

Motivation

- Many stochastic processes arising in applications exhibit a range of possible behaviours depending the values of certain key parameters.
- Investigating phase transitions for such systems leads to interesting and challenging mathematics.
- We aim to extend known criteria for classifying recurrence and transience in a particular near-critical Markov model.
- This will serve as a prototypical model for developing novel aspects of the semi-martingale method, which can then be used in applications.

Markov chain on a strip model

• Let S be a finite non-empty set, and let Σ be a subset of $\mathbb{R}_+ \times S$ that is *locally finite*, i.e., $\Sigma \cap ([0, r] \times S)$ is finite for all $r \in \mathbb{R}_+$.

Non-homogeneous Random Walks on a Half Strip

Chak Hei Lo

Department of Mathematical Sciences, University of Durham, UK.

c.h.lo@durham.ac.uk

Joint work with

Andrew R. Wade

Random walk on a half strip

• The local finiteness assumption ensures that transience of the Markov chain (X_n, η_n) is equivalent to $\lim_{n\to\infty} X_n = +\infty$, a.s.

• Note that neither of the coordinates is necessarily Markov.

Applications

Some example applications with a number of literature are the following.

• Queueing theory: modulated queues [5].

• Mathematical Finance: regime-switching processes.

• Physics: physical processes with internal degrees of freedom, in the form of correlated random walk [3].

Notation and assumptions

Now we need the following assumptions to proceed.

 $-(\mathbf{B}_{\mathbf{p}})$ There exists a constant $C_p < \infty$ such that

 $\mathbb{E}[|X_{n+1} - X_n|^p \mid X_n = x, \eta_n = i] \le C_p \ a.s. \ \forall n.$

• Define $q_{ij}(x) = \mathbb{P}[\eta_{n+1} = j \mid (X_n, \eta_n) = (x, i)]$ and assume

 $-(\mathbf{Q}_{\infty}) \lim_{x\to\infty} q_{ij}(x) = q_{ij}$ exists for all $i, j \in S$, and (q_{ij}) is an irreducible stochastic matrix.

• Let π be the unique stationary distribution on S corresponding to (q_{ij}) .

• Naturally, we want to specify the movement of the chain by its first and second moments in the \mathbb{R}_+ -coordinates.

> $\mu_i(x) := \mathbb{E} \left[X_{n+1} - X_n \mid X_n = x, \eta_n = i \right].$ $\sigma_i(x) := \mathbb{E}\left[(X_{n+1} - X_n)^2 \mid X_n = x, \eta_n = i \right].$

• We will study the asymptotic behaviour of time-homogeneous irreducible Markov chain $(X_n, \eta_n), n \in \mathbb{Z}_+$, on Σ .

Lamperti drift classification

- If there is a constant drift, i.e. $\mu_i(x) = d_i + o(1)$, then the recurrence classification depends on the sign of $\sum_{i \in S} \pi_i d_i$. Positive total average drift leads to transient and negative leads to positive recurrence [1,2]. The remaining case when we have zero average is the critical case.
- One natural guess would just be null-recurrence whenever the condition is satisfied but this is not always true. The case here is very subtle and it depends on a lot more than just the first term of the drift. We should assume the following condition.
- $-(\mathbf{D}_{\mathbf{L}})$ There exist $c_i \in \mathbb{R}$ and $s_i^2 \in \mathbb{R}_+$, with at least one s_i^2 non-zero, such that for all $i \in S$, as $x \to \infty$, $\mu_i(x) = \frac{c_i}{x} + o(x^{-1})$ and $\sigma_i(x) = s_i^2 + o(1).$
- The case when S is a singleton is the well-known Lamperti Problem [4].

• Assume the displacement of the X-coordinate has bounded p-moments for some $p < \infty$.

Lamperti drift

Theorem 1. [2] *Suppose that* $(\mathbf{B}_{\mathbf{p}})$ *holds for some* p > 2*, and conditions* (\mathbf{Q}_{∞}) and $(\mathbf{D}_{\mathbf{L}})$ hold. Then the following classification applies. • If $\sum_{i \in S} (2c_i - s_i^2) \pi_i > 0$, then X_n is transient. • If $|\sum_{i\in S} 2c_i\pi_i| < \sum_{i\in S} s_i^2\pi_i$, then X_n is null-recurrent. • If $\sum_{i \in S} (2c_i + s_i^2) \pi_i < 0$, then X_n is positive-recurrent. [With slightly better error bounds in (\mathbf{Q}_{∞}) and $(\mathbf{M}_{\mathbf{L}})$ we can show that the boundary cases are null-recurrent.]

Moments of Lamperti drift type

The degree of recurrence can be quantified by investigating existence of moments of the return times $\tau_x := \min\{n \ge 0 : X_n \le x\}$. More moments exists means the process is more recurrence in asymptotical sense. Here is the necessary (and sufficient with Theorem 3) condition for the existence of moments.

Notice that $\mu_i(x)$ and $\sigma_i(x)$ are finite if (\mathbf{B}_p) holds for some $p \ge 1$ and some $p \ge 2$ respectively.

Theorem 2 (L., Wade, 2015). Suppose that $(\mathbf{B}_{\mathbf{p}})$ holds for some p > 2, and conditions (\mathbf{Q}_{∞}) and $(\mathbf{D}_{\mathbf{L}})$ hold. If

$$\sum_{i \in S} [2c_i + (2\theta - 1)s_i^2]\pi_i < 0,$$

then for any $s \in [0, \theta \wedge \frac{p}{2}]$, we have $\mathbb{E}[\tau_x^s] < \infty$.

The proof is base on the idea of Lyapunov functions. Using a different starting function with the same technique, we can show the other side of the story as the following.

Theorem 3 (L., Wade, 2015). Suppose that $(\mathbf{B}_{\mathbf{p}})$ holds for some p > 2, and conditions (\mathbf{Q}_{∞}) and $(\mathbf{D}_{\mathbf{L}})$ hold. If

$$\sum_{i \in S} [2c_i + (2\theta - 1)s_i^2]\pi_i > 0,$$

for some $\theta > 0$, then for any $s \in [\theta, \frac{p}{2}]$, we have $\mathbb{E}[\tau_x^s] = \infty$.

Figure 1: Two simulations of 10³ steps of correlated random walks, as an application of the half strip model. The first and third figures show how the walk moves, with one-step and two-steps correlated respectively. The second and fourth figures display the displacement in the X_n direction against the number of steps.

Assumptions

• We define $\mu_{ij}(x)$ to represent the average drift at x from line i to j, i.e.

 $\mu_{ij}(x) = \mathbb{E}_{x,i}[(X_{n+1} - X_n)\mathbf{1}\{\eta_{n+1} = j\}].$

This alerts us that the interaction between the lines is actually crucial in this case. We define the generalized Lamperti drift as follows.

 $-(\mathbf{D}_{\mathbf{G}})$ For $i, j \in S$ there exist $d_i \in \mathbb{R}, e_i \in \mathbb{R}, d_{ij} \in \mathbb{R}$ and $t_i^2 \in \mathbb{R}_+$, with at least one t_i^2 non-zero, such that (a) for all $i \in S$, $\mu_i(x) = d_i + \frac{e_i}{x} + o(x^{-1})$ as $x \to \infty$; (b) for all $i \in S$, $\sigma_i^2(x) = t_i^2 + o(1)$ as $x \to \infty$; (c) for all $i, j \in S$, $\mu_{ij}(x) = d_{ij} + o(1)$ as $x \to \infty$; and

Generalized Lamperti drift

Generalized Lamperti drift classification

Now we give our main recurrence classification for the model with generalized Lamperti drift. Notice that although (a_i) are not unique, but nevertheless the expression in which they appear in the following theorem are invariant under translation of the (a_i) , and so the criteria are well-defined.

Theorem 4 (L., Wade, 2015). Suppose that $(\mathbf{B}_{\mathbf{p}})$ holds for some p > 2, and conditions $(\mathbf{Q}_{\mathbf{G}})$ and $(\mathbf{D}_{\mathbf{G}})$ hold. Define a_i to be the unique solution up to translation of the system of equations $d_i + \sum_{j \in S} (a_j - a_i)q_{ij} =$ $0 \forall i \in S$. Then the following sufficient conditions apply. • If $\sum_{i \in S} [2e_i - t_i^2 + 2\sum_{j \in S} a_j(\gamma_{ij} - d_{ij})] \pi_i > 0$ then X_n is transient.

Moments of Generalized Lamperti drift type

We also have similar criteria for the existence and non-existence of moments of generalized Lamperti drift type.

Theorem 5 (L., Wade, 2015). Suppose that $(\mathbf{B}_{\mathbf{p}})$ holds for some p > 2, and conditions $(\mathbf{Q}_{\mathbf{G}})$ and $(\mathbf{D}_{\mathbf{G}})$ hold. Define a_i to be the unique solution up to translation of the system of equations $d_i + \sum_{j \in S} (a_j - a_i)q_{ij} =$ $0 \forall i \in S.$ If

 $\sum_{i \in S} [2e_i + (2\theta - 1)t_i^2 + 2\sum_{j \in S} a_j(\gamma_{ij} + (2\theta - 1)d_{ij})]\pi_i < 0,$ then for any $s \in [0, \theta \wedge \frac{p}{2}]$, we have $\mathbb{E}[\tau_x^s] < \infty$. **Theorem 6** (L., Wade, 2015). Suppose that $(\mathbf{B}_{\mathbf{p}})$ holds for some p > 2,

(d) $\sum_{i \in S} \pi_i d_i = 0.$

• After settling the control of the moments, we also need some extra condition on the transitional probability to precisely pinpoint the phase transition. Here is the assumption.

 $-(\mathbf{Q}_{\mathbf{G}})$ There exist $\gamma_{ij} \in \mathbb{R}$, such that $q_{ij}(x) = q_{ij} + \frac{\gamma_{ij}}{x} + o(x^{-1})$, where (q_{ij}) is a stochastic matrix.

Acknowledgements

The authors are grateful to Nicholas Georgiou and Mikhail Menshikov for fruitful discussions on the topic of this poster.

References

[1] G. Fayolle, V. A. Malyshev, and M. V. Menshikov, Topics in the Constructive Theory of Countable Markov Chains, Cambridge University Press, Cambridge, 1995. [2] N. Georgiou, A. Wade, Non-homogeneous random walks on a semi-infinite strip, Stochastic Processes and their Applications, 124 (2014) 3179-3205. [3] A. Krámli and D. Szász, Random walks with internal degrees of freedom. I. Local limit theorems, Z. Wahrsch. Verw. Gebiete 63 (1983) 85-95.

[4] J. Lamperti, Criteria for the recurrence and transience of stochastic processes I, J. Math. Anal. Appl. 1 (1960) 314-330.

[5] M. F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications, Marcel Dekker, Inc., New York, (1989).

• If $|\sum_{i\in S} (2e_i + 2\sum_{j\in S} a_j \gamma_{ij})\pi_i| < \sum_{i\in S} (t_i^2 + 2\sum_{j\in S} a_j d_{ij})\pi_i$ then X_n is null-recurrent.

• If $\sum_{i \in S} [2e_i + t_i^2 + 2\sum_{j \in S} a_j(\gamma_{ij} + d_{ij})]\pi_i < 0$ then X_n is positive-recurrent.

[With slightly better error bounds in $(\mathbf{Q}_{\mathbf{G}})$ and $(\mathbf{D}_{\mathbf{G}})$ we can show that the boundary cases are null-recurrent.]

and conditions $(\mathbf{Q}_{\mathbf{G}})$ and $(\mathbf{D}_{\mathbf{G}})$ hold. Define a_i to be the unique solution up to translation of the system of equations $d_i + \sum_{j \in S} (a_j - a_i) q_{ij} =$ $0 \forall i \in S.$ If

 $\sum_{i \in S} [2e_i + (2\theta - 1)t_i^2 + 2\sum_{j \in S} a_j(\gamma_{ij} + (2\theta - 1)d_{ij})]\pi_i > 0,$

then for any $s \in [\theta, \frac{p}{2}]$, we have $\mathbb{E}[\tau_x^s] = \infty$.