
Monte Carlo Inference, Example Sheet 1

The associated example class will be held on Thursday 25 February, 9-10am, MR13.

Exercise 1 (Converse of the inverse transform theorem for continuous CDF). Let F be a continuous
CDF, and X ∼ F . Prove that F (X) ∼ Unif[0, 1]. Generalize the result to functions with countable
number of discontinuities, i.e., when F jumps at x1, x2, . . . .

Exercise 2. Given a random variable U ∼ Unif[0, 1], How can you generate a random variable

(i) X ∼ Ber(p), p ∈ (0, 1).

(ii) X ∈ {1, . . . ,K}, with P (X = k) = wk, k = 1, . . . ,K, where the wks are positive and sum to one.

(iii) X ∼ Unif[a, b], where a < b.

(iv) X ∼ Cauchy(0, 1), where the density of a Cauchy(0, 1) is given by f(x) = 1
π(1+x2) , x ∈ R.

(v) X ∼ GEV(µ, σ, ξ), µ ∈ R, σ > 0, ξ ∈ R \ {0}, and the CDF of the GEV(µ, σ, ξ) distribution is given
by

F (x) = exp

{

−

(

1 + ξ
x− µ

σ

)

−1/ξ
}

, x ∈ R such that 1 + ξ
x− µ

σ
> 0.

(GEV stands for Generalized Extreme Value).

Exercise 3 (Ratio of uniforms). Let h(x) defined on R be a non-negative function with finite integral.
Let

Ch =
{

(u, v) ∈ R
2 : 0 ≤ u ≤

√

h(v/u)
}

.

(i) Show that Ch has a finite area by using an appropriate change of variables.

(ii) If (U, V ) ∼ Unif(Ch), show that X = V/U has density h(x)/
∫

R
h(z)dz.

(iii) Suppose h(x) and x2h(x) are bounded. Devise an algorithm for generating according to h, using
the results above.

(iv) Implement this method when

(a) h(x) = e−x1[0,∞)(x),

(b) h(x) = exp(−x2/2).

Exercise 4 (Alternative version of Box Muller). Show that the algorithm

(i) Generate U1, U2
i.i.d.
∼ Unif[−1, 1] until S = U2

1 + U2
2 ≤ 1;

(ii) Define Z =
√

−2 log(S)/S and set X1 = ZU1, X2 = ZU2;

generates X1, X2
i.i.d.
∼ N(0, 1).

Exercise 5. Let µ ∈ R
d, and Σ be a d × d non-negative symmetric matrix, i.e. Σ = ΣT and xTΣx ≥

0, ∀x ∈ R
d. How can we generate a multivariate Gaussian random variable Nd(µ,Σ) from i.i.d. univariate

N(0, 1)?

Exercise 6. Suppose that (Y1, . . . , YN ) is a sample produced by an accept-reject method based on (f, g),
where f, g are densities on R

d, f ≤ Mg, and M = sup(f/g). Denote by (X1, . . . , Xt) the accepted
subsample and by (Z1, . . . , ZN−t) the rejected subsample.

(i) Show that δ1 = t−1
∑t

i=1 h(Xi) and

δ2 = (N − t)−1
N−t
∑

i=1

h(Zi)
(M − 1)f(Zi)

Mg(Zi)− f(Zi)
,

are unbiased estimators of µ = Ef (h(X)) (conditional on N > t ≥ 1), where h : Rd → R is such
that Ef |h(X)| < ∞.
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(ii) Show that δ1, δ2 are independent.

(iii) Find the weight β∗ that minimizes that variance of the aggregated estimator δ3 = βδ1 + (1− β)δ2
(conditional on N > t ≥ 1).

Exercise 7. Suppose that f is an unnormalized density over Rd and g is another density over Rd, from
which we can simulate easily, and such that f(x) ≤ Mg(x), ∀x ∈ R

d, for some fixed M ≥ 0.

(i) Show that M ≥ 1 if f and g are normalized.

(ii) Show that the accept-reject algorithm works even though f is not normalized, and even if we do
not know exactly M , provided we know Mg(x) and we can sample from g.

(iii) What is the distribution of N , the number of variables generated with the distribution g until the
first acceptance occurs in the accept-reject algorithm?

Exercise 8. We want to generate N(0, 1) random variables using the accept-reject method with gλ(x) =
1
2λ exp(−λ|x|), x ∈ R, λ > 0.

(i) Given U1, U2
i.i.d.
∼ Unif[0, 1], how can you simulate Y ∼ gλ?

(ii) Find the optimal λ > 0 (in terms of acceptance probabilities).

(iii) Describe the algorithm.

Exercise 9. You partially saw this example during the lecture. Let

p =

∫

∞

2

1

π(1 + x2)
dx. (1)

(i) Show that

p =

∫ 1/2

0

1

π(1 + y2)
dy, (2)

and

p = 1/2−

∫ 2

0

1

π(1 + x2)
dx. (3)

(ii) Using (1), (2) and (3), construct Monte Carlo estimators p̂i,m, of p based on

X1, . . . , Xm
i.i.d.
∼ fi, where

(a) f1 is the density of a Cauchy(0, 1),

(b) f2 is the density of a Unif[0, 1/2],

(c) f3 is the density of a Unif[0, 2],

and compute their variances.

(iii) Someone uses the estimator p̂2,m to estimate p, with sample size m = 50. You are using the
estimator p̂1,m. What sample size m should you use to achieve the same accuracy (i.e. the same
width of the confidence interval for a fixed level α). What if you are using p̂3,m?

Exercise 10. Let f be a density that is uniformly continuous according to the uniform measure on
[0, 1], and that is bounded by M . Let φ be a function defined on [0, 1] such that |φ| ≤ 1. Let θ =
∫

[0,1] φ(x)f(x)dx.

(i) Remind what is importance sampling for estimating θ. What is in this case the optimal distribution
that minimises the variance of the importance sampling estimate? We write g∗ for this distribution.

(ii) Propose a technique for sampling from f given n i.i.d. samples U1, . . . , Un ∼ Unif[0, 1]. What
is the expected number of samples from distribution f you obtain with this method? Recall the
asymptotic distribution of the proportion associated to this number. Propose a confidence interval
for n large enough. How can you use these samples for estimating θ?

(iii) Propose a technique for sampling from g∗ using these uniform samples. What is the expected
number of samples from distribution g∗ you obtain with this method? Recall the asymptotic
distribution of the proportion associated to this number. Propose a confidence interval when n is
large enough. When proposing your method, you can only use punctual values of φ and f , the
constant M , and the fact that |φ| ≤ 1.
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(iv) Can you use the samples from (iii) for estimating θ?

Exercise 11. Let h
(s)
n denote the Monte Carlo approximation of

∫

h(x)f(x)dx by stratified sampling of
Ti points from strata Ωi with weights wi, i = {1, . . . , k}.

(i) Prove that Var[h
(s)
n ] =

∑K
i=1

w2

i
σ2

i

Ti

, where

σ2
i =

1

w2
i

∫

Ωi

(h(x)− µi)
2f(x)dx; and

µi =
1

w2
i

∫

Ωi

h(x)f(x)dx.

(ii) For the unform Ti, i.e. for Ti = win, n =
∑K

i=1 Ti, show that Var[h
(s)
n ] < Var[hn], where hn is the

classical Monte Carlo approximation of
∫

h(x)f(x)dx.
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