Non-homogeneous random walks on a semi-infinite strip

Chak Hei Lo

Joint work with Andrew R. Wade

World Congress in Probability and Statistics 11th July, 2016

Outline

Motivation: Lamperti's problem

Our Model

Non-homogeneous RW on semi-infinite strip Classification of the random walk Assumptions

Main results

Constant drift Lamperti drift Generalized Lamperti drift

Examples: Correlated random walks

Motivation: Lamperti's problem

• Let X_n be a nearest neighbour random walk on \mathbb{Z}_+ .

Motivation: Lamperti's problem

- Let X_n be a nearest neighbour random walk on \mathbb{Z}_+ .
- Denote the mean drift at x by $\mu(x)$.

Motivation: Lamperti's problem

- Let X_n be a nearest neighbour random walk on \mathbb{Z}_+ .
- Denote the mean drift at x by $\mu(x)$.
- Lamperti's problem: $\mu(x) = O(1/x)$ when $x \to \infty$.

• Let S be a finite non-empty set.

- Let S be a finite non-empty set.
- Let Σ be a subset of $\mathbb{R}_+ \times S$ that is *locally finite*, i.e., $\Sigma \cap ([0, r] \times S)$ is finite for all $r \in \mathbb{R}_+$.

- Let S be a finite non-empty set.
- Let Σ be a subset of $\mathbb{R}_+ \times S$ that is *locally finite*, i.e., $\Sigma \cap ([0, r] \times S)$ is finite for all $r \in \mathbb{R}_+$.

• E.g.
$$\Sigma = \mathbb{Z}_+ \times S$$
.

- Let S be a finite non-empty set.
- Let Σ be a subset of $\mathbb{R}_+ \times S$ that is *locally finite*, i.e., $\Sigma \cap ([0, r] \times S)$ is finite for all $r \in \mathbb{R}_+$.
- E.g. $\Sigma = \mathbb{Z}_+ \times S$.
- Define for each $k \in S$ the line $\Lambda_k := \{x \in \mathbb{R}_+ : (x, k) \in \Sigma\}.$

- Let S be a finite non-empty set.
- Let Σ be a subset of $\mathbb{R}_+ \times S$ that is *locally finite*, i.e., $\Sigma \cap ([0, r] \times S)$ is finite for all $r \in \mathbb{R}_+$.
- E.g. $\Sigma = \mathbb{Z}_+ \times S$.
- Define for each $k \in S$ the line $\Lambda_k := \{x \in \mathbb{R}_+ : (x, k) \in \Sigma\}.$
- Suppose that for each $k \in S$ the line Λ_k is unbounded.

Suppose that (X_n, η_n), n ∈ Z₊, is a time-homogeneous, irreducible Markov chain on Σ, a locally finite subset of R₊ × S.

- Suppose that (X_n, η_n), n ∈ Z₊, is a time-homogeneous, irreducible Markov chain on Σ, a locally finite subset of R₊ × S.
- Neither coordinate is assumed to be Markov.

Motivating examples

We can view S as a set of internal states, influencing motion on the lines $\mathbb{R}_+.$ E.g.,

- Operations research: modulated queues
 - (S = states of server)

Motivating examples

We can view S as a set of internal states, influencing motion on the lines $\mathbb{R}_+.$ E.g.,

• Operations research: modulated queues

(S = states of server)

- Economics: regime-switching processes
 - (S contains market information)

Motivating examples

We can view S as a set of internal states, influencing motion on the lines $\mathbb{R}_+.$ E.g.,

• Operations research: modulated queues

(S = states of server)

- Economics: regime-switching processes (*S* contains market information)
- Physics: physical processes with internal degrees of freedom (S = energy/momentum states of particle)

Classification of the random walk

Recall (X_n, η_n) is a time-homogeneous irreducible Markov chain on the state-space $\Sigma \in \mathbb{R}_+ \times S$.

- (i) If (X_n, η_n) is transient, then $X_n \to \infty$ a.s.
- (ii) If (X_n, η_n) is recurrent, then $\mathbb{P}(X_n \in A \text{ i.o.}) = 1$ for any bounded region A.
- (iii) Define τ = min{n ≥ 0 : X_n ∈ A}. If (X_n, η_n) is positive-recurrent, then E[τ] < ∞ for any bounded region A.
- (iv) If (X_n, η_n) is recurrent but not positive recurrent, then we call it null-recurrent.

Assumptions

• Moments bound on jumps of X_n (B_p) $\exists C_p < \infty$ s.t.

$$\mathbb{E}[|X_{n+1}-X_n|^p \mid (X_n,\eta_n)=(x,i)] \le C_p$$

Assumptions

• Moments bound on jumps of X_n (B_p) $\exists C_p < \infty$ s.t.

$$\mathbb{E}[|X_{n+1} - X_n|^p \mid (X_n, \eta_n) = (x, i)] \le C_p$$

• Notation for moments of the displacements in the *X*-coordinate

$$\mu_i(x) = \mathbb{E}[X_{n+1} - X_n \mid (X_n, \eta_n) = (x, i)]$$

$$\sigma_i(x) = \mathbb{E}[(X_{n+1} - X_n)^2 \mid (X_n, \eta_n) = (x, i)]$$

Assumptions (cont.)

η_n is "close to being Markov" when X_n is large Define

$$q_{ij}(x) = \mathbb{P}[\eta_{n+1} = j \mid (X_n, \eta_n) = (x, i)]$$

$$\begin{aligned} (\mathbb{Q}_{\infty}) \quad & q_{ij} = \lim_{x \to \infty} q_{ij}(x) \text{ exists for all } i, j \in S \\ & \text{and } (q_{ij}) \text{ is irreducible} \end{aligned}$$

Assumptions (cont.)

η_n is "close to being Markov" when X_n is large Define

$$q_{ij}(x) = \mathbb{P}[\eta_{n+1} = j \mid (X_n, \eta_n) = (x, i)]$$

$$\begin{array}{ll} (\mathbb{Q}_{\infty}) & q_{ij} = \lim_{x \to \infty} q_{ij}(x) \text{ exists for all } i, j \in S \\ & \text{and } (q_{ij}) \text{ is irreducible} \end{array}$$

• Let π be the unique stationary distribution on S corresponding to (q_{ij}) .

• Constant-type moment condition $(M_C) \quad \exists \ d_i \in \mathbb{R} \text{ for all } i \in S \text{ such that}$

$$\mu_i(x) = d_i + o(1).$$

Recurrence classification for constant drift

The following theorem is from Georgiou, Wade (2014), extending slightly earlier work of Malyshev (1972), Falin (1988), and Fayolle et al (1995).

Theorem

Suppose that (B_p) holds for some p > 1 and conditions (Q_{∞}) and (M_C) hold. The following sufficient conditions apply.

- If $\sum_{i\in S} d_i\pi_i > 0$, then (X_n, η_n) is transient.
- If $\sum_{i \in S} d_i \pi_i < 0$, then (X_n, η_n) is positive-recurrent.

where π_i is the unique stationary distribution on S.

What about $\sum_{i \in S} d_i \pi_i = 0$?

Different drifts

(i)
$$\sum_{i \in S} d_i \pi_i \neq 0$$
, constant drift:
 $\mu_i(x) = d_i + o(1)$
(ii) $\sum_{i \in S} d_i \pi_i = 0$ and $d_i = 0$ for all *i*, Lamperti drift:
 $\mu_i(x) = \frac{c_i}{x} + o(x^{-1})$
 $\sigma_i(x) = s_i^2 + o(1)$
(iii) $\sum_{i \in S} d_i \pi_i = 0$ and $d_i \neq 0$ for some *i*, generalized Lamperti drift:
 $\mu_i(x) = d_i + \frac{c_i}{x} + o(x^{-1})$
 $\sigma_i(x) = s_i^2 + o(1)$

• Lamperti-type moment conditions

 $(M_L) \quad \exists c_i, s_i \in \mathbb{R} \text{ for all } i \in S \text{ (at least one } s_i \text{ nonzero) such that}$

$$\mu_i(x) = \frac{c_i}{x} + o(x^{-1}); \quad \sigma_i(x) = s_i^2 + o(1).$$

• Lamperti-type moment conditions

 $(M_L) \quad \exists c_i, s_i \in \mathbb{R} \text{ for all } i \in S \text{ (at least one } s_i \text{ nonzero) such that}$

$$\mu_i(x) = \frac{c_i}{x} + o(x^{-1}); \quad \sigma_i(x) = s_i^2 + o(1).$$

• When S is a singleton, this reduces to the classical Lamperti problem on \mathbb{R}_+ .

Recurrence classification for Lamperti drift

Theorem (Georgiou, Wade, 2014)

Suppose that (B_p) holds for some p > 2 and conditions (Q_∞) and (M_L) hold. The following sufficient conditions apply. (i) If $\sum_{i \in S} (2c_i - s_i^2)\pi_i > 0$, then (X_n, η_n) is transient. (ii) If $|\sum_{i \in S} 2c_i\pi_i| < \sum_{i \in S} s_i^2\pi_i$, then (X_n, η_n) is null-recurrent. (iii) If $\sum_{i \in S} (2c_i + s_i^2)\pi_i < 0$, then (X_n, η_n) is positive-recurrent.

[With better error bounds in (Q_∞) and (M_L) we can also show that the boundary cases are null-recurrent.]

• Our general analysis is based on the Lyapunov function $f_{\nu}: \Sigma \to \mathbb{R}$ defined for $\nu \in \mathbb{R}$ by

$$f_{\nu}(x,i) := x^{\nu} + \frac{\nu}{2}b_i x^{\nu-2}$$

where $b_i \in \mathbb{R}$.

• Our general analysis is based on the Lyapunov function $f_{\nu}: \Sigma \to \mathbb{R}$ defined for $\nu \in \mathbb{R}$ by

$$f_{\nu}(x,i) := x^{\nu} + \frac{\nu}{2}b_i x^{\nu-2}$$

where $b_i \in \mathbb{R}$.

• For appropriate choices of ν , and selecting the right b_i depending on the drift and the stationary distribution, we can show that $f_{\nu}(X_n, \eta_n)$ is a supermartingale and so we can apply some semi-martingale theorem. Hence we obtain the last theorem shown.

• Generalized Lamperti type moment conditions Define

$$\mu_{ij}(x) = \mathbb{E}[(X_{n+1} - X_n)\mathbf{1}\{\eta_{n+1} = j\} \mid (X_n, \eta_n) = (x, i)]$$

• Generalized Lamperti type moment conditions Define

$$\mu_{ij}(x) = \mathbb{E}[(X_{n+1} - X_n)\mathbf{1}\{\eta_{n+1} = j\} \mid (X_n, \eta_n) = (x, i)]$$

(i) For all
$$i \in S$$
, $\mu_i(x) = d_i + \frac{c_i}{x} + o(x^{-1})$ as $x \to \infty$,

• Generalized Lamperti type moment conditions Define

$$\mu_{ij}(x) = \mathbb{E}[(X_{n+1} - X_n)\mathbf{1}\{\eta_{n+1} = j\} \mid (X_n, \eta_n) = (x, i)]$$

(i) For all
$$i \in S$$
, $\mu_i(x) = d_i + \frac{c_i}{x} + o(x^{-1})$ as $x \to \infty$,
(ii) For all $i, j \in S$, $\mu_{ij}(x) = d_{ij} + o(1)$ as $x \to \infty$,

• Generalized Lamperti type moment conditions Define

$$\mu_{ij}(x) = \mathbb{E}[(X_{n+1} - X_n)\mathbf{1}\{\eta_{n+1} = j\} \mid (X_n, \eta_n) = (x, i)]$$

(i) For all
$$i \in S$$
, $\mu_i(x) = d_i + \frac{c_i}{x} + o(x^{-1})$ as $x \to \infty$,
(ii) For all $i, j \in S$, $\mu_{ij}(x) = d_{ij} + o(1)$ as $x \to \infty$,
(iii) $\sigma_i(x) = s_i^2 + o(1)$,

• Generalized Lamperti type moment conditions Define

$$\mu_{ij}(x) = \mathbb{E}[(X_{n+1} - X_n)\mathbf{1}\{\eta_{n+1} = j\} \mid (X_n, \eta_n) = (x, i)]$$

(i) For all
$$i \in S$$
, $\mu_i(x) = d_i + \frac{c_i}{x} + o(x^{-1})$ as $x \to \infty$,
(ii) For all $i, j \in S$, $\mu_{ij}(x) = d_{ij} + o(1)$ as $x \to \infty$,
(iii) $\sigma_i(x) = s_i^2 + o(1)$,
(iv) $\sum_{i \in S} \pi_i d_i = 0$.

• Generalized Lamperti type moment conditions Define

$$\mu_{ij}(x) = \mathbb{E}[(X_{n+1} - X_n)\mathbf{1}\{\eta_{n+1} = j\} \mid (X_n, \eta_n) = (x, i)]$$

 (M_{CL}) There exist $d_i \in \mathbb{R}$, $c_i \in \mathbb{R}$, $d_{ij} \in \mathbb{R}$ and $s_i^2 \in \mathbb{R}_+$, with at least one s_i^2 non-zero, such that all of the following is satisfied,

(i) For all
$$i \in S$$
, $\mu_i(x) = d_i + \frac{c_i}{x} + o(x^{-1})$ as $x \to \infty$,
(ii) For all $i, j \in S$, $\mu_{ij}(x) = d_{ij} + o(1)$ as $x \to \infty$,
(iii) $\sigma_i(x) = s_i^2 + o(1)$,
(iv) $\sum_{i \in S} \pi_i d_i = 0$.

• Transition probability condition (Q_{CL}) There exist $\gamma_{ij} \in \mathbb{R}$, such that

$$q_{ij}(x) = q_{ij} + \frac{\gamma_{ij}}{x} + o(x^{-1})$$

Theorem (L., Wade, 2015)

Suppose that (B_p) holds for some p > 2, and conditions (Q_∞) , (Q_{CL}) and (M_{CL}) hold. Define a_i to be the unique solution up to translation of the system of equations $d_i + \sum_{j \in S} (a_j - a_i)q_{ij} = 0$ $\forall i \in S$. The following sufficient conditions apply.

- If $\sum_{i \in S} [2c_i s_i^2 + 2\sum_{j \in S} a_j(\gamma_{ij} d_{ij})]\pi_i > 0$ then (X_n, η_n) is transient.
- If $|\sum_{i \in S} (2c_i + 2\sum_{j \in S} a_j \gamma_{ij}) \pi_i| < \sum_{i \in S} (s_i^2 + 2\sum_{j \in S} a_j d_{ij}) \pi_i$ then (X_n, η_n) is null-recurrent.
- If $\sum_{i \in S} [2c_i + s_i^2 + 2\sum_{j \in S} a_j(\gamma_{ij} + d_{ij})]\pi_i < 0$ then (X_n, η_n) is positive-recurrent.

 Transform the process (X_n, η_n) with generalized Lamperti drift to a process (X̃_n, η_n) = (X_n + a_{ηn}, η_n)

- Transform the process (X_n, η_n) with generalized Lamperti drift to a process (X̃_n, η_n) = (X_n + a_{ηn}, η_n)
- Find the appropriate choices of the real numbers a_i, i ∈ S, such that (X̃_n, η_n) has Lamperti drift i.e., the constant components of the drifts are eliminated

- Transform the process (X_n, η_n) with generalized Lamperti drift to a process (X̃_n, η_n) = (X_n + a_{ηn}, η_n)
- Find the appropriate choices of the real numbers a_i, i ∈ S, such that (X̃_n, η_n) has Lamperti drift i.e., the constant components of the drifts are eliminated
- Calculate the new increment moment estimates for the transformed process $(\widetilde{X}_n, \eta_n)$.

- Transform the process (X_n, η_n) with generalized Lamperti drift to a process (X̃_n, η_n) = (X_n + a_{ηn}, η_n)
- Find the appropriate choices of the real numbers a_i, i ∈ S, such that (X̃_n, η_n) has Lamperti drift i.e., the constant components of the drifts are eliminated
- Calculate the new increment moment estimates for the transformed process $(\widetilde{X}_n, \eta_n)$.
- Apply the results in the Lamperti drift case

Summary of cases

Need
$$\pi_i, c_i, s_i^2, d_{ij}, \gamma_{ij}$$

Summary of cases

$$\begin{array}{c|c} & \sum_{i \in S} d_i \pi_i = 0 & ? \\ \hline & \sum_{i \in S} d_i \pi_i < 0 & :T \\ & \sum_{i \in S} d_i \pi_i < 0 & :PR \end{array}$$

$$\begin{array}{c} \downarrow & \mathsf{Yes} \\ \hline & d_i = 0 \ \forall i \ ? & \mathsf{Yes} \end{array} \xrightarrow{} \begin{array}{c} & \mathsf{Yes} \\ & \downarrow & \mathsf{No} \end{array}$$

$$\begin{split} &\sum_{i \in S} \left[2c_i - s_i^2 + 2\sum_{j \in S} a_j(\gamma_{ij} - d_{ij}) \right] \pi_i > 0 & :\mathbf{T} \\ &\left| \sum_{i \in S} \left(2c_i + 2\sum_{j \in S} a_j \gamma_{ij} \right) \pi_i \right| \leq \sum_{i \in S} \left(s_i^2 + 2\sum_{j \in S} a_j d_{ij} \right) \pi_i & :\mathbf{NR} \\ &\sum_{i \in S} \left[2c_i + s_i^2 + 2\sum_{j \in S} a_j(\gamma_{ij} + d_{ij}) \right] \pi_i < 0 & :\mathbf{PR} \end{split}$$

Example: One-step Correlated random walk

Simulation results on One-step Correlated RW

Simulation results on One-step Correlated RW

Example: Two-steps Correlated random walk

Simulation results on Two-steps Correlated RW

Simulation results on Two-step Correlated RW

Simulation results on Two-steps Correlated RW

• We also obtained some quantitative information on the nature of recurrence. We studied moments of *passage times*.

- We also obtained some quantitative information on the nature of recurrence. We studied moments of *passage times*.
- For $x \in \mathbb{R}_+$, define the stopping time

$$\tau_x := \min\{n \ge 0 : X_n \le x\}.$$

- We also obtained some quantitative information on the nature of recurrence. We studied moments of *passage times*.
- For $x \in \mathbb{R}_+$, define the stopping time

$$\tau_{\mathsf{x}} := \min\{n \ge 0 : X_n \le \mathsf{x}\}.$$

• We got results that gives conditions for which s such that $\mathbb{E}[\tau_x^s]$ exists or not exists.

- We also obtained some quantitative information on the nature of recurrence. We studied moments of *passage times*.
- For $x \in \mathbb{R}_+$, define the stopping time

$$\tau_{\mathsf{x}} := \min\{n \ge 0 : X_n \le \mathsf{x}\}.$$

- We got results that gives conditions for which s such that $\mathbb{E}[\tau_x^s]$ exists or not exists.
- We used similar techniques and ideas in our proofs.

References

- L., A. R. Wade, Non-homogeneous random walks on a half strip with generalized Lamperti drifts, *http://arxiv.org/abs/1512.04242*
- G. I. Falin, Ergodicity of random walks in the half-strip, *Math. Notes* 44 (1988) 606–608; translated from *Mat. Zametki* 44 (1988) 225–230 [in Russian].
 - G. Fayolle, V. A. Malyshev, and M. V. Menshikov, Topics in the Constructive Theory of Countable Markov Chains, *Cambridge University Press*, Cambridge, 1995.
- N. Georgiou and A. R. Wade, Non-homogeneous random walks on a semi-infinite strip, Stoch. Process. Appl. 124 (2014) 3179–3205.
 - J. Lamperti, Criteria for the recurrence and transience of stochastic processes I, J. Math. Anal. Appl. 1 (1960) 314–330.
 - V. A. Malyshev, Homogeneous random walks on the product of finite set and a halfline, pp. 5–13 in Veroyatnostnye Metody Issledovania (Probability Methods of Investigation) 41 [in Russian], ed. A.N. Kolmogorov, Moscow State University, Moscow, 1972.

