Cutpoints of non-homogeneous random walks

Chak Hei Lo

Joint work with Mikhail V. Menshikov and Andrew R. Wade

Bernoulli-IMS One World Symposium 2020

Cutpoints

Suppose that $X=\left(X_{n} ; n \in \mathbb{Z}_{+}\right)$is a discrete-time stochastic process adapted to a filtration ($\mathcal{F}_{n} ; n \in \mathbb{Z}_{+}$) and taking values in a measurable $\mathcal{X} \subset \mathbb{R}_{+}$with $\inf \mathcal{X}=0$ and $\sup \mathcal{X}=\infty$. We permit \mathcal{F}_{0} to be rich enough that X_{0} is random.

A point x of \mathbb{R}_{+}is a cutpoint for a given trajectory of a stochastic process if, roughly speaking, the process visits x and never returns to $[0, x)$ after its first entry into (x, ∞).

Motivation

Under mild conditions, cutpoints may appear only in the transient case, when trajectories escape to infinity.

The more cutpoints that a process has, the 'more transient' it is, in a certain sense.

A fundamental question is: does a transient process have infinitely many cutpoints, or not?

Cutpoints

Definition

(i) The point $x \in \mathbb{R}_{+}$is a cutpoint for X if there exists $n_{0} \in \mathbb{Z}_{+}$ such that $X_{n} \leq x$ for all $n \leq n_{0}, X_{n_{0}}=x$, and $X_{n}>x$ for all $n>n_{0}$.
(ii) The point $x \in \mathbb{R}_{+}$is a strong cutpoint for X if there exists $n_{0} \in \mathbb{Z}_{+}$such that $X_{n}<x$ for all $n<n_{0}, X_{n_{0}}=x$, and $X_{n}>x$ for all $n>n_{0}$.

Number of cutpoints

Let \mathcal{C} denote the set of cutpoints, and let \mathcal{C}_{s} denote the set of strong cutpoints; the random sets \mathcal{C} and \mathcal{C}_{s} are at most countable, with $\mathcal{C}_{s} \subseteq \mathcal{C}$.

In this presentation we give conditions under which either (i) $\# \mathcal{C}_{s}=\infty$, or (ii) $\# \mathcal{C}<\infty$.

The example of a trajectory on \mathbb{Z}_{+}which follows the sequence $(0,0,1,1,2,2, \ldots)$ shows that it is, in principle, possible to have $\# \mathcal{C}=\infty$ and $\# \mathcal{C}_{s}<\infty$, but our results show that such behaviour is excluded for the models that we consider (with probability 1).

Some literature

For simple symmetric random walk (SSRW) on $\mathbb{Z}^{d}, d \geq 3$,
Erdős and Taylor (1960): Cutpoints have a positive density in the trajectory if $d \geq 5$;

Lawler (1991): Transient SSRW has infinitely many cutpoints in dimension $d \geq 4$;

James and Peres (1997): Transient SSRW has infinitely many cutpoints in dimension $d \geq 3$.

Recently, examples of transient Markov chains on \mathbb{Z}_{+}with finitely many cutpoints were produced (e.g. by Csáki et. al (2010)): these processes are nearest-neighbour birth-anddeath chains that are 'less transient' than SSRW on \mathbb{Z}^{3}.

Some assumptions

Bounded Increments:
(B) Suppose that there exists a constant $B<\infty$ such that, for all $n \in \mathbb{Z}_{+}$,

$$
\mathbb{P}\left(\left|X_{n+1}-X_{n}\right| \leq B \mid \mathcal{F}_{n}\right)=1
$$

Non-confinement condition:
(N) Suppose that $\lim \sup _{n \rightarrow \infty} X_{n}=+\infty$, a.s.

Some assumptions cont'

For $n \in \mathbb{Z}_{+}$, we will impose conditions on the conditional increment moments $\mathbb{E}\left[\left(X_{n+1}-X_{n}\right)^{k} \mid \mathcal{F}_{n}\right], k=1,2$, that are required to hold uniformly (in n and a.s.) on $\left\{X_{n}>x\right\}$ for large enough x. To formulate these conditions, we suppose that we have (measurable) functions $\underline{\mu}_{k}, \bar{\mu}_{k}: \mathcal{X} \rightarrow \mathbb{R}$ such that

$$
\underline{\mu}_{k}\left(X_{n}\right) \leq \mathbb{E}\left(\Delta_{n}^{k} \mid \mathcal{F}_{n}\right) \leq \bar{\mu}_{k}\left(X_{n}\right), \text { a.s. }
$$

for all $n \in \mathbb{Z}_{+}$.
Additional mild assumption:
(V) Suppose that $\lim \inf _{x \rightarrow \infty} \underline{\mu}_{2}(x)>0$.

A sufficient condition for infinitely many strong cutpoints

Theorem 1 (L., Menshikov, Wade, 2020)

Suppose that (B), (N), and (V) hold. Suppose also that

$$
\begin{array}{r}
\liminf _{x \rightarrow \infty}\left(2 x \underline{\mu}_{1}(x)-\bar{\mu}_{2}(x)\right)>0, \tag{1}\\
\quad \limsup _{x \rightarrow \infty}\left(x \bar{\mu}_{1}(x)\right)<\infty .
\end{array}
$$

Then $\mathbb{P}\left(\# \mathcal{C}_{s}=\infty\right)=1$. Moreover, if $\mathbb{E} X_{0}<\infty$ then there is a constant $c>0$ such that $\mathbb{E} \#\left(\mathcal{C}_{s} \cap[0, x]\right) \geq c \log x$ for all x sufficiently large.

The hypotheses of Theorem 1 imply $X_{n} \rightarrow \infty$ a.s. is a result of Lamperti. By Lamperti's result, condition (1) is sufficient for transience and is equivalent to $d \geq 3$ in SSRW on \mathbb{Z}^{d}.

A sufficient condition for finitely many cutpoints

Our second result applies only to the Markov case.

Theorem 2 (L., Menshikov, Wade, 2020)

Suppose that some stronger regularity assumption on the process, (B), and (V) hold. Suppose also that there exist constants $x_{0} \in \mathbb{R}_{+}$and $D<\infty$ such that

$$
\begin{equation*}
\mu_{1}(x) \geq 0 \text { and } 2 x \mu_{1}(x)-\mu_{2}(x) \leq \frac{D}{\log x}, \text { for all } x \geq x_{0} \tag{2}
\end{equation*}
$$

Then $\mathbb{P}(\# \mathcal{C}<\infty)=1$.

An example of transient processes with $\# \mathcal{C}<\infty$

Intuitively, we want processes that are 'less transient' than SSRW in \mathbb{Z}^{3}.

A more refined recurrence classification (see Menshikov et. al. (1995)) says that a sufficient condition for transience is, for some $\theta>0$ and all x sufficiently large,

$$
2 x \mu_{1}(x) \geq\left(1+\frac{1+\theta}{\log x}\right) \mu_{2}(x)
$$

and a sufficient condition for recurrence is the reverse inequality with $\theta<0$.

Example cont'

Example 1

If

$$
\lim _{x \rightarrow \infty} \mu_{2}(x)=b \in(0, \infty), \text { and } \mu_{1}(x)=\frac{a}{2 x}+\frac{c+o(1)}{2 x \log x}
$$

then $a>b$ implies that there are infinitely many cutpoints by Theorem 1, and $a<b$ is recurrent (regardless of c).
The critical case has $a=b$, and then $c<b$ implies recurrence and $c>b$ implies transience.

This latter regime provides examples of processes with few cutpoints, as we show in Theorem 2.

See Csáki et. al (2010) for a sharper version in the nearest neighbour case.

Application to higher dimensions

Elliptic random walks were introduced in Georgiou et. al. (2016) and are non-homogeneous random walks with zero drift that can be transient in any dimension $d \geq 2$.

Theorem 3 (L., Menshikov, Wade, 2020)

Suppose that इ is a time-homogeneous transient elliptic random walk on $\Sigma \subseteq \mathbb{R}^{d}$. Then a.s., there are infinitely many cut annuli.

Application to higher dimensions (cont')

The following corollary is essentially due to James and Peres(1997), now follows as a special case of Theorem 3.

Corollary

Suppose we have a homogeneous random walk on \mathbb{Z}^{d} with bounded jumps, zero drift and finite variance. Then the random walk is transient and has infinitely many cut annuli.

Example

A transient elliptic random walk and a cut annulus

References

C.H. Lo, M.V. Menshikov A.R. Wade, Cutpoints of non-homogeneous random walks. Submitted. ArXiv: 2003.01684.
E. Csáki, A. Földes and P. Révész, On the number of cutpoints of the transient nearest neighbor random walk on the line. J. Theoret. Probab. 23 (2010) 624-638.

P. Erdős and S. J. Taylor, Some intersection properties of random walk paths. Acta Math. Sci. Hung. 11 (1960) 231-248.
N. Georgiou, M.V. Menshikov, A. Mijatović, and A.R. Wade, Anomalous recurrence properties of many-dimensional zero-drift random walks. Adv. in Appl. Probab. 48A (2016) 99-118.

N. James and Y. Peres, Cutpoints and exchangeable events for random walks. Theory Probab. Appl. 41 (1997) 666-677. Translated from Teor. Veroyatnost. i Primenen. 41 (1996) 854-868 (in Russian).
J. Lamperti, Criteria for the recurrence and transience of stochastic processes I, J. Math. Anal. Appl. 1 (1960) 314-330.
G. Lawler, Intersections of Random Walks. Birkhäuser, Boston, 1991.
M. Menshikov, S. Popov and A. Wade, Non-homogeneous Random Walks. Cambridge University Press, Cambridge, 2016.

