 . Equation (36) implies that the function

F̂π̃ (x) = L11 F̂π̃0

(
L−1(x − μ)

)

is the solution of the Poisson equation associated to the
Metropolis-Hastings algorithmwith target π̃ (x) andproposal
q(y|x). ��

D Variance reduction across all the marginal
distributions

Here we present a computationally efficient method in order
to perform variance reduction in the estimation of the mean
Eπ [x ( j)], for each j = 1, . . . , d. To achieve this we work
under the assumption that F(x) = x in the Poisson equation
(1). Following the same steps as in the main paper we first
construct an approximation to its solution in the case of a
standard Gaussian target and then we move to the general
Gaussian case by extending Proposition 3 in the case where
F(x) = x . Finally, we construct a static control variate for
this choice of F and thus we extend the proposed estimator
in (20) to be an estimator for Eπ [x].

We start by noting that by approximating the solution F̂π̃0

of thePoisson equation associatedwith the standardGaussian
target with the function G0 suggests that a natural approxi-
mation of the solution F̂π̃0 of the Poisson equation in the
case where F(x) = x is the function G0 : Rd → Rd

where G0, j (x) = G0(x). Having approximated F̂π̃0 we
prove Remark 3 which shows that the solution F̂π of the
Poisson equation associated with the general Gaussian target
can be obtained from F̂π̃0 by applying a change of variables
like the one presented by Proposition 3 for the F(x) = x ( j)

case.

Remark 3 Under the same assumptions with Proposition 3
and for F(x) = x we have that the function F̂π̃ : Rd → Rd

with F̂π̃ (x) = LF̂π̃0(L
−1(x − μ)), where L is a lower

triangular Cholesky matrix such that� = LLT and π̃0(x) =
N (x |0, I ) is the standard Gaussian target, is the solution of
the Poisson equation associated with the general Gaussian
target π̃(x) = N (x |μ,�).

To prove Remark 3 we work as in the proof of Proposition
3. More precisely, Eq. (34) becomes
(∫

αz(z, z̃)q(z̃|z)dz̃
)

F̂π̃0(z)

−
∫

αz(z, z̃)q(z̃|z)F̂π̃0(z̃)dz̃ = z, (37)

which is now a system of d independent equations. Then, by
conducting the same change of variables as in the proof of
Proposition 3, Eq. (37) becomes
(∫

α̃(x, y)q(y|x)dy
)

F̂π̃0

(
L−1(x − μ)

)

−
∫

α̃(x, y)q(y|x)F̂π̃0

(
L−1(y − μ)

)
dy = L−1(x − μ).

(38)

Equation (38) implies that the function

F̂π̃ (x) = LF̂π̃0

(
L−1(x − μ)

)

123



Statistics and Computing             (2023) 33:6 Page 17 of 20     6 

is the solution of the Poisson equation associated to the
Metropolis-Hastings algorithmwith target π̃ (x) andproposal
q(y|x).

It is also important that Remark 3 implies that the func-
tion F̂π̃0

(
L−1(x−μ)

)
is the solution of the Poisson equation

associated with the target π̃ in the case where F(x) = L−1x .
Based on this result we construct a static control variate for
this choice of F . Similarly to the case where F(x) = x ( j)

the static control variate should be highly correlated with
the function α(x, y)(G (y) − G (x)), where G : Rd → Rd

and based on Remark 3 we have assumed that G (x) =
G0(L−1(x − μ)). Therefore, relying on the same arguments
presented in Sect. 2.3, we choose as a static control variate
the function H : Rd × Rd → Rd such that

H(x, y) = min{1, r̃(x, y)}[G (y) − G (x)],

Importantly, it is easy to check that Eq [H(x, y)] is ana-
lytically available since its computation reduces to the
calculation of integrals of the form in Eq. (19). Finally, analo-
gously to the estimator μn,G(F

θ̂n
) in (20) for F(x) = x ( j) in

the case where F(x) = L−1x we propose to estimate Eπ [x]
with

μn,G (F
θ̂n

)

:= 1

n

n−1∑

i=0

{

L−1xi + �̂n ◦ {
α(xi , yi )(G (yi ) − G (xi ))︸ ︷︷ ︸
Stochastic Poisson control variate

+ H(xi , yi ) − Eq(y|xi )[H(xi , y)]
︸ ︷︷ ︸

Static control variate

}
}

,

(39)

where �̂n is a d-dimensional vector in which the j th element
is the coefficient θ̂n in Eq. (22) and ◦ denotes the Hadamard
product. It follows that for F(xi ) = xi the proposedmodified
estimator of Eπ [F] is the vector Lμn,G which can be com-
puted with negligible extra computations than those already
conducted during the main MCMC algorithm.

E Calculations for Remark 2

As noted in Sect. 2.3 the calculation of Eq [h(x, y)] requires
the to compute the following integral

∫
min

{

1, exp{−1

2
(ỹ	 ỹ − x̃	 x̃)} q̃(x̃ |ỹ)

q̃(ỹ|x̃)
}

[
G0(ỹ) − G0(x̃)

]
q(ỹ|x̃)d ỹ, (40)

where x̃ and ỹ as defined in Sect. 2.3. In the case of the RWM
algorithm the calculation of the integral above is conducted

by using the results in Proposition 1 since the the densities
q̃(ỹ|x̃) and q(ỹ|x̃) coincide and, thus, (40) is consisted of the
integrals in (8) and (9).

In the case of the MALA q̃(ỹ|x̃), which is given by (10),
has mean r x̃ whereas the mean of the distribution with den-
sity q(ỹ|x̃) in (18) is k(x̃) = x̃ + (c2/2)L	∇ logπ(x).
However, the calculation of

ah(x) =
∫

min

{

1, exp{−1

2
(ỹ	 ỹ − x̃	 x̃)} q̃(x̃ |ỹ)

q̃(ỹ|x̃)dy
}

q(ỹ|x̃)

is conducted similarly to the calculation of a(x) in the
Proof of Proposition 2 and, more precisely, we have that
ah(x) is calculated from equation (26) where f follows the
chi-squared distribution with d degrees of freedom and non-
central parameter k(x̃)	k(x̃)/c2. To compute the integral

ahg (x) =
∫

min

{

1, exp{−1

2
(ỹ	 ỹ − x̃	 x̃)} q̃(x̃ |ỹ)

q̃(ỹ|x̃)G0(ỹ)dy

}

we work again as in the proof of Proposition 2 for the calcu-
lation of ag(x) and we find that ahg (x) is given by equation
(29) for

Ak(x) =
exp

{

− k(x̃)	k(x̃)
2c2

− γkδ
	
k δk + mk (x)	mk (x)

2c2(1+2γkc2)

}

(1 + 2c2γk)d/2

and

mk(x) = k(x) + c2(βk + γkδk)

1 + 2c2γk
.

F Efficient post-processing

The proposed method requires the transformation z =
L−1(x − μ) to be applied in all the samples of the MCMC
output, x0, . . . , xn−1. This calculation can be conducted effi-
ciently as follows. We assume that the samples are drawn
from the targetπ by employing theRWMalgorithm. The first
sample x0 is standardized according to z0 = L−1(x0 − μ).
Then, any other z j , j = 1, . . . , n−1, is obtained recursively
by

z j = z j−1 + α j cε j .

where ε j is the j-th standard normal noise vector generated
with the proposal y j = x j + cLε j , and α j ∈ {0, 1} is the
binary acceptance decision. Therefore, the calculation of the
standardized vectors can be conducted for all the MCMC
samples with negligible cost (only O(n2) to standardize the
initial z0) by relying only on quantities computed during the
MCMC. A similar computational efficiency also holds for
the case of the MALA.
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Table 11 Estimated factors by
which the variance of μn(F) is
larger than the variance of
μn,G(F) for standard Gaussian
d-variate target

RWM MALA

d = 2 d = 10 d = 30 d = 100 d = 2 d = 10 d = 30 d = 100

n =1000 92 23 7 – 1,258 60 48 –

n = 10,000 272 165 114 28 3556 79 82 263

n = 50,000 540 439 182 98 4604 92 104 156

n = 500,000 440 828 377 278 5031 263 273 284

We collect n samples after the first 10,000 iterations of the RWM and the MALA and we apply the proposed
variance reduction methods by assuming that the covariance of the target is unknown and we use the sample
covariance of the MCMC output as its estimator. In the case d = 100 and n = 1, 000 the application of the
method was impossible due to numerical issues in the estimation of the target covariance

Table 12 Factors by which the
effective sample (ESS) size that
corresponds to the proposed
estimator μn,G(F) is larger than
the ESS for the standard
estimator μn(F) where the latter
is multiplied by the extra
computational time needed for
the proposed post-processing

RWM MALA

d = 2 d = 10 d = 30 d = 100 d = 2 d = 10 d = 30 d = 100

n =1000 18.60 5.19 1.44 0.29 224.32 10.62 9.44 16.23

n = 10,000 27.84 15.76 5.60 0.30 446.55 8.97 9.76 31.57

n = 50,000 49.20 29.65 6.32 0.94 578.52 9.17 8.59 22.79

n = 500,000 36.74 54.64 10.89 2.03 416.42 6.92 13.05 47.65

The target was a standard d-variate Gaussian distribution and we collected n samples after the first 10,000
iterations of the RWM and the MALA and we were interested in estimating the mean of the first coordinate
of the target, i.e., F(x) = x (1)

G Additional experiments

G.1 Gaussian target with unknown covariance

We repeat the experiments presented in Sect. 3.1 where the
target distribution is a d-variate standard Gaussian distribu-
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Fig. 5 Effective sample sizes (ESSs) that correspond to the estimator
μn,G(F) over ESSs for μn(F) for a mixture of d-variate Gaussian
distributions with density given by Eq. (23) for different values of the
mean m indicated by the choice of the parameter h in the x-axis. The
ESS forμn(F) is multiplied by the extra computational time needed for
the proposed post-processing. The red dotted line indicates the value 1
in the y-axis. (Color figure online)

tion and we are interested in estimating the expected value
of the first coordinate of the target, i.e., we set F(x) = x (1).
However, we now relax the assumption that the target covari-
ance matrix in known and we use the sample covariance of
the MCMC output as an estimator of the true covariance of
the target. Table 11 displays the factors by which the vari-
ance μn(F) is greater than the variance of μn,G(F) in the
case of the MALA and RWM algorithm. A comparison of
Tables 11 and 2 indicates that the error in the estimation of the
covariance of the target has negligible effect on the achieved
variance reduction.

G.2 Effective sample size

We examine the effective sample sizes (ESSs) that corre-
spond to the two competitive estimatorsμn(F) andμn,G(F).
The ESS in the case of an MCMC estimator can be calcu-
lated as the ratio of the variance of the estimator assuming
independent samples over its variance estimated from the
dependent samples of the MCMC output; see for example
Vehtari et al. (2021) for more details. Therefore, to compute
the ratio of the ESSs that correspond to μn(F) and μn,G(F)

we only need the estimates of their variances calculated as
explained in Sect. 3.

Table 12 presents the ratios of the ESSs that correspond
toμn(F) andμn,G(F) for the experiment presented by Sect.
3.1 where the target was a multivariate standard Gaussian
distribution. To take into account any extra computational
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Table 13 Factors by which the
effective sample (ESS) size that
corresponds to the proposed
estimator μn,G(F) is larger than
the ESS for the standard
estimator μn(F) where the latter
is multiplied by the extra
computational time needed for
the proposed post-processing

Dataset n = 1000 n = 10,000 n = 50,000 n = 200,000

Ripley 20.98–26.40 17.02–58.20 19.34–59.19 18.15 72.46

Pima Indian 12.08–21.41 57.64–94.08 56.79–124.61 53.31–129.77

Heart 6.31–10.46 8.44–20.72 9.34 –25.42 6.89–28.27

Australian 5.12–12.72 15.51–48.29 16.23–43.48 10.65–42.16

German 4.00–8.64 11.47–31.95 15.63–55.69 11.13–64.58

The target was the posterior distribution of the logistic regression models applied on the datasets indicated by
the first column. We collect n samples after the first 10,000 iterations of the RWM algorithm

Table 14 Factors by which the
effective sample (ESS) size that
corresponds to the proposed
estimator μn,G(F) is larger than
the ESS for the standard
estimator μn(F) where the latter
is multiplied by the extra
computational time needed for
the proposed post-processing

Dataset n = 1000 n = 10,000 n = 50,000 n = 200,000

Ripley 10.18–14.94 12.90–21.53 9.94–21.36 8.37–16.24

Pima Indian 21.96–48.26 29.62–44.42 27.17–57.43 27.97–55.53

Heart 9.30–16.03 6.14–14.57 7.17–12.82 6.10–10.57

Australian 8.47–20.71 6.48–17.36 4.57–12.62 3.76–10.98

German 11.02–31.11 8.97–33.43 6.81–36.28 5.47–27.15

The target was the posterior distribution of the logistic regression models applied on the datasets indicated by
the first column. We collect n samples after the first 10,000 iterations of the MALA

Table 15 Factors by which the effective sample (ESS) size that corresponds to the proposed estimator μn,G(F) is larger than the ESS for the
standard estimator μn(F) where the latter is multiplied by the extra computational time needed for the proposed post-processing

n = 10,000 n = 50,000 n = 200,000

h m φ s2 h m φ s2 h m φ s2

d=50 7.18–15.24 10.42 12.92 3.23 4.86–10.34 8.45 12.51 1.86 4.52–9.92 10.28 8.58 1.47

d=100 0.82–5.89 6.39 2.77 1.01 0.73–4.71 4.36 5.23 1.13 0.87–5.45 3.09 2.54 0.61

The target was the posterior distribution of the d-dimensional stochastic volatility model. We collect n samples after the first 10,000 iterations of
the MALA

cost for the proposed post-processing of the MCMC output
we have multiplied the ESSs for μn(F) by the extra com-
putational time needed for the proposed post-processing of
the MCMC output. Similarly, Figure 5 and Tables 13, 14,
15 present the ratio of the ESSs normalised with respect to
the computational time that correspond to the examples pre-
sented by Sects. 3.2–3.4. It is clear from the visual inspection
of Figure 5 and the Tables that the application of the pro-
posed variance reduction techniques results in an increase of
the ESS per computational time in the vast majority of the
examples.
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