Non-homogeneous Random Walks on a Half Strip

Chak Hei Lo
Department of Mathematical Sciences, University of Durham, UK. c.h.lo@durham.ac.uk

Joint work with
Andrew R. Wade

Random walk on a half strip

- The local finiteness assumption ensures that transience of the Markov chain $\left(X_{n}, \eta_{n}\right)$ is equivalent to $\lim _{n \rightarrow \infty} X_{n}=+\infty$, a.s.
- Note that neither of the coordinates is necessarily Markov.

Applications

Some example applications with a number of literature are the following

- Queueing theory: modulated queues [5].
- Mathematical Finance: regime-switching processes
- Physics: physical processes with internal degrees of freedom, in the form of correlated random walk [3].

Notation and assumptions

Now we need the following assumptions to proceed.

- Assume the displacement of the X-coordinate has bounded p-moments for some $p<\infty$.

Lamperti drift

Theorem 1. [2] Suppose that $\left(\mathbf{B}_{\mathbf{p}}\right)$ holds for some $p>2$, and conditions $\left(\mathbf{Q}_{\infty}\right)$ and $\left(\mathbf{D}_{\mathbf{L}}\right)$ hold. Then the following classification applies.

- If $\sum_{i \in S}\left(2 c_{i}-s_{i}^{2}\right) \pi_{i}>0$, then X_{n} is transient.
- If $\left|\sum_{i \in S} 2 c_{i} \pi_{i}\right|<\sum_{i \in S} s_{i}^{2} \pi_{i}$, then X_{n} is null-recurrent.
- If $\sum_{i \in S}\left(2 c_{i}+s_{i}^{2}\right) \pi_{i}<0$, then X_{n} is positive-recurrent.
[With slightly better error bounds in $\left(\mathbf{Q}_{\infty}\right)$ and $\left(\mathbf{M}_{\mathbf{L}}\right)$ we can show that the boundary cases are null-recurrent.]

Moments of Lamperti drift type

The degree of recurrence can be quantified by investigating existence of moments of the return times $\tau_{x}:=\min \left\{n \geq 0: X_{n} \leq x\right\}$. More moments exists means the process is more recurrence in asymptotical sense. Here is the necessary (and sufficient with Theorem 3) condition for the existence of moments.

- $\left(\mathbf{B}_{\mathbf{p}}\right)$ There exists a constant $C_{p}<\infty$ such that

$$
\mathbb{E}\left[\left|X_{n+1}-X_{n}\right|^{p} \mid X_{n}=x, \eta_{n}=i\right] \leq C_{p} \text { a.s. } \forall n .
$$

- Define $q_{i j}(x)=\mathbb{P}\left[\eta_{n+1}=j \mid\left(X_{n}, \eta_{n}\right)=(x, i)\right]$ and assume
$-\left(\mathbf{Q}_{\infty}\right) \lim _{x \rightarrow \infty} q_{i j}(x)=q_{i j}$ exists for all $i, j \in S$, and $\left(q_{i j}\right)$ is an irreducible stochastic matrix.
- Let $\boldsymbol{\pi}$ be the unique stationary distribution on S corresponding to $\left(q_{i j}\right)$.
- Naturally, we want to specify the movement of the chain by its first and second moments in the \mathbb{R}_{+}-coordinates.

$$
\begin{aligned}
\mu_{i}(x) & :=\mathbb{E}\left[X_{n+1}-X_{n} \mid X_{n}=x, \eta_{n}=i\right] . \\
\sigma_{i}(x) & :=\mathbb{E}\left[\left(X_{n+1}-X_{n}\right)^{2} \mid X_{n}=x, \eta_{n}=i\right] .
\end{aligned}
$$

Notice that $\mu_{i}(x)$ and $\sigma_{i}(x)$ are finite if $\left(\mathbf{B}_{\mathbf{p}}\right)$ holds for some $p \geq 1$ and some $p \geq 2$ respectively.

Theorem 2 (L., Wade, 2015). Suppose that $\left(\mathbf{B}_{\mathbf{p}}\right)$ holds for some $p>2$, and conditions $\left(\mathbf{Q}_{\infty}\right)$ and $\left(\mathbf{D}_{\mathbf{L}}\right)$ hold. If

$$
\sum_{i \in S}\left[2 c_{i}+(2 \theta-1) s_{i}^{2}\right] \pi_{i}<0
$$

then for any $s \in\left[0, \theta \wedge \frac{p}{2}\right]$, we have $\mathbb{E}\left[\tau_{x}^{s}\right]<\infty$.
The proof is base on the idea of Lyapunov functions. Using a different starting function with the same technique, we can show the other side of the story as the following
Theorem 3 (L., Wade, 2015). Suppose that $\left(\mathbf{B}_{\mathbf{p}}\right)$ holds for some $p>2$, and conditions $\left(\mathbf{Q}_{\infty}\right)$ and $\left(\mathbf{D}_{\mathbf{L}}\right)$ hold. If

$$
\sum_{i \in S}\left[2 c_{i}+(2 \theta-1) s_{i}^{2}\right] \pi_{i}>0
$$

for some $\theta>0$, then for any $s \in\left[\theta, \frac{p}{2}\right]$, we have $\mathbb{E}\left[\tau_{x}^{S}\right]=\infty$.

 and fourth figures display the displacement in the X_{n} direction against the number of steps

Generalized Lamperti drift

Assumptions

- We define $\mu_{i j}(x)$ to represent the average drift at x from line i to j, i.e. $\mu_{i j}(x)=\mathbb{E}_{x, i}\left[\left(X_{n+1}-X_{n}\right) \mathbf{1}\left\{\eta_{n+1}=j\right\}\right]$.

This alerts us that the interaction between the lines is actually crucial in this case. We define the generalized Lamperti drift as follows.

- $\left(\mathbf{D}_{\mathbf{G}}\right)$ For $i, j \in S$ there exist $d_{i} \in \mathbb{R}, e_{i} \in \mathbb{R}, d_{i j} \in \mathbb{R}$ and $t_{i}^{2} \in \mathbb{R}_{+}$, with at least one t_{i}^{2} non-zero, such that
(a) for all $i \in S, \mu_{i}(x)=d_{i}+\frac{e_{i}}{x}+o\left(x^{-1}\right)$ as $x \rightarrow \infty$;
(b) for all $i \in S, \sigma_{i}^{2}(x)=t_{i}^{2}+o(1)$ as $x \rightarrow \infty$;
(c) for all $i, j \in S, \mu_{i j}(x)=d_{i j}+o(1)$ as $x \rightarrow \infty$; and
(d) $\sum_{i \in S} \pi_{i} d_{i}=0$.
- After settling the control of the moments, we also need some extra condition on the transitional probability to precisely pinpoint the phase transition. Here is the assumption.
$\mathbf{-}\left(\mathbf{Q}_{\mathbf{G}}\right)$ There exist $\gamma_{i j} \in \mathbb{R}$, such that $q_{i j}(x)=q_{i j}+\frac{\gamma_{i j}}{x}+o\left(x^{-1}\right)$, where $\left(q_{i j}\right)$ is a stochastic matrix.

Generalized Lamperti drift classification

Now we give our main recurrence classification for the model with generalized Lamperti drift. Notice that although $\left(a_{i}\right)$ are not unique, but nevertheless the expression in which they appear in the following theorem are invariant under translation of the $\left(a_{i}\right)$, and so the criteria are well-defined.

Theorem 4 (L., Wade, 2015). Suppose that $\left(\mathbf{B}_{\mathbf{p}}\right)$ holds for some $p>2$, and conditions $\left(\mathbf{Q}_{\mathbf{G}}\right)$ and $\left(\mathbf{D}_{\mathbf{G}}\right)$ hold. Define a_{i} to be the unique solution up to translation of the system of equations $d_{i}+\sum_{j \in S}\left(a_{j}-a_{i}\right) q_{i j}=$ $0 \forall i \in S$. Then the following sufficient conditions apply

- If $\sum_{i \in S}\left[2 e_{i}-t_{i}^{2}+2 \sum_{j \in S} a_{j}\left(\gamma_{i j}-d_{i j}\right)\right] \pi_{i}>0$ then X_{n} is transient.
\bullet - If $\left|\sum_{i \in S}\left(2 e_{i}+2 \sum_{j \in S} a_{j} \gamma_{i j}\right) \pi_{i}\right|<\sum_{i \in S}\left(t_{i}^{2}+2 \sum_{j \in S} a_{j} d_{i j}\right) \pi_{i}$ then X_{n} is null-recurrent.
- If $\sum_{i \in S}\left[2 e_{i}+t_{i}^{2}+2 \sum_{j \in S} a_{j}\left(\gamma_{i j}+d_{i j}\right)\right] \pi_{i}<0$ then X_{n} is positive-recurrent.
[With slightly better error bounds in $\left(\mathbf{Q}_{\mathbf{G}}\right)$ and $\left(\mathbf{D}_{\mathbf{G}}\right)$ we can show that the boundary cases are null-recurrent.]

Moments of Generalized Lamperti drift type

We also have similar criteria for the existence and non-existence of moments of generalized Lamperti drift type
Theorem 5 (L., Wade, 2015). Suppose that $\left(\mathbf{B}_{\mathbf{p}}\right)$ holds for some $p>2$, and conditions $\left(\mathbf{Q}_{\mathbf{G}}\right)$ and $\left(\mathbf{D}_{\mathbf{G}}\right)$ hold. Define a_{i} to be the unique solution up to translation of the system of equations $d_{i}+\sum_{j \in S}\left(a_{j}-a_{i}\right) q_{i j}=$ $0 \forall i \in S$. If

$$
\sum_{i \in S}\left[2 e_{i}+(2 \theta-1) t_{i}^{2}+2 \sum_{j \in S} a_{j}\left(\gamma_{i j}+(2 \theta-1) d_{i j}\right)\right] \pi_{i}<0
$$

then for any $s \in\left[0, \theta \wedge \frac{p}{2}\right]$, we have $\mathbb{E}\left[\tau_{x}^{S}\right]<\infty$.
Theorem 6 (L., Wade, 2015). Suppose that $\left(\mathbf{B}_{\mathbf{p}}\right)$ holds for some $p>2$, and conditions $\left(\mathbf{Q}_{\mathbf{G}}\right)$ and $\left(\mathbf{D}_{\mathbf{G}}\right)$ hold. Define a to be the unique solution up to translation of the system of equations $d_{i}+\sum_{j \in S}\left(a_{j}-a_{i}\right) q_{i j}=$ $0 \forall i \in S$. If

$$
\sum_{i \in S}\left[2 e_{i}+(2 \theta-1) t_{i}^{2}+2 \sum_{j \in S} a_{j}\left(\gamma_{i j}+(2 \theta-1) d_{i j}\right)\right] \pi_{i}>0,
$$

then for any $s \in\left[\theta, \frac{p}{2}\right]$, we have $\mathbb{E}\left[\tau_{x}^{s}\right]=\infty$.

Acknowledgements

The authors are grateful to Nicholas Georgiou and Mikhail Menshikov for fruitful discussions on the topic of this poster

References

[1] G. Fayolle, V. A. Malyshev, and M. V. Menshikov, Topics in the Constructive Theory of Countable Markov Chains, Cambridge University Press, Cambridge, 1995
[2] N. Georgiou, A. Wade, Non-homogeneous random walks on a semi-infinite strip, Stochastic Processes and their Applications, 124 (2014) 3179-3205.
[3] A. Krámli and D. Szász, Random walks with internal degrees of freedom. I. Local limit theorems, Z. Wahrsch. Verw. Gebiete 63 (1983) 85-95.
[4] J. Lamperti, Criteria for the recurrence and transience of stochastic processes I, J. Math. Anal. Appl. 1 (1960) 314-330
[5] M. F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications, Marcel Dekker, Inc., New York, (1989).

