c.h.lo@durham.ac.uk

Joint work with
Andrew R. Wade

Intoduction

The centre of mass of a random walk

\bullet Let $d \geq 1$. Let X, X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables on \mathbb{R}^{d}.

- Consider the random walk $\left(S_{n}, n \in \mathbb{Z}_{+}\right)$in \mathbb{R}^{d} defined by

$$
S_{0}:=\mathbf{0} \quad \text { and } \quad S_{n}:=\sum_{i=1}^{n} X_{i} \quad(n \geq 1)
$$

- Our object of interest is the centre of mass process $\left(G_{n}, n \in \mathbb{Z}_{+}\right)$ corresponding to the random walk, defined by

$$
G_{0}:=0 \quad \text { and } \quad G_{n}:=\frac{1}{n} \sum_{i=1}^{n} S_{i} \quad(n \geq 1)
$$

Asymptotic analysis

Proposition 2 (L., Wade, 2017). If (M) holds, then, as $n \rightarrow \infty$,

$$
n^{-1 / 2}\left(G_{n}-\frac{n}{2} \boldsymbol{\mu}\right) \xrightarrow{d} \mathcal{N}_{d}(\mathbf{0}, M / 3)
$$

Local central limit theorem

For $\mathbf{x} \in \mathbb{R}^{d}$, define $p_{n}(\mathbf{x}):=\mathbb{P}\left(n^{-1 / 2} G_{n}=\mathbf{x}\right)$, and

$$
n(\mathbf{x}):=\frac{\exp \left\{-\frac{3}{2} \mathbf{x}^{\top} M^{-1} \mathbf{x}\right\}}{(2 \pi)^{d / 2} \sqrt{\operatorname{det}(M / 3)}} .
$$

Motivation

- Many stochastic processes arising in applications exhibit a range of possible behaviours depending the values of certain key parameters
- The problem originate from a conjecture by Paul Erdös [2].
- The case of simple symmetric random walk is solved by Grill [2].
- We extend the result for a much larger class of random walk, with only minor moment assumptions.
- An Application in Physics is the random polymer chain model. The growth process is repelled or attracted by the centre of mass, depending if it is a poor or good solvent [1].

Strong law of large numbers

Using standard techniques on functional limit theorems, we get the following strong law of large numbers.
Proposition 1 (L., Wade, 2017). If (监) holds, then, as $n \rightarrow \infty$,

$$
n^{-1} G_{n} \rightarrow \frac{1}{2} \boldsymbol{\mu}, \text { a.s.. }
$$

Central limit theorem

With the help of Lindeberg-Feller theorem for triangular arrays, we have the following central limit theorem.

Notation and assumptions

Throughout we use the notation

$$
\boldsymbol{\mu}:=\mathbb{E} X, \quad M:=\mathbb{E}\left[(X-\boldsymbol{\mu})(X-\boldsymbol{\mu})^{\top}\right]
$$

whenever the expectations exist; when defined, M is a symmetric d by d matrix. Now we need the following moment assumptions to proceed.
(μ) Suppose that $\mathbb{E}\|X\|<\infty$.
(M) Suppose that $\mathbb{E}\left[\|X\|^{2}\right]<\infty$ and M is positive-definite.

For our main results, we assume that X has a lattice distribution.
(L) Suppose that X is non-degenerate. Suppose that for a constant vector $\mathbf{b} \in \mathbb{R}^{d}$ and a d by d matrix H with $|\operatorname{det} H|=h>0$, we have $\mathbb{P}\left(X \in \mathbf{b}+H \mathbb{Z}^{d}\right)=1$.

Also define

$$
\mathcal{L}_{n}:=\left\{n^{-3 / 2}\left(\frac{1}{2} n(n+1) \mathbf{b}+H \mathbb{Z}^{d}\right)\right\} .
$$

Our first main result is a local central limit theorem.
Theorem 1 (L., Wade, 2017). Suppose that (M), (L), and some technical assumptions hold. Then, as $n \rightarrow \infty$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{\mathbf{x} \in \mathcal{L}_{n}}\left|\frac{n^{3 d / 2}}{h} p_{n}(\mathbf{x})-n\left(\mathbf{x}-\frac{(n+1)}{2 n^{1 / 2}} \boldsymbol{\mu}\right)\right|=0 . \tag{1}
\end{equation*}
$$

Figure 1: Two simulations of the centre of mass (red) and the corresponding random walk (blue) in one dimension, 100 steps (left) and two dimensions, 10000 steps (right)

Recurrence classification

One dimension

- Depending on different moment assumptions, we can get very different recurrence behavour of the process. First we give a recurrence result in one dimension.
- In the case of SSRW the fact that G_{n} returns infinitely often to a neighbourhood of the origin is due to Grill [2, Theorem 1].
Theorem 2 (L., Wade, 2017). Suppose that $d=1$ and that either of the following two conditions holds.
(i) Suppose that $\mathbb{E}|X| \in(0, \infty)$ and $X \stackrel{d}{=}-X$.
(ii) Suppose that $(\overline{\mathrm{M}})$ holds and that $\mathbb{E} X=0$.

Then we have $\liminf _{n \rightarrow \infty} G_{n}=-\infty, \lim \sup _{n \rightarrow \infty} G_{n}=+\infty$ and $\liminf _{n \rightarrow \infty}\left|G_{n}\right|=0$.

On the other hand, if the first moment does not exist, G_{n} may be transient. The condition we assume is as follows.
(S) Suppose that $X \stackrel{d}{=}-X$ and X is in the domain of normal attraction of a symmetric α-stable distribution with $\alpha \in(0,1)$.
Theorem 3 (L., Wade, 2017). Suppose that $d=1$ and (L) holds, i.e., $\mathbb{P}\left(X \in b+h \mathbb{Z}^{d}\right)=1$ for $b \in \mathbb{R}$ and $h>0$. Under some technical conditions we have $\lim _{n \rightarrow \infty}\left|G_{n}\right|=\infty$.

Two dimensions or more

- We have the following transience result in dimensions greater than one.
- We gives a diffusive rate of escape, implying $\lim _{n \rightarrow \infty}\left\|G_{n}\right\|=+\infty$.
- In the case of SSRW the result is due to Grill [2, Theorem 1].

Theorem 4 (L., Wade, 2017). Suppose that $d \geq 2$ and that (\mathbb{M}), (L), and
some technical condition hold, and that $\boldsymbol{\mu}=\mathbf{0}$. Then

$$
\lim _{n \rightarrow \infty} \frac{\log \left\|G_{n}\right\|}{\log n}=\frac{1}{2}, \text { a.s. }
$$

A conjecture

- Obtaining necessary and sufficient conditions for recurrence and transience of G_{n} is an open problem.
- For $d \geq 2$, we believe that G_{n} is always 'at least as transient' as the situation in Theorem 4:

Conjecture 1 (L., Wade, 2017). Suppose that supp X is not conatined in a one-dimensional subspace of \mathbb{R}^{d}. Then

$$
\liminf _{n \rightarrow \infty} \frac{\log \left\|G_{n}\right\|}{\log n} \geq \frac{1}{2}, \text { a.s. }
$$

Acknowledgements

The authors are grateful to Ostap Hryniv and Mikhail Menshikov for fruitful discussions on the topic of this poster.

References

[1] F. Comets, M.V. Menshikov, S. Volkov, and A.R. Wade, Random walk with barycentric self-interaction, J. Stat. Phys. 143 (2011) 855-888
[2] K. Grill, On the average of a random walk, Statist. Probab. Lett. 6 (1988) 357-361.
[3] I.A. Ibragimov and Y.V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen, The Netherlands, 1971.

