Monte Carlo Inference, Example Sheet 1

The associated example class will be held on Thursday 25 February, 9-10am, MR13.

Exercise 1 (Converse of the inverse transform theorem for continuous CDF). Let F' be a continuous
CDF, and X ~ F. Prove that F(X) ~ Unif[0,1]. Generalize the result to functions with countable
number of discontinuities, i.e., when F jumps at z1,x2,. ...

Exercise 2. Given a random variable U ~ Unif[0, 1], How can you generate a random variable

(i) X ~ Ber(p), p € (0,1).
X e{l,...,K}, with P(X =k) =wg, k=1,..., K, where the wys are positive and sum to one.
X ~ Unif[a, b], where a < b.

X ~ Cauchy(0, 1), where the density of a Cauchy(0, 1) is given by f(z) = z eR.

1
m(14+x2)?

X ~ GEV(p,0,8), p € Ryo > 0,6 € R\ {0}, and the CDF of the GEV(u, 0, &) distribution is given
by

Nl B
F(x)=exp{—<1+§x “) } 2 € R such that 1+ ¢2—* > 0.
ag

g

(GEV stands for Generalized Extreme Value).

Exercise 3 (Ratio of uniforms). Let h(x) defined on R be a non-negative function with finite integral.

Let
Cn = {(u,v) eER?*:0<u< \/h(v/u)} .
(i) Show that Cj, has a finite area by using an appropriate change of variables.
(ii) If (U, V) ~ Unif(Ch), show that X = V/U has density h(z)/ [ h(z)dz.

(iii) Suppose h(x) and x?h(x) are bounded. Devise an algorithm for generating according to h, using
the results above.

(iv) Implement this method when
(a) h(z) = €10, (2),
(b) h(z) = exp(~a?/2).
Exercise 4 (Alternative version of Box Muller). Show that the algorithm
(i) Generate Uy, U "5 Unif[—1,1] until § = U? 4+ U2 < 1;
(ii) Define Z = \/—21log(S)/S and set X; = ZUy, Xo = ZUs;

generates X1, Xo - N(0,1).

Exercise 5. Let u € R% and ¥ be a d x d non-negative symmetric matrix, i.e. ¥ = X7 and 2" %z >

0,V € R?. How can we generate a multivariate Gaussian random variable Ng(u, ) from i.i.d. univariate
N(0,1)?

Exercise 6. Suppose that (Y7,...,Yy) is a sample produced by an accept-reject method based on (f, g),
where f,g are densities on R?, f < Mg, and M = sup(f/g). Denote by (Xi,...,X;) the accepted
subsample and by (Z1,..., Zn_¢) the rejected subsample.

(i) Show that 6; = ¢! Zle h(X;) and

N—t
(N — ! N (M -1)f(Z)
%2 = (N =07 D M)y iy

are unbiased estimators of y = E;(h(X)) (conditional on N > ¢t > 1), where h : R? — R is such
that E¢ |h(X)| < occ.



(i)
(i)

Show that 01,2 are independent.

Find the weight 8* that minimizes that variance of the aggregated estimator d3 = 01 + (1 — 3)d2
(conditional on N >¢ > 1).

Exercise 7. Suppose that f is an unnormalized density over R? and g is another density over R¢, from
which we can simulate easily, and such that f(z) < Mg(z), Ve € R, for some fixed M > 0.

(1)
(i)

(iii)

Show that M > 1 if f and g are normalized.

Show that the accept-reject algorithm works even though f is not normalized, and even if we do
not know exactly M, provided we know Mg(z) and we can sample from g.

What is the distribution of IV, the number of variables generated with the distribution g until the
first acceptance occurs in the accept-reject algorithm?

Exercise 8. We want to generate N (0, 1) random variables using the accept-reject method with gy (z) =
IXexp(—Alz]),z € R, A > 0.

(i)
(i)
(iif)

Given Uy, Us R Unif]0, 1], how can you simulate Y ~ g,?
Find the optimal A > 0 (in terms of acceptance probabilities).

Describe the algorithm.

Exercise 9. You partially saw this example during the lecture. Let

(1)

(i)

(iii)
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Using (1), (2) and (3), construct Monte Carlo estimators p; ., of p based on
Xl, . ,Xm l'fl\'-/d' fi; where

(a) f1 is the density of a Cauchy(0, 1),

(b) f2 is the density of a Unif[0,1/2],

(c) fs is the density of a Unif]0, 2],
and compute their variances.

Someone uses the estimator ps ., to estimate p, with sample size m = 50. You are using the
estimator pi ,,. What sample size m should you use to achieve the same accuracy (i.e. the same
width of the confidence interval for a fixed level o). What if you are using ps 7

Exercise 10. Let f be a density that is uniformly continuous according to the uniform measure on
[0,1], and that is bounded by M. Let ¢ be a function defined on [0, 1] such that |¢| < 1. Let 6§ =

Jio. (@) (@)de.

(1)

(i)

(iii)

Remind what is importance sampling for estimating §. What is in this case the optimal distribution
that minimises the variance of the importance sampling estimate? We write ¢* for this distribution.

Propose a technique for sampling from f given n ii.d. samples Uy,...,U, ~ Unif[0,1]. What
is the expected number of samples from distribution f you obtain with this method? Recall the
asymptotic distribution of the proportion associated to this number. Propose a confidence interval
for n large enough. How can you use these samples for estimating 67

Propose a technique for sampling from ¢* using these uniform samples. What is the expected
number of samples from distribution ¢* you obtain with this method? Recall the asymptotic
distribution of the proportion associated to this number. Propose a confidence interval when n is
large enough. When proposing your method, you can only use punctual values of ¢ and f, the
constant M, and the fact that |¢| < 1.



(iv) Can you use the samples from (iii) for estimating 67

Exercise 11. Let A% denote the Monte Carlo approximation of J h(x)f(x)dz by stratified sampling of
T; points from strata §; with weights w;, i = {1,...,k}.

(i) Prove that Var[h{)] = S wiTgf, where
1
7t =z [ (h(o) — )? f(a)do; and
i JQ

pi= / (@) f(2)d.

(ii) For the unform Tj, i.e. for T; = w;n, n = Zfil T;, show that Var[hsf)] < Var[hy], where h,, is the
classical Monte Carlo approximation of [ h(z)f(z)dx.



