On the centre of mass of a random walk

Chak Hei Lo

Joint work with Andrew R. Wade
Near-Critical Stochastic Systems: a workshop in celebration of Mikhail Menshikov's 70th birthday 28th March, 2018

Outline

The centre of mass of a random walk
Motivation
Asymptotic analysis
Strong law of large numbers
Central limit theorem
Main results
Local central limit theorem
Lattice distribution
One dimension
Two dimensions or more
Ideas of proofs and a conjecture图
Durham
University

The centre of mass of a random walk

- Dimension: $d \geq 1$

The centre of mass of a random walk

- Dimension: $d \geq 1$
- Sequence of i.i.d. random variables: X, X_{1}, X_{2}, \ldots

The centre of mass of a random walk

- Dimension: $d \geq 1$
- Sequence of i.i.d. random variables: X, X_{1}, X_{2}, \ldots
- Random walk: $\left(S_{n}, n \in \mathbb{Z}_{+}\right)$in \mathbb{R}^{d} defined by

$$
S_{0}:=0 \quad \text { and } \quad S_{n}:=\sum_{i=1}^{n} x_{i} \quad(n \geq 1) .
$$

Durham
University

The centre of mass of a random walk

- Dimension: $d \geq 1$
- Sequence of i.i.d. random variables: X, X_{1}, X_{2}, \ldots
- Random walk: $\left(S_{n}, n \in \mathbb{Z}_{+}\right)$in \mathbb{R}^{d} defined by

$$
S_{0}:=0 \quad \text { and } \quad S_{n}:=\sum_{i=1}^{n} X_{i} \quad(n \geq 1)
$$

- Centre of mass process: $\left(G_{n}, n \in \mathbb{Z}_{+}\right)$, corresponding to the random walk, defined by

$$
G_{0}:=0 \quad \text { and } \quad G_{n}:=\frac{1}{n} \sum_{i=1}^{n} S_{i} \quad(n \geq 1)
$$

Center of mass in one dimension

Blue: Random walk

University

Center of mass in one dimension

Light blue to blue: Random walk
Durham
Orange to red: Centre of mass
University

Center of mass and random walk in two dimensions

图

Durham
Blue: Random walk

University

Center of mass and random walk in two dimensions

Light blue to blue: Random walk
Durham
Orange to red: Centre of mass
University

Center of mass and random walk in two dimensions (2)

图
Durham
University

Blue: Random walk

Center of mass and random walk in two dimensions (2)

Light blue to blue: Random walk
\checkmark Durham
Orange to red: Centre of mass
University

Center of mass and random walk in three dimensions

Blue: Random walk
Red: Centre of mass

Motivation

- For S_{n} simple symmetric random walk, the problem of the asymptotic behaviour of G_{n} was posed by P. Erdős and solved by K. Grill (1988).

University

Motivation

- For S_{n} simple symmetric random walk, the problem of the asymptotic behaviour of G_{n} was posed by P. Erdős and solved by K. Grill (1988).
- G_{n} is an example of a non-Markov process of relevance for applications. E.g. if the random walk models a polymer chain, the centre of mass is of obvious physical significance.

Notations and Assumptions

- Notation:

$$
\boldsymbol{\mu}:=\mathbb{E} X, \quad M:=\mathbb{E}\left[(X-\mu)(X-\boldsymbol{\mu})^{\top}\right]
$$

whenever the expectations exist; when defined, M is a symmetric d by d matrix.

Notations and Assumptions

- Notation:

$$
\boldsymbol{\mu}:=\mathbb{E} X, \quad M:=\mathbb{E}\left[(X-\mu)(X-\boldsymbol{\mu})^{\top}\right]
$$

whenever the expectations exist; when defined, M is a symmetric d by d matrix.

- Moment assumptions:

Notations and Assumptions

- Notation:

$$
\boldsymbol{\mu}:=\mathbb{E} X, \quad M:=\mathbb{E}\left[(X-\mu)(X-\boldsymbol{\mu})^{\top}\right]
$$

whenever the expectations exist; when defined, M is a symmetric d by d matrix.

- Moment assumptions:
(μ) Suppose that $\mathbb{E}\|X\|<\infty$.

Notations and Assumptions

- Notation:

$$
\boldsymbol{\mu}:=\mathbb{E} X, \quad M:=\mathbb{E}\left[(X-\boldsymbol{\mu})(X-\boldsymbol{\mu})^{\top}\right]
$$

whenever the expectations exist; when defined, M is a symmetric d by d matrix.

- Moment assumptions:
(μ) Suppose that $\mathbb{E}\|X\|<\infty$.
(M) Suppose that $\mathbb{E}\left[\|X\|^{2}\right]<\infty$ and M is positive-definite.

Strong law of large numbers

From the (functional) strong law of large numbers for the random walk S_{n}, we get the following strong law of large numbers for G_{n}.

Proposition (L., Wade, 2017)

If ($\boldsymbol{\mu}$) holds, then, as $n \rightarrow \infty$,

$$
n^{-1} G_{n} \rightarrow \frac{1}{2} \mu, \text { a.s. }
$$

University

Central Limit Theorem

With the help of Lindeberg-Feller theorem for triangular arrays, we have the following central limit theorem.

Proposition (L., Wade, 2017)

If (M) holds, then, as $n \rightarrow \infty$,

$$
n^{-1 / 2}\left(G_{n}-\frac{n}{2} \boldsymbol{\mu}\right) \xrightarrow{d} \mathcal{N}_{d}(\mathbf{0}, M / 3) .
$$

University

Local central limit theorem

For our first main result, we assume that X has a lattice distribution.
(L) Suppose that X is non-degenerate. Suppose that for a constant vector $\mathbf{b} \in \mathbb{R}^{d}$ and a d by d matrix H with | det $H \mid=h>0$, where h is maximal, we have

$$
\mathbb{P}\left(X \in \mathbf{b}+H \mathbb{Z}^{d}\right)=1 .
$$

Also define

$$
\mathcal{L}_{n}:=\left\{n^{-3 / 2}\left(\frac{1}{2} n(n+1) \mathbf{b}+H \mathbb{Z}^{d}\right)\right\} .
$$

Some examples

- Some complication on the lattice distribution. How to find the maximal span h ?

図
∇ Durham
University

Some examples

- Some complication on the lattice distribution. How to find the maximal span h ?
- This is not always immediate even for some classical random walks.

University

Trivial choice

- Trivial choice of lattice distribution for simple symmetric random walk, i.e. $\mathbf{b}=\mathbf{0}$ and $H=l$: Remarkably h is not maximal.

Trivial choice

- Trivial choice of lattice distribution for simple symmetric random walk, i.e. $\mathbf{b}=\mathbf{0}$ and $H=I$: Remarkably h is not maximal.
- Which walk has this trivial choice as the right choice?

Trivial choice

- Trivial choice of lattice distribution for simple symmetric random walk, i.e. $\mathbf{b}=\mathbf{0}$ and $H=I$: Remarkably h is not maximal.
- Which walk has this trivial choice as the right choice?
- Lazy simple symmetric random walk!

University

Trivial choice

- Trivial choice of lattice distribution for simple symmetric random walk, i.e. $\mathbf{b}=\mathbf{0}$ and $H=l$: Remarkably h is not maximal.
- Which walk has this trivial choice as the right choice?
- Lazy simple symmetric random walk!
- Maybe this walk is just too lazy to bother with a complicated choice of a lattice distribution.

Trivial choice

- Trivial choice of lattice distribution for simple symmetric random walk, i.e. $\mathbf{b}=\mathbf{0}$ and $H=I$: Remarkably h is not maximal.
- Which walk has this trivial choice as the right choice?
- Lazy simple symmetric random walk!
- Maybe this walk is just too lazy to bother with a complicated choice of a lattice distribution.
- How to verify that h is maximal?

Simple symmetric random walk

Example (SSRW on \mathbb{Z}^{d})

- Suppose that $\mathbb{P}\left(X=\mathbf{e}_{i}\right)=\mathbb{P}\left(X=-\mathbf{e}_{i}\right)=\frac{1}{2 d}$ for all i.

Simple symmetric random walk

Example (SSRW on \mathbb{Z}^{d})

- Suppose that $\mathbb{P}\left(X=\mathbf{e}_{i}\right)=\mathbb{P}\left(X=-\mathbf{e}_{i}\right)=\frac{1}{2 d}$ for all i.
- For SSRW the construction of H for which (L) holds is non-trivial.

Simple symmetric random walk

Example (SSRW on \mathbb{Z}^{d})

- Suppose that $\mathbb{P}\left(X=\mathbf{e}_{i}\right)=\mathbb{P}\left(X=-\mathbf{e}_{i}\right)=\frac{1}{2 d}$ for all i.
- For SSRW the construction of H for which (L) holds is non-trivial.
- For $d=1$, we take $b=-1$ and $h=2$.

Simple symmetric random walk

Example (SSRW on \mathbb{Z}^{d})

- Suppose that $\mathbb{P}\left(X=\mathbf{e}_{i}\right)=\mathbb{P}\left(X=-\mathbf{e}_{i}\right)=\frac{1}{2 d}$ for all i.
- For SSRW the construction of H for which (L) holds is non-trivial.
- For $d=1$, we take $b=-1$ and $h=2$.
- In general $d \geq 2$, we take $H=\left(h_{i j}\right)$ and $\mathbf{b}=\left(b_{i}\right)$ defined as follows.

University

Simple symmetric random walk (cont.)

Example (cont.)

- If $d=2 n-1$ for $n \geq 2, n \in \mathbb{Z}$, we take

$$
\begin{aligned}
& b_{i}=-1 \quad \text { for all } i=1,2, \ldots, d \\
& h_{i j}= \begin{cases}1 & \text { if } i-j \equiv 0 \text { or } n \quad(\bmod 2 n-1) \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Simple symmetric random walk (cont.)

Example (cont.)

- If $d=2 n-1$ for $n \geq 2, n \in \mathbb{Z}$, we take

$$
\begin{aligned}
& b_{i}=-1 \quad \text { for all } i=1,2, \ldots, d \\
& h_{i j}= \begin{cases}1 & \text { if } i-j \equiv 0 \text { or } n \quad(\bmod 2 n-1) \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- If $d=2 n$ for $n \geq 1, n \in \mathbb{Z}$, we take

$$
\begin{aligned}
& b_{i}= \begin{cases}0 & \text { if } i=2 n, \\
-1 & \text { otherwise }\end{cases} \\
& h_{i j}= \begin{cases}-1 & \text { if }(i, j)=(2 n, 1), \\
1 & \text { if } j-i \equiv 0 \text { or } 1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Simple symmetric random walk (cont.)

Example (cont.)

- E.g. for $d=2$ we have

$$
\mathbf{b}=\binom{-1}{0} \quad \text { and } \quad H=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)
$$

Simple symmetric random walk (cont.)

Example (cont.)

- E.g. for $d=2$ we have

$$
\mathbf{b}=\binom{-1}{0} \quad \text { and } \quad H=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) .
$$

- For $d=3$, we have

$$
\mathbf{b}=\left(\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right) \quad \text { and } \quad H=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) .
$$

,
Durham
University

Simple symmetric random walk (cont.)

Example (cont.)

- For $d=4$, we have

$$
\mathbf{b}=\left(\begin{array}{c}
-1 \\
-1 \\
-1 \\
0
\end{array}\right) \quad \text { and } \quad H=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
-1 & 0 & 0 & 1
\end{array}\right) .
$$

N Durham
University

Simple symmetric random walk (cont.)

Example (cont.)

- For $d=5$, we have

$$
\mathbf{b}=\left(\begin{array}{l}
-1 \\
-1 \\
-1 \\
-1 \\
-1
\end{array}\right) \quad \text { and } \quad H=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right),
$$

恩
Durham
University

Simple symmetric random walk (cont.)

Example (cont.)

- For $d=5$, we have

$$
\mathbf{b}=\left(\begin{array}{l}
-1 \\
-1 \\
-1 \\
-1 \\
-1
\end{array}\right) \quad \text { and } \quad H=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

- Note that $h=2$ for all such H.

University

Local central limit theorem

For our first main result, we assume that X has a lattice distribution.
(L) Suppose that X is non-degenerate. Suppose that for a constant vector $\mathbf{b} \in \mathbb{R}^{d}$ and a d by d matrix H with | det $H \mid=h>0$, where h is maximal, we have

$$
\mathbb{P}\left(X \in \mathbf{b}+H \mathbb{Z}^{d}\right)=1 .
$$

Also define

$$
\mathcal{L}_{n}:=\left\{n^{-3 / 2}\left(\frac{1}{2} n(n+1) \mathbf{b}+H \mathbb{Z}^{d}\right)\right\} .
$$

Local central limit theorem (cont.)

For $\mathbf{x} \in \mathbb{R}^{d}$, define $p_{n}(\mathbf{x}):=\mathbb{P}\left(n^{-1 / 2} G_{n}=\mathbf{x}\right)$, and

$$
n(\mathbf{x}):=\frac{\exp \left\{-\frac{3}{2} \mathbf{x}^{\top} M^{-1} \mathbf{x}\right\}}{(2 \pi)^{d / 2} \sqrt{\operatorname{det}(M / 3)}} .
$$

Theorem (L., Wade, 2017)

Suppose that (M), (L) hold. Then we have

$$
\lim _{n \rightarrow \infty} \sup _{\mathbf{x} \in \mathcal{L}_{n}}\left|\frac{n^{3 d / 2}}{h} p_{n}(\mathbf{x})-n\left(\mathbf{x}-\frac{(n+1)}{2 n^{1 / 2}} \mu\right)\right|=0 .
$$

One dimension: Recurrent case

- Depending on different moment assumptions, we can get very different recurrence behavour of the process. First we give a recurrence result in one dimension.

Theorem (L., Wade, 2017)

Suppose that $d=1$ and that either of the following two conditions holds.
(i) Suppose that $\mathbb{E}|X| \in(0, \infty)$ and $X \stackrel{d}{=}-X$.
(ii) Suppose that (M) holds and that $\mathbb{E} X=0$.

Then we have lim $\inf _{n \rightarrow \infty} G_{n}=-\infty, \lim _{\sup }^{n \rightarrow \infty}, ~ G_{n}=+\infty$ and $\lim _{\inf _{n \rightarrow \infty}}\left|G_{n}\right|=0$.

Durham
University

One dimension: Recurrent case

- Depending on different moment assumptions, we can get very different recurrence behavour of the process. First we give a recurrence result in one dimension.
- In the case of SSRW the fact that G_{n} returns infinitely often to a neighbourhood of the origin is due to Grill[1988].

Theorem (L., Wade, 2017)

Suppose that $d=1$ and that either of the following two conditions holds.
(i) Suppose that $\mathbb{E}|X| \in(0, \infty)$ and $X \stackrel{d}{=}-X$.
(ii) Suppose that (M) holds and that $\mathbb{E} X=0$.

Then we have ${\lim \inf _{n \rightarrow \infty}} G_{n}=-\infty, \lim \sup _{n \rightarrow \infty} G_{n}=+\infty$ and $\lim _{\inf _{n \rightarrow \infty}}\left|G_{n}\right|=0$.

Durham
University

One dimension: Transient case

On the other hand, if the first moment does not exist, G_{n} may be transient. The condition we assume is as follows.
(S) Suppose that $X \stackrel{d}{=}-X$ and X is in the domain of normal attraction of a symmetric α-stable distribution with $\alpha \in(0,1)$.

Theorem (L., Wade, 2017)

Suppose that $d=1$ and (L) holds, i.e., $\mathbb{P}\left(X \in b+h \mathbb{Z}^{d}\right)=1$ for $b \in \mathbb{R}$ and $h>0$. Also suppose that (S) holds. Then we have $\lim _{n \rightarrow \infty}\left|G_{n}\right|=\infty$.

Two dimensions or more

- The following theorem implies that $\lim _{n \rightarrow \infty}\left\|G_{n}\right\|=+\infty$ and moreover gives a diffusive rate of escape.

Theorem (L., Wade, 2017)

Suppose that $d \geq 2$ and that (M) and (L) hold. Also suppose that $\boldsymbol{\mu}=\mathbf{0}$. Then

$$
\lim _{n \rightarrow \infty} \frac{\log \left\|G_{n}\right\|}{\log n}=\frac{1}{2} \text {, a.s. }
$$

University

Two dimensions or more

- The following theorem implies that $\lim _{n \rightarrow \infty}\left\|G_{n}\right\|=+\infty$ and moreover gives a diffusive rate of escape.
- In the case of SSRW the result is due to Grill[1988].

Theorem (L., Wade, 2017)

Suppose that $d \geq 2$ and that (M) and (L) hold. Also suppose that $\boldsymbol{\mu}=\mathbf{0}$. Then

$$
\lim _{n \rightarrow \infty} \frac{\log \left\|G_{n}\right\|}{\log n}=\frac{1}{2} \text {, a.s. }
$$

University

Idea of proof for recurrent case

Suppose $d=1$.
-

$$
G_{n}=\sum_{i=1}^{n}\left(\frac{n-i+1}{n}\right) X_{i}
$$

implies that G_{n} satisfies a central limit theorem.

N Durham
University

Idea of proof for recurrent case

Suppose $d=1$.
-

$$
G_{n}=\sum_{i=1}^{n}\left(\frac{n-i+1}{n}\right) X_{i}
$$

implies that G_{n} satisfies a central limit theorem.

- Hewitt-Savage 0-1 law implies G_{n} changes sign infinitely often.

Idea of proof for recurrent case

Suppose $d=1$.
-

$$
G_{n}=\sum_{i=1}^{n}\left(\frac{n-i+1}{n}\right) X_{i}
$$

implies that G_{n} satisfies a central limit theorem.

- Hewitt-Savage 0-1 law implies G_{n} changes sign infinitely often.
- $\left|G_{n+1}-G_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$.

Idea of proof for transient case

Suppose $d \geq 2$. We sketch the proof of transience only.

- The idea is to use the local limit theorem to control (via Borel-Cantelli) the visits of G_{n} to a growing ball, along a subsequence of times suitably chosen so that the slow movement of the centre of mass controls the trajectory between the times of the subsequence as well.

Durham
University

Idea of proof for transient case

Suppose $d \geq 2$. We sketch the proof of transience only.

- The idea is to use the local limit theorem to control (via Borel-Cantelli) the visits of G_{n} to a growing ball, along a subsequence of times suitably chosen so that the slow movement of the centre of mass controls the trajectory between the times of the subsequence as well.
- Step 1: Local limit theorem implies that
$\mathbb{P}\left(G_{n} \in \mathcal{B}\right)=O\left(n^{-\frac{d}{2}}\right)$ for a fixed ball \mathcal{B}.

Idea of proof for transient case

- We have the following estimate on the deviations.

Lemma

Suppose that (M) holds and that $\boldsymbol{\mu}=\mathbf{0}$. Then, for any $\varepsilon>0$, a.s. for all but finitely many n,

$$
\max _{n^{2} \leq m \leq(n+1)^{2}}\left\|G_{m}-G_{n^{2}}\right\| \leq n^{\varepsilon} .
$$

University

Idea of proof for transient case

- We have the following estimate on the deviations.

Lemma

Suppose that (M) holds and that $\boldsymbol{\mu}=\mathbf{0}$. Then, for any $\varepsilon>0$, a.s. for all but finitely many n,

$$
\max _{n^{2} \leq m \leq(n+1)^{2}}\left\|G_{m}-G_{n^{2}}\right\| \leq n^{\varepsilon} .
$$

- Step 2: Slow movement of G_{n} implies that it suffices to control $G_{n^{2}}$.

Idea of proof for transient case

- We have the following estimate on the deviations.

Lemma

Suppose that (M) holds and that $\boldsymbol{\mu}=\mathbf{0}$. Then, for any $\varepsilon>0$, a.s. for all but finitely many n,

$$
\max _{n^{2} \leq m \leq(n+1)^{2}}\left\|G_{m}-G_{n^{2}}\right\| \leq n^{\varepsilon} .
$$

- Step 2: Slow movement of G_{n} implies that it suffices to control $G_{n^{2}}$.
- Step 3: $\mathbb{P}\left(G_{n^{2}} \in \mathcal{B}\right) \approx n^{-d}$, which is summable if $d \geq 2$.

Durham
University

Idea of proof for transient case

图

University

Conjecture

- Obtaining necessary and sufficient conditions for recurrence and transience of G_{n} is an open problem.

Conjecture (L., Wade, 2017)

Suppose that supp X is not conatined in a one-dimensional subspace of \mathbb{R}^{d}. Then

$$
\liminf _{n \rightarrow \infty} \frac{\log \left\|G_{n}\right\|}{\log n} \geq \frac{1}{2}, \text { a.s. }
$$

University

Conjecture

- Obtaining necessary and sufficient conditions for recurrence and transience of G_{n} is an open problem.
- For $d \geq 2$, we believe that G_{n} is always 'at least as transient':

Conjecture (L., Wade, 2017)

Suppose that supp X is not conatined in a one-dimensional subspace of \mathbb{R}^{d}. Then

$$
\liminf _{n \rightarrow \infty} \frac{\log \left\|G_{n}\right\|}{\log n} \geq \frac{1}{2}, \text { a.s. }
$$

Back to Lattice assumption

- Denote

$$
\mathcal{H}:=\left\{H: \mathbb{P}\left(X \in \mathbf{b}+H \mathbb{Z}^{d}\right)=1 \text { for some } \mathbf{b} \in \mathbb{R}^{d}\right\} .
$$

Back to Lattice assumption

- Denote

$$
\mathcal{H}:=\left\{H: \mathbb{P}\left(X \in \mathbf{b}+H \mathbb{Z}^{d}\right)=1 \text { for some } \mathbf{b} \in \mathbb{R}^{d}\right\} .
$$

- Suppose that the minimal subgroup of \mathbb{R}^{d} associated with X is $L:=H \mathbb{Z}^{d}$ with $h:=|\operatorname{det} H|>0$. Let

$$
\mathcal{H}_{0}:=\left\{H \in \mathcal{H}: L=H \mathbb{Z}^{d}\right\}
$$

Back to Lattice assumption

- Denote

$$
\mathcal{H}:=\left\{H: \mathbb{P}\left(X \in \mathbf{b}+H \mathbb{Z}^{d}\right)=1 \text { for some } \mathbf{b} \in \mathbb{R}^{d}\right\} .
$$

- Suppose that the minimal subgroup of \mathbb{R}^{d} associated with X is $L:=H \mathbb{Z}^{d}$ with $h:=|\operatorname{det} H|>0$. Let

$$
\mathcal{H}_{0}:=\left\{H \in \mathcal{H}: L=H \mathbb{Z}^{d}\right\}
$$

- Let $K:=\{|\operatorname{det} H|: H \in \mathcal{H}\}$.

Back to Lattice assumption

- Denote

$$
\mathcal{H}:=\left\{H: \mathbb{P}\left(X \in \mathbf{b}+H \mathbb{Z}^{d}\right)=1 \text { for some } \mathbf{b} \in \mathbb{R}^{d}\right\} .
$$

- Suppose that the minimal subgroup of \mathbb{R}^{d} associated with X is $L:=H \mathbb{Z}^{d}$ with $h:=|\operatorname{det} H|>0$. Let

$$
\mathcal{H}_{0}:=\left\{H \in \mathcal{H}: L=H \mathbb{Z}^{d}\right\}
$$

- Let $K:=\{|\operatorname{det} H|: H \in \mathcal{H}\}$.
- Denote $\varphi(\mathbf{t}):=\mathbb{E}\left[\mathrm{e}^{i \mathrm{t}^{\top} X}\right]$ to be the characteristic function of X. Set $U:=\left\{\mathbf{t} \in \mathbb{R}^{d}:|\varphi(\mathbf{t})|=1\right\}$. Set $S_{H}:=2 \pi\left(H^{\top}\right)^{-1} \mathbb{Z}^{d}$.

University

Back to Lattice assumption

Lemma (L., Wade, 2017)

Suppose that X is non-degenerate and $H \in \mathcal{H}$. The following are equivalent.
(i) $H \in \mathcal{H}_{0}$.
(ii) $|\operatorname{det} H|$ is the maximal element of K.
(iii) $S_{H}=U$.

University

Acknowledgement

- The authors are grateful to Ostap Hryniv and Mikhail Menshikov for fruitful discussions on the topic of this presentation.

Acknowledgement

- The authors are grateful to Ostap Hryniv and Mikhail Menshikov for fruitful discussions on the topic of this presentation.
- The authors are thankful to Nicholas Georgiou for the template of the slides.

References

國 C．H．Lo，A．R．Wade，On the centre of mass of a random walk．Submitted． ArXiv：1708．04470．

F．Comets，M．V．Menshikov，S．Volkov，and A．R．Wade，Random walk with barycentric self－interaction，J．Stat．Phys． 143 （2011）855－888．

R．Dobrushin and O．Hryniv，Fluctuations of shapes of large areas under paths of random walks，Probab．Theory and Related Fields 105 （1996）423－458．

K．Grill，On the average of a random walk，Statist．Probab．Lett． 6 （1988） 357－361．

G．F．Lawler and V．Limic，Random Walk：A Modern Introduction，Cambridge University Press，Cambridge， 2010.
宣
T．Mountford，L．P．R．Pimentel，and G．Valle，Central limit theorem for the self－repelling random walk with directed edges，ALEA，Lat．Am．J．Probab．Math． Stat． 11 （2014）503－517．

