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Intoduction

Motivation
•Many stochastic processes arising in applications exhibit a range of

possible behaviours depending the values of certain key parameters.

• The problem originate from a conjecture by Paul Erdös [2].

• The case of simple symmetric random walk is solved by Grill [2].

•We extend the result for a much larger class of random walk, with only

minor moment assumptions.

•An Application in Physics is the random polymer chain model. The

growth process is repelled or attracted by the centre of mass, depending

if it is a poor or good solvent [1].

The centre of mass of a random walk
• Let d ≥ 1. Let X,X1, X2, . . . be a sequence of i.i.d. random variables

on Rd.

• Consider the random walk (Sn, n ∈ Z+) in Rd defined by

S0 := 0 and Sn :=

n∑
i=1

Xi (n ≥ 1).

•Our object of interest is the centre of mass process (Gn, n ∈ Z+)

corresponding to the random walk, defined by

G0 := 0 and Gn :=
1

n

n∑
i=1

Si (n ≥ 1).

Notation and assumptions
Throughout we use the notation

µ := EX, M := E[(X − µ)(X − µ)>]

whenever the expectations exist; when defined, M is a symmetric d by d

matrix. Now we need the following moment assumptions to proceed.

(µ) Suppose that E ‖X‖ <∞.

(M) Suppose that E[‖X‖2] <∞ and M is positive-definite.

For our main results, we assume that X has a lattice distribution.

(L) Suppose that X is non-degenerate. Suppose that for a constant vector

b ∈ Rd and a d by d matrix H with | detH| = h > 0, we have

P(X ∈ b +HZd) = 1.

Asymptotic analysis

Strong law of large numbers
Using standard techniques on functional limit theorems, we get the

following strong law of large numbers.

Proposition 1 (L., Wade, 2017). If (µ) holds, then, as n→∞,

n−1Gn→
1

2
µ, a.s..

Central limit theorem
With the help of Lindeberg–Feller theorem for triangular arrays, we have

the following central limit theorem.

Proposition 2 (L., Wade, 2017). If (M) holds, then, as n→∞,

n−1/2
(
Gn −

n

2
µ
)

d−→ Nd(0,M/3).

Local central limit theorem
For x ∈ Rd, define pn(x) := P(n−1/2Gn = x), and

n(x) :=
exp{−3

2x
>M−1x}

(2π)d/2
√

det(M/3)
.

Also define

Ln :=
{
n−3/2

(
1
2n(n + 1)b +HZd

)}
.

Our first main result is a local central limit theorem.

Theorem 1 (L., Wade, 2017). Suppose that (M), (L), and some technical

assumptions hold. Then, as n→∞, we have

lim
n→∞

sup
x∈Ln

∣∣∣∣∣n3d/2h
pn(x)− n

(
x− (n + 1)

2n1/2
µ

)∣∣∣∣∣ = 0. (1)
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Figure 1: Two simulations of the centre of mass (red) and the corresponding random walk (blue) in one dimension, 100 steps (left) and two dimensions, 10000 steps (right)

Recurrence classification

One dimension
•Depending on different moment assumptions, we can get very different

recurrence behavour of the process. First we give a recurrence result in

one dimension.

• In the case of SSRW the fact that Gn returns infinitely often to a

neighbourhood of the origin is due to Grill [2, Theorem 1].

Theorem 2 (L., Wade, 2017). Suppose that d = 1 and that either of the

following two conditions holds.

(i) Suppose that E |X| ∈ (0,∞) and X d
= −X .

(ii) Suppose that (M) holds and that EX = 0.

Then we have lim infn→∞Gn = −∞, lim supn→∞Gn = +∞ and

lim infn→∞ |Gn| = 0.

On the other hand, if the first moment does not exist, Gn may be transient.

The condition we assume is as follows.

(S) Suppose that X d
= −X and X is in the domain of normal attraction of

a symmetric α-stable distribution with α ∈ (0, 1).

Theorem 3 (L., Wade, 2017). Suppose that d = 1 and (L) holds, i.e.,

P(X ∈ b + hZd) = 1 for b ∈ R and h > 0. Under some technical

conditions we have limn→∞ |Gn| =∞.

Two dimensions or more
•We have the following transience result in dimensions greater than one.

•We gives a diffusive rate of escape, implying limn→∞ ‖Gn‖ = +∞.

• In the case of SSRW the result is due to Grill [2, Theorem 1].

Theorem 4 (L., Wade, 2017). Suppose that d ≥ 2 and that (M), (L), and

some technical condition hold, and that µ = 0. Then

lim
n→∞

log ‖Gn‖
log n

=
1

2
, a.s.

A conjecture
•Obtaining necessary and sufficient conditions for recurrence and

transience of Gn is an open problem.

• For d ≥ 2, we believe that Gn is always ‘at least as transient’ as the

situation in Theorem 4:

Conjecture 1 (L., Wade, 2017). Suppose that suppX is not conatined in

a one-dimensional subspace of Rd. Then

lim inf
n→∞

log ‖Gn‖
log n

≥ 1

2
, a.s.
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