Chak Hei Lo

Joint work with Andrew R. Wade

Near-Critical Stochastic Systems: a workshop in celebration of Mikhail Menshikov's 70th birthday 28th March, 2018

Motivation

Asymptotic analysis Strong law of large numbers Central limit theorem

Main results

Local central limit theorem Lattice distribution One dimension Two dimensions or more

Ideas of proofs and a conjecture

• Dimension: $d \ge 1$

- Dimension: *d* ≥ 1
- Sequence of i.i.d. random variables: *X*, *X*₁, *X*₂, ...

- Dimension: *d* ≥ 1
- Sequence of i.i.d. random variables: X, X₁, X₂,...
- Random walk: $(S_n, n \in \mathbb{Z}_+)$ in \mathbb{R}^d defined by

$$S_0 := \mathbf{0}$$
 and $S_n := \sum_{i=1}^n X_i$ $(n \ge 1)$.

- Dimension: $d \ge 1$
- Sequence of i.i.d. random variables: X, X₁, X₂,...
- Random walk: $(S_n, n \in \mathbb{Z}_+)$ in \mathbb{R}^d defined by

$$S_0 := \mathbf{0}$$
 and $S_n := \sum_{i=1}^n X_i$ $(n \ge 1).$

 Centre of mass process: (G_n, n ∈ Z₊), corresponding to the random walk, defined by

$$G_0 := \mathbf{0}$$
 and $G_n := \frac{1}{n} \sum_{i=1}^n S_i$ $(n \ge 1)$.

Center of mass in one dimension

Blue: Random walk

Center of mass in one dimension

Light blue to blue: Random walk Orange to red: Centre of mass

Center of mass and random walk in two dimensions

Blue: Random walk

Center of mass and random walk in two dimensions

Light blue to blue: Random walk Orange to red: Centre of mass

Center of mass and random walk in two dimensions (2)

Blue: Random walk

Center of mass and random walk in two dimensions (2)

Light blue to blue: Random walk Orange to red: Centre of mass

Center of mass and random walk in three dimensions

Blue: Random walk Red: Centre of mass

Motivation

• For *S_n* simple symmetric random walk, the problem of the asymptotic behaviour of *G_n* was posed by *P.* Erdős and solved by *K.* Grill (1988).

Motivation

- For *S_n simple symmetric random walk*, the problem of the asymptotic behaviour of *G_n* was posed by *P. Erdős* and solved by *K. Grill* (1988).
- *G_n* is an example of a *non-Markov process* of relevance for applications. E.g. if the random walk models a polymer chain, the centre of mass is of obvious physical significance.

• Notation:

$$\mu := \mathbb{E}X, \quad M := \mathbb{E}[(X - \mu)(X - \mu)^{\top}]$$

whenever the expectations exist; when defined, M is a symmetric d by d matrix.

Notation:

$$\boldsymbol{\mu} := \mathbb{E} X, \quad \boldsymbol{M} := \mathbb{E}[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^{\top}]$$

whenever the expectations exist; when defined, M is a symmetric d by d matrix.

Moment assumptions:

Notation:

$$\boldsymbol{\mu} := \mathbb{E} X, \quad \boldsymbol{M} := \mathbb{E}[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^{\top}]$$

whenever the expectations exist; when defined, M is a symmetric d by d matrix.

• Moment assumptions: (μ) Suppose that $\mathbb{E}||X|| < \infty$.

Notation:

$$\mu := \mathbb{E}X, \quad M := \mathbb{E}[(X - \mu)(X - \mu)^{\top}]$$

whenever the expectations exist; when defined, M is a symmetric d by d matrix.

- Moment assumptions:
 - (μ) Suppose that $\mathbb{E}||X|| < \infty$.
 - (M) Suppose that $\mathbb{E}[||X||^2] < \infty$ and *M* is positive-definite.

From the (functional) strong law of large numbers for the random walk S_n , we get the following *strong law of large numbers* for G_n .

Proposition (L., Wade, 2017)

If (μ) holds, then, as $n \to \infty$,

$$n^{-1}G_n
ightarrow rac{1}{2}\mu, \ a.s.$$

Central Limit Theorem

With the help of Lindeberg–Feller theorem for triangular arrays, we have the following *central limit theorem*.

Proposition (L., Wade, 2017)

If (M) holds, then, as $n \to \infty$,

$$n^{-1/2}\left(G_n-rac{n}{2}\mu\right) \stackrel{d}{\longrightarrow} \mathcal{N}_d(\mathbf{0}, M/3).$$

For our first main result, we assume that X has a lattice distribution.

(L) Suppose that *X* is non-degenerate. Suppose that for a constant vector $\mathbf{b} \in \mathbb{R}^d$ and a *d* by *d* matrix *H* with $|\det H| = h > 0$, where *h* is maximal, we have

$$\mathbb{P}(X \in \mathbf{b} + H\mathbb{Z}^d) = 1.$$

Also define

$$\mathcal{L}_n := \left\{ n^{-3/2} \left(\frac{1}{2} n(n+1) \mathbf{b} + H \mathbb{Z}^d \right) \right\}.$$

Some examples

• Some complication on the lattice distribution. How to find the maximal span *h*?

Some examples

- Some complication on the lattice distribution. How to find the maximal span *h*?
- This is not always immediate even for some classical random walks.

 Trivial choice of lattice distribution for simple symmetric random walk, i.e. **b** = **0** and *H* = *I*: Remarkably *h* is not maximal.

- Trivial choice of lattice distribution for simple symmetric random walk, i.e. b = 0 and H = I: Remarkably h is not maximal.
- Which walk has this trivial choice as the right choice?

- Trivial choice of lattice distribution for simple symmetric random walk, i.e. b = 0 and H = I: Remarkably h is not maximal.
- Which walk has this trivial choice as the right choice?
- Lazy simple symmetric random walk!

- Trivial choice of lattice distribution for simple symmetric random walk, i.e. b = 0 and H = I: Remarkably h is not maximal.
- Which walk has this trivial choice as the right choice?
- Lazy simple symmetric random walk!
- Maybe this walk is just too lazy to bother with a complicated choice of a lattice distribution.

- Trivial choice of lattice distribution for simple symmetric random walk, i.e. b = 0 and H = I: Remarkably h is not maximal.
- Which walk has this trivial choice as the right choice?
- Lazy simple symmetric random walk!
- Maybe this walk is just too lazy to bother with a complicated choice of a lattice distribution.
- How to verify that *h* is maximal?

Example (SSRW on \mathbb{Z}^d)

• Suppose that $\mathbb{P}(X = \mathbf{e}_i) = \mathbb{P}(X = -\mathbf{e}_i) = \frac{1}{2d}$ for all *i*.

Example (SSRW on \mathbb{Z}^d)

- Suppose that $\mathbb{P}(X = \mathbf{e}_i) = \mathbb{P}(X = -\mathbf{e}_i) = \frac{1}{2d}$ for all *i*.
- For SSRW the construction of *H* for which (L) holds is non-trivial.

Example (SSRW on \mathbb{Z}^d)

- Suppose that $\mathbb{P}(X = \mathbf{e}_i) = \mathbb{P}(X = -\mathbf{e}_i) = \frac{1}{2d}$ for all *i*.
- For SSRW the construction of *H* for which (L) holds is non-trivial.
- For d = 1, we take b = -1 and h = 2.

Example (SSRW on \mathbb{Z}^d)

- Suppose that $\mathbb{P}(X = \mathbf{e}_i) = \mathbb{P}(X = -\mathbf{e}_i) = \frac{1}{2d}$ for all *i*.
- For SSRW the construction of *H* for which (L) holds is non-trivial.
- For d = 1, we take b = -1 and h = 2.
- In general $d \ge 2$, we take $H = (h_{ij})$ and $\mathbf{b} = (b_i)$ defined as follows.

Simple symmetric random walk (cont.)

Example (cont.)

2

• If
$$d = 2n - 1$$
 for $n \ge 2, n \in \mathbb{Z}$, we take

$$b_i = -1 \quad \text{for all } i = 1, 2, \dots, d;$$

$$h_{ij} = \begin{cases} 1 & \text{if } i - j \equiv 0 \text{ or } n \pmod{2n - 1}, \\ 0 & \text{otherwise.} \end{cases}$$

Simple symmetric random walk (cont.)

Example (cont.)

2

• If
$$d = 2n - 1$$
 for $n \ge 2, n \in \mathbb{Z}$, we take

$$b_i = -1 \quad \text{for all } i = 1, 2, \dots, d;$$

$$h_{ij} = \begin{cases} 1 & \text{if } i - j \equiv 0 \text{ or } n \pmod{2n - 1}, \\ 0 & \text{otherwise.} \end{cases}$$

• If d = 2n for $n \ge 1, n \in \mathbb{Z}$, we take

$$b_i = \begin{cases} 0 & \text{if } i = 2n, \\ -1 & \text{otherwise;} \end{cases}$$

$$h_{ij} = \begin{cases} -1 & \text{if } (i,j) = (2n,1), \\ 1 & \text{if } j - i \equiv 0 \text{ or } 1 \pmod{2n} \text{ and } (i,j) \neq (2n,1), \\ 0 & \text{otherwise.} \end{cases}$$

Simple symmetric random walk (cont.)

Example (cont.)

• E.g. for d = 2 we have

$$\mathbf{b} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$
 and $H = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$.

Example (cont.)

• E.g. for d = 2 we have

$$\mathbf{b} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$
 and $H = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$.

• For
$$d = 3$$
, we have

$$\mathbf{b} = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$$
 and $H = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$

Example (cont.)

• For d = 4, we have

$$\mathbf{b} = \begin{pmatrix} -1 \\ -1 \\ -1 \\ 0 \end{pmatrix} \quad \text{and} \quad H = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

Example (cont.)

• For d = 5, we have

$$\mathbf{b} = \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{pmatrix} \quad \text{and} \quad H = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix},$$

Example (cont.)

• For d = 5, we have

$$\mathbf{b} = \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{pmatrix} \quad \text{and} \quad H = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix},$$

• Note that h = 2 for all such H.

For our first main result, we assume that X has a lattice distribution.

(L) Suppose that *X* is non-degenerate. Suppose that for a constant vector $\mathbf{b} \in \mathbb{R}^d$ and a *d* by *d* matrix *H* with $|\det H| = h > 0$, where *h* is maximal, we have

$$\mathbb{P}(X \in \mathbf{b} + H\mathbb{Z}^d) = 1.$$

Also define

$$\mathcal{L}_n := \left\{ n^{-3/2} \left(\frac{1}{2} n(n+1) \mathbf{b} + H \mathbb{Z}^d \right) \right\}.$$

Local central limit theorem (cont.)

For
$$\mathbf{x} \in \mathbb{R}^d$$
, define $p_n(\mathbf{x}) := \mathbb{P}(n^{-1/2}G_n = \mathbf{x})$, and

$$n(\mathbf{x}) := \frac{\exp\{-\frac{3}{2}\mathbf{x}^\top M^{-1}\mathbf{x}\}}{(2\pi)^{d/2}\sqrt{\det(M/3)}}.$$

Theorem (L., Wade, 2017)

Suppose that (M), (L) hold. Then we have

$$\lim_{n\to\infty}\sup_{\mathbf{x}\in\mathcal{L}_n}\left|\frac{n^{3d/2}}{h}p_n(\mathbf{x})-n\left(\mathbf{x}-\frac{(n+1)}{2n^{1/2}}\mu\right)\right|=0.$$

One dimension: Recurrent case

 Depending on different moment assumptions, we can get very different recurrence behavour of the process. First we give a recurrence result in one dimension.

Theorem (L., Wade, 2017)

Suppose that d = 1 and that either of the following two conditions holds.

- (i) Suppose that $\mathbb{E}|X| \in (0,\infty)$ and $X \stackrel{d}{=} -X$.
- (ii) Suppose that (M) holds and that $\mathbb{E}X = 0$.

Then we have $\liminf_{n\to\infty} G_n = -\infty$, $\limsup_{n\to\infty} G_n = +\infty$ and $\liminf_{n\to\infty} |G_n| = 0$.

One dimension: Recurrent case

- Depending on different moment assumptions, we can get very different recurrence behavour of the process. First we give a recurrence result in one dimension.
- In the case of SSRW the fact that *G_n* returns infinitely often to a neighbourhood of the origin is due to Grill[1988].

Theorem (L., Wade, 2017)

Suppose that d = 1 and that either of the following two conditions holds.

- (i) Suppose that $\mathbb{E}|X| \in (0,\infty)$ and $X \stackrel{d}{=} -X$.
- (ii) Suppose that (M) holds and that $\mathbb{E}X = 0$.

Then we have $\liminf_{n\to\infty} G_n = -\infty$, $\limsup_{n\to\infty} G_n = +\infty$ and $\liminf_{n\to\infty} |G_n| = 0$.

One dimension: Transient case

On the other hand, if the first moment does not exist, G_n may be transient. The condition we assume is as follows.

(S) Suppose that $X \stackrel{d}{=} -X$ and X is in the domain of normal attraction of a symmetric α -stable distribution with $\alpha \in (0, 1)$.

Theorem (L., Wade, 2017)

Suppose that d = 1 and (L) holds, i.e., $\mathbb{P}(X \in b + h\mathbb{Z}^d) = 1$ for $b \in \mathbb{R}$ and h > 0. Also suppose that (S) holds. Then we have $\lim_{n\to\infty} |G_n| = \infty$.

Two dimensions or more

• The following theorem implies that $\lim_{n\to\infty} ||G_n|| = +\infty$ and moreover gives a diffusive rate of escape.

Theorem (L., Wade, 2017)

Suppose that d \geq 2 and that (M) and (L) hold. Also suppose that $\mu=0.$ Then

$$\lim_{n\to\infty}\frac{\log\|G_n\|}{\log n}=\frac{1}{2}, \ a.s.$$

Two dimensions or more

- The following theorem implies that $\lim_{n\to\infty} ||G_n|| = +\infty$ and moreover gives a diffusive rate of escape.
- In the case of SSRW the result is due to Grill[1988].

Theorem (L., Wade, 2017)

Suppose that $d \ge 2$ and that (M) and (L) hold. Also suppose that $\mu = \mathbf{0}$. Then

$$\lim_{n\to\infty}\frac{\log\|G_n\|}{\log n}=\frac{1}{2},\ a.s.$$

Idea of proof for recurrent case

Suppose d = 1.

0

$$G_n = \sum_{i=1}^n \left(\frac{n-i+1}{n}\right) X_i,$$

implies that G_n satisfies a central limit theorem.

Idea of proof for recurrent case

Suppose d = 1.

0

$$G_n = \sum_{i=1}^n \left(\frac{n-i+1}{n}\right) X_i,$$

implies that G_n satisfies a central limit theorem.

• Hewitt-Savage 0-1 law implies *G_n* changes sign infinitely often.

Idea of proof for recurrent case

Suppose d = 1.

0

$$G_n = \sum_{i=1}^n \left(\frac{n-i+1}{n}\right) X_i,$$

implies that G_n satisfies a central limit theorem.

• Hewitt-Savage 0-1 law implies *G_n* changes sign infinitely often.

•
$$|G_{n+1} - G_n| \rightarrow 0$$
 as $n \rightarrow \infty$.

Suppose $d \ge 2$. We sketch the proof of transience only.

• The idea is to use the local limit theorem to control (via Borel–Cantelli) the visits of *G_n* to a growing ball, along a subsequence of times suitably chosen so that the slow movement of the centre of mass controls the trajectory between the times of the subsequence as well.

Suppose $d \ge 2$. We sketch the proof of transience only.

• The idea is to use the local limit theorem to control (via Borel–Cantelli) the visits of *G_n* to a growing ball, along a subsequence of times suitably chosen so that the slow movement of the centre of mass controls the trajectory between the times of the subsequence as well.

• Step 1: Local limit theorem implies that
$$\mathbb{P}(G_n \in \mathcal{B}) = O\left(n^{-\frac{d}{2}}\right)$$
 for a fixed ball \mathcal{B} .

• We have the following estimate on the deviations.

Lemma

Suppose that (M) holds and that $\mu = 0$. Then, for any $\varepsilon > 0$, a.s. for all but finitely many n,

$$\max_{n^2 \leq m \leq (n+1)^2} \|G_m - G_{n^2}\| \leq n^{\varepsilon}.$$

• We have the following estimate on the deviations.

Lemma

Suppose that (M) holds and that $\mu = 0$. Then, for any $\varepsilon > 0$, a.s. for all but finitely many *n*,

$$\max_{n^2 \leq m \leq (n+1)^2} \|G_m - G_{n^2}\| \leq n^{\varepsilon}.$$

 Step 2: Slow movement of G_n implies that it suffices to control G_{n²}.

• We have the following estimate on the deviations.

Lemma

Suppose that (M) holds and that $\mu = 0$. Then, for any $\varepsilon > 0$, a.s. for all but finitely many *n*,

$$\max_{n^2 \leq m \leq (n+1)^2} \|G_m - G_{n^2}\| \leq n^{\varepsilon}.$$

 Step 2: Slow movement of G_n implies that it suffices to control G_{n²}.

• Step 3: $\mathbb{P}(G_{n^2} \in \mathcal{B}) \approx n^{-d}$, which is summable if $d \geq 2$.

 \mathbb{X}

Conjecture

• Obtaining necessary and sufficient conditions for recurrence and transience of *G_n* is an open problem.

Conjecture (L., Wade, 2017)

Suppose that supp X is not conatined in a one-dimensional subspace of \mathbb{R}^d . Then

$$\liminf_{n\to\infty}\frac{\log\|G_n\|}{\log n}\geq\frac{1}{2},\ a.s.$$

Conjecture

- Obtaining necessary and sufficient conditions for recurrence and transience of G_n is an open problem.
- For $d \ge 2$, we believe that G_n is always 'at least as transient':

Conjecture (L., Wade, 2017)

Suppose that supp X is not conatined in a one-dimensional subspace of \mathbb{R}^d . Then

$$\liminf_{n\to\infty}\frac{\log\|G_n\|}{\log n}\geq\frac{1}{2},\ a.s.$$

Denote

$$\mathcal{H} := \{H : \mathbb{P}(X \in \mathbf{b} + H\mathbb{Z}^d) = 1 \text{ for some } \mathbf{b} \in \mathbb{R}^d\}.$$

Denote

$$\mathcal{H} := \{ H : \mathbb{P}(X \in \mathbf{b} + H\mathbb{Z}^d) = 1 \text{ for some } \mathbf{b} \in \mathbb{R}^d \}.$$

Suppose that the minimal subgroup of ℝ^d associated with X is L := Hℤ^d with h := | det H| > 0. Let

$$\mathcal{H}_0 := \{ H \in \mathcal{H} : L = H\mathbb{Z}^d \}.$$

Denote

$$\mathcal{H} := \{ H : \mathbb{P}(X \in \mathbf{b} + H\mathbb{Z}^d) = 1 \text{ for some } \mathbf{b} \in \mathbb{R}^d \}.$$

Suppose that the minimal subgroup of ℝ^d associated with X is L := Hℤ^d with h := | det H| > 0. Let

$$\mathcal{H}_0 := \{ H \in \mathcal{H} : L = H\mathbb{Z}^d \}.$$

• Let $K := \{ |\det H| : H \in \mathcal{H} \}.$

Denote

$$\mathcal{H} := \{H : \mathbb{P}(X \in \mathbf{b} + H\mathbb{Z}^d) = 1 \text{ for some } \mathbf{b} \in \mathbb{R}^d\}.$$

Suppose that the minimal subgroup of ℝ^d associated with X is L := Hℤ^d with h := | det H| > 0. Let

$$\mathcal{H}_0 := \{ H \in \mathcal{H} : L = H\mathbb{Z}^d \}.$$

- Let $K := \{ |\det H| : H \in \mathcal{H} \}.$
- Denote φ(t) := ℝ[e^{it[⊤]X}] to be the characteristic function of X. Set U := {t ∈ ℝ^d : |φ(t)| = 1}. Set S_H := 2π(H[⊤])⁻¹ℤ^d.

Lemma (L., Wade, 2017)

Suppose that X is non-degenerate and $H \in \mathcal{H}$. The following are equivalent.

```
(i) H \in \mathcal{H}_0.

(ii) |\det H| is the maximal element of K.

(iii) S_H = U.
```


Acknowledgement

 The authors are grateful to Ostap Hryniv and Mikhail Menshikov for fruitful discussions on the topic of this presentation.

Acknowledgement

• The authors are grateful to Ostap Hryniv and Mikhail Menshikov for fruitful discussions on the topic of this presentation.

• The authors are thankful to Nicholas Georgiou for the template of the slides.

References

C.H. Lo, A.R. Wade, On the centre of mass of a random walk. *Submitted. ArXiv:* 1708.04470.

F. Comets, M.V. Menshikov, S. Volkov, and A.R. Wade, Random walk with barycentric self-interaction, *J. Stat. Phys.* **143** (2011) 855–888.

- K. Grill, On the average of a random walk, *Statist. Probab. Lett.* 6 (1988) 357–361.
 - G.F. Lawler and V. Limic, *Random Walk: A Modern Introduction*, Cambridge University Press, Cambridge, 2010.
 - T. Mountford, L.P.R. Pimentel, and G. Valle, Central limit theorem for the self-repelling random walk with directed edges, *ALEA, Lat. Am. J. Probab. Math. Stat.* **11** (2014) 503–517.

