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Random walk on a half strip

Motivation
•Many stochastic processes arising in applications exhibit a range of

possible behaviours depending the values of certain key parameters.

• Investigating phase transitions for such systems leads to interesting and

challenging mathematics.

•We aim to extend known criteria for classifying recurrence and

transience in a particular near-critical Markov model.

• This will serve as a prototypical model for developing novel aspects of

the semi-martingale method, which can then be used in applications.

Markov chain on a strip model
• Let S be a finite non-empty set, and let Σ be a subset of R+× S that is

locally finite, i.e., Σ ∩ ([0, r]× S) is finite for all r ∈ R+.

•We will study the asymptotic behaviour of time-homogeneous

irreducible Markov chain (Xn, ηn), n ∈ Z+, on Σ.

• The local finiteness assumption ensures that transience of the Markov

chain (Xn, ηn) is equivalent to limn→∞Xn = +∞, a.s.

•Note that neither of the coordinates is necessarily Markov.

Applications
Some example applications with a number of literature are the following.

•Queueing theory: modulated queues [5].

•Mathematical Finance: regime-switching processes.

• Physics: physical processes with internal degrees of freedom, in the

form of correlated random walk [3].

Notation and assumptions
Now we need the following assumptions to proceed.

•Assume the displacement of theX-coordinate has bounded p-moments

for some p <∞.

– (Bp) There exists a constant Cp <∞ such that

E[|Xn+1 −Xn|p | Xn = x, ηn = i] ≤ Cp a.s. ∀n.

•Define qij(x) = P[ηn+1 = j | (Xn, ηn) = (x, i)] and assume

– (Q∞) limx→∞ qij(x) = qij exists for all i, j ∈ S, and (qij) is an

irreducible stochastic matrix.

• Let π be the unique stationary distribution on S corresponding to (qij).

•Naturally, we want to specify the movement of the chain by its first and

second moments in the R+-coordinates.

µi(x) := E [Xn+1 −Xn | Xn = x, ηn = i] .

σi(x) := E
[
(Xn+1 −Xn)2 | Xn = x, ηn = i

]
.

Notice that µi(x) and σi(x) are finite if (Bp) holds for some p ≥ 1 and

some p ≥ 2 respectively.

Lamperti drift

Lamperti drift classification
• If there is a constant drift, i.e. µi(x) = di + o(1), then the recurrence

classification depends on the sign of
∑
i∈S πidi. Positive total average

drift leads to transient and negative leads to positive recurrence [1, 2].

The remaining case when we have zero average is the critical case.

•One natural guess would just be null-recurrence whenever the condition

is satisfied but this is not always true. The case here is very subtle and

it depends on a lot more than just the first term of the drift. We should

assume the following condition.

– (DL) There exist ci ∈ R and s2
i ∈ R+, with at least one s2

i non-zero,

such that for all i ∈ S, as x → ∞, µi(x) = ci
x + o(x−1) and

σi(x) = s2
i + o(1).

• The case when S is a singleton is the well-known Lamperti Problem

[4].

Theorem 1. [2] Suppose that (Bp) holds for some p > 2, and conditions

(Q∞) and (DL) hold. Then the following classification applies.

• If
∑
i∈S(2ci − s2

i )πi > 0, then Xn is transient.

• If |
∑
i∈S 2ciπi| <

∑
i∈S s

2
iπi, then Xn is null-recurrent.

• If
∑
i∈S(2ci + s2

i )πi < 0, then Xn is positive-recurrent.

[With slightly better error bounds in (Q∞) and (ML) we can show that

the boundary cases are null-recurrent.]

Moments of Lamperti drift type
The degree of recurrence can be quantified by investigating existence of

moments of the return times τx := min{n ≥ 0 : Xn ≤ x}. More moments

exists means the process is more recurrence in asymptotical sense. Here is

the necessary (and sufficient with Theorem 3) condition for the existence

of moments.

Theorem 2 (L., Wade, 2015). Suppose that (Bp) holds for some p > 2,

and conditions (Q∞) and (DL) hold. If∑
i∈S

[2ci + (2θ − 1)s2
i ]πi < 0,

then for any s ∈
[
0, θ ∧ p

2

]
, we have E[τsx] <∞.

The proof is base on the idea of Lyapunov functions. Using a different

starting function with the same technique, we can show the other side of

the story as the following.

Theorem 3 (L., Wade, 2015). Suppose that (Bp) holds for some p > 2,

and conditions (Q∞) and (DL) hold. If∑
i∈S

[2ci + (2θ − 1)s2
i ]πi > 0,

for some θ > 0, then for any s ∈
[
θ, p2
]
, we have E[τsx] =∞.

Figure 1: Two simulations of 103 steps of correlated random walks, as an application of the half strip model. The first and third figures show how the walk moves, with one-step and two-steps correlated respectively. The second

and fourth figures display the displacement in the Xn direction against the number of steps.

Generalized Lamperti drift

Assumptions
•We define µij(x) to represent the average drift at x from line i to j, i.e.

µij(x) = Ex,i[(Xn+1 −Xn)1{ηn+1 = j}].

This alerts us that the interaction between the lines is actually crucial

in this case. We define the generalized Lamperti drift as follows.

– (DG) For i, j ∈ S there exist di ∈ R, ei ∈ R, dij ∈ R and t2i ∈ R+,

with at least one t2i non-zero, such that

(a) for all i ∈ S, µi(x) = di + ei
x + o(x−1) as x→∞;

(b) for all i ∈ S, σ2
i (x) = t2i + o(1) as x→∞;

(c) for all i, j ∈ S, µij(x) = dij + o(1) as x→∞; and

(d)
∑
i∈S πidi = 0.

•After settling the control of the moments, we also need some extra

condition on the transitional probability to precisely pinpoint the phase

transition. Here is the assumption.

– (QG) There exist γij ∈ R, such that qij(x) = qij +
γij
x + o(x−1),

where (qij) is a stochastic matrix.

Generalized Lamperti drift classification
Now we give our main recurrence classification for the model with

generalized Lamperti drift. Notice that although (ai) are not unique,

but nevertheless the expression in which they appear in the following

theorem are invariant under translation of the (ai), and so the criteria are

well-defined.

Theorem 4 (L., Wade, 2015). Suppose that (Bp) holds for some p > 2,

and conditions (QG) and (DG) hold. Define ai to be the unique solution

up to translation of the system of equations di +
∑
j∈S(aj − ai)qij =

0 ∀ i ∈ S. Then the following sufficient conditions apply.

• If
∑
i∈S[2ei − t2i + 2

∑
j∈S aj(γij − dij)]πi > 0 then Xn is transient.

• If |
∑
i∈S(2ei + 2

∑
j∈S ajγij)πi| <

∑
i∈S(t2i + 2

∑
j∈S ajdij)πi then

Xn is null-recurrent.

• If
∑
i∈S[2ei + t2i + 2

∑
j∈S aj(γij + dij)]πi < 0 then Xn is

positive-recurrent.

[With slightly better error bounds in (QG) and (DG) we can show that

the boundary cases are null-recurrent.]

Moments of Generalized Lamperti drift type
We also have similar criteria for the existence and non-existence of

moments of generalized Lamperti drift type.

Theorem 5 (L., Wade, 2015). Suppose that (Bp) holds for some p > 2,

and conditions (QG) and (DG) hold. Define ai to be the unique solution

up to translation of the system of equations di +
∑
j∈S(aj − ai)qij =

0 ∀ i ∈ S. If∑
i∈S

[2ei + (2θ − 1)t2i + 2
∑
j∈S

aj(γij + (2θ − 1)dij)]πi < 0,

then for any s ∈
[
0, θ ∧ p

2

]
, we have E[τsx] <∞.

Theorem 6 (L., Wade, 2015). Suppose that (Bp) holds for some p > 2,

and conditions (QG) and (DG) hold. Define ai to be the unique solution

up to translation of the system of equations di +
∑
j∈S(aj − ai)qij =

0 ∀ i ∈ S. If∑
i∈S

[2ei + (2θ − 1)t2i + 2
∑
j∈S

aj(γij + (2θ − 1)dij)]πi > 0,

then for any s ∈
[
θ, p2
]
, we have E[τsx] =∞.
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