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Abstract

The purpose of this study is to identify genetically distinct clusters of individuals based on

related characteristic traits (namely phenotypic data) or geographical locations (namely phy-

logeographic data). There are 2 main steps to this process: inferring the genetic history of the

sequences under study, and subsequently identifying significant clusters according to the phe-

notypic/phylogeographic measurements. Based on an evolutionary model and an appropriate

model for the distribution of the phenotype, such inference is possible in a number of different

ways. However, due to the multiple level uncertainty and the complexity of the models, it is

essential that the methods avoid stepwise optimization in order to give statistically reliable

conclusions.

The main methods currently used for analysis of this type are called Nested Clade Analysis

(NCA) and Nested Clade Phylogeographic Analysis (NCPA) for phenotypic and phylogeo-

graphic data respectively. In short, they rely on finding the optimal genetic history based on

a simplified evolutionary model, and identifying significantly different clusters for the pheno-

type/geography (assuming the inferred genetic history as fixed) by using Nested Analysis of

Variance and permutation tests. Such methods do not allow for the uncertainty of each step

to fully propagate through the model and have been shown by simulations often to lead to

false conclusions.

Here we describe a coherent statistical framework for NCA/NCPA by taking a (Reversible

Jump) Markov chain Monte Carlo approach to the genetic clustering problem. By consider-

ing a general evolutionary model and clustering constructions using haplotype trees for the

phenotypic and phylogeographic analysis respectively, we construct a holistic method in order

to obtain the global optimum of the parameters of interest.

Several challenges arise in this process. The presence of homoplasy (representing con-

vergent evolution, usually through back mutations) can obscure the analysis, increasing the

number of possible histories that underly the data. This leads to intractable likelihoods and

normalisation constants. Here we use Approximate Bayesian Computation to address these

issues. In addition, the parameter space of clusterings is vast, so we employ adaptive meth-

ods and efficient proposals to ensure mixing and convergence. Lastly, we address inherent

issues of similar clustering and phylogenetic inference problems such as label-switching (for

the cluster parameters) and representation of trees (essential for convergence assessment). We

implement our method for 3 datasets and discuss the results in relation to NCA and NCPA.
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Chapter 1

Introduction

The key motivation for this study is the popularity of Nested Clade Phylogeographic Anal-

ysis (NCPA) amongst evolutionary biologists, despite its frequent criticism (see Petit and

Grivet, 2002; Knowles, 2004; Panchal, 2007; Petit, 2008; Panchal and Beaumont, 2007), and

the need to provide a solid statistical framework for the existing methodology so as to draw

statistically reliable inferences from phylogeographic data. NCPA is a statistical method for

reconstructing the demographic history of spatially distributed populations from genetic data

(see Templeton, 1998). Following an introduction to the methods hitherto employed (see

Chapter 1), we take a coherent model-based Bayesian approach to NCPA in order to draw in-

ferences about the geographical clustering (see Chapter 2) and the phylogeny simultaneously

(see Chapter 3), using Markov chain Monte Carlo (MCMC) and Approximate Bayesian Com-

putation (ABC). This approach is applicable to both the phenotypic and phylogeographic

clustering problems described below, by plugging in different models for the distribution of

the data. We present our method and implement it by applying it to two phylogeographic

datasets from beetles and weevils respectively, and a phenotypic dataset from salmon (see

Chapter 4). The thesis concludes with a recapitulation of the findings presented, together

with recommendations for future work in the field (see Chapter 5).

In phenotypic cluster analysis, the objective is to identify Single Nucletotide Polymor-

phisms (SNPs) in DNA sequences which are associated with changes in characteristic traits.

Drawing inferences about population structure and subdivision in combination with a phe-

notype can yield valuable information for SNP analysis (see Abecasis et al., 2007). Although

SNPs are rarely solely responsible for the expression of a characteristic (such as disease),

partly due to the presence of linkage disequilibrium (see Nelson, 2001), it is often the case

that associations can be made. For example, there is increasing evidence that there is an

association between mitochondrial SNPs and fertility (see Montiel-Sosa et al., 2002). One of

the existing methods of phenotypic cluster analysis is Nested Clade Analysis, developed by
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Templeton et al. (1987).

In phylogeographic clustering problems, the objective is to draw conclusions about the

geographical history of a population (of the same species) by identifying geographically and

genetically distinct population clusters. The main method used for analysis of this type

is NCPA which was developed by Templeton (1998). Other methods aim at identifying

subpopulations using migration models in combination with the coalescent (see De Iorio and

Griffiths, 2004a,b). Although reliable inference for human populations usually requires very

complex models (see Jow et al., 2007; Liu et al., 2006), for many other species often simpler

models can be used, allowing for computationally less intensive methods.

Both clustering problems described above may be addressed simultaneously within the

same statistical framework. Given a dataset comprising a DNA sequence and a measurement

(phenotypic or geographical) for each individual, we want to infer the genetic history of the

individuals and identify clusters of phenotypes/geographical locations that are consistent with

the phylogeny. This requires a model for the evolutionary process underlying the sampled

DNA sequences and a model for the structure and distribution of the clusters, which can

subsequently be used to draw inferences using Bayesian computational methods.

In this Chapter we introduce the necessary tools for the Bayesian approach described in

subsequent chapters. To this end, we present some relevant molecular genetics (see Section

1.1), including the mutation process, the coalescent model and various graphical representa-

tions of intraspecific genetic relationships between individuals. For a detailed explanation of

the biology involved in population genetics, see Balding (2003). These are necessary for the

phylogenetic side of the analysis, i.e., inferring the genetic history. We then present several

methods that have been proposed for inferring phylogenies (see Section 1.2), and describe the

approach taken in NCA in detail.

In Section 1.3 we describe a number of approaches to identifying associations between DNA

changes and phenotypes based on the inferred tree (e.g. Templeton et al., 1987, 2005; Posada

et al., 2005). Subsequently, we present a few different methods of analyzing phylogeographic

data (Section 1.4), some of which are based on tree inference (Handley et al., 2007; Templeton,

1998; De Iorio and Griffiths, 2004a,b) and some which are not (e.g. Falush et al., 2003). Since

NCPA is widely used by biologists, we focus on the methods developed by Templeton et al..

Finally, in Section 1.5 we introduce the basic principles of Markov chain Monte Carlo

and Approximate Bayesian Computation methods and describe some standard techniques of

overcoming common problems associated with the convergence of MCMC samplers.
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1.1 Overview of genetics

All living organisms have a DNA sequence of nucleotides A, G, C, T (representing the four

nucleotide subunits adenine, guanine, cytosine, and thymine bases) which contains the genetic

instructions used for their development and function. Each nucleotide position is called a

nucleotide site. In a sample of DNA sequences, a nucleotide site which is not identical across

all sequences is called a Single Nucleotide Polymorphism (SNP). Although for most species

more than 99% of their DNA sequences is the same across the population, variations in DNA

sequences can have a major impact on the expression of a phenotype.

Within cells, most DNA is organized into structures called chromosomes, which in eukary-

otic organisms (animals, plants and fungi) are stored in the cell nucleus. Genes are hereditary

units found at specific loci on each chromosome. Chromosomes are duplicated before cells

divide in a process called DNA replication, and genes are passed onto offspring. During re-

production, diploid eukaryotes generate offspring that contain a mixture of genetic material

inherited from two different parents.

In the process of reproduction, two events may occur which may increase the genetic

variation. Firstly, mutations may occur, usually through an error during copying of the DNA

strand, resulting in changes in the DNA sequence. Secondly, chromosomal recombination

may occur, referring to crossover between the paired chromosomes during meiosis. This leads

to offspring having different combinations of genes from their parents.

Although most DNA present in eukaryotic organisms is contained in the cell nucleus, mito-

chondrial DNA (mtDNA) is located in organelles called mitochondria which are found in the

cytoplasm. Unlike nuclear DNA, which is inherited from both parents and in which genes are

rearranged in the process of recombination, mitochondrial DNA is maternally inherited. As a

result, and owing to the faster mutation rate compared to nuclear DNA, mtDNA is a power-

ful tool for tracking ancestry through females. Throughout this thesis, we use mitochondrial

data. Their haploid nature and maternal inheritance allow us to use simpler evolutionary

models and to relax some model assumptions, so that the complexity of the phylogenetic

problems is greatly reduced.

In practice, usually only a small region of the DNA sequences is studied. Distinct sequences

are called haplotypes; note that the number of sequences in a sample may be larger than

the number of haplotypes. Although no two individuals ever have identical DNA sequences

throughout their length, it is frequently the case that two individuals will share quite long

stretches of DNA.

The evolutionary process underlying the region under study can be viewed in the following

way; see Wright (1951). As organisms reproduce, three possible events occur independently at
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different rates under no selection: new sequences arise through mutation and recombination,

sequences are replicated when no mutations or recombination occur, and others disappear

through extinction. The study of the evolutionary history of individuals, whether of the

same species (intraspecific) or between different species (interspecific) is called phylogenetics

(see Nei and Kumar, 2000; Semple and Steel, 2003). In this thesis we are concerned with

datasets of the same species, and hence we mainly discuss intraspecific inferences. Several

approaches have been presented, attempting to draw reliable inferences and addressing many

of the challenges of population genetics (see Wakeley and Hey, 1997; Wilson et al., 2003; Nei

and Kumar, 2000).

The evolutionary history of a sample of sequences may be represented in a number of

ways through a graph, depending on the objective of the analyses (see Hein et al., 2005;

Rosenberg and Nordborg, 2002). We describe two main ones, namely haplotype trees and

rooted ancestral trees.

Haplotype trees The haplotype tree1 depicts the mutational steps that relate the observed

haplotypes to one another. Each node in the tree represents a haplotype, and two haplotypes

are connected by an edge if they are one mutation apart. Although a haplotype tree may

also be rooted, meaning that the oldest haplotype is represented in the graph, a haplotype

tree generally provides little or no information about the relative time-scale of mutation and

replication events.

A haplotype tree may also include information about the number of times each haplo-

type appears in the sample, so that it contains information about sequences and not just

haplotypes. In fact, in that case the haplotype tree provides all information available in the

sequence data; the haplotype tree determines the number of times each haplotype appears in

the sample, and specifies all missing intermediate (extinct or unsampled) sequences. Although

in the absence of additional data (such as a phenotype, geographical location, pedigree infor-

mation) it is not possible to distinguish between copies of the same haplotype (see Posada and

Crandall, 2001), the number of copies itself is a useful source of information about history of

each haplotype in relation to the rest of the sample.

An alternative form of trees which are very similar to haplotype trees does not rely on an

evolutionary model, but is simply based on the phenetic distances between sequences. Such

networks are Neighbour-Joining graphs, which connect sequences that are closer together,

with appropriate weightings (see Gascuel and Steel, 2006; Atteson, 1997, 1999). In practice,

they have the same structure as a haplotype tree, but a different method of obtaining the

1In earlier work, Templeton et. al. refer to haplotype trees as cladograms, but in their recent literature the
term haplotype tree is used. They are also occasionally referred to as haplotype networks or mutational trees
(see Sankoff, 1975).
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Figure 1.1: Example of a haplotype tree. In this figure, initially there is one haplotype
present, named 2. It is inherited by its descendants, until at some point random mutations
occur, and haplotypes 1,3,4 appear (in any order). This process continues until eventually we
have 13 haplotypes in the sample.

optimum one for each case.

Rooted genealogical trees In contrast to haplotype trees, a rooted genealogical tree (also

sometimes called a gene tree) is a binary tree showing the timewise evolutionary relationships

among a set of individual sequences (rather than haplotypes) of the same species. Each

internal node represents the most recent common ancestor (MRCA) of its descendants, and

the edge lengths correspond to time estimates. This implies that the root of the tree represents

the MRCA of the sample. Looking at evolution backwards in time, the time taken for two

individuals to reach their MRCA is called the time to coalescence, and equivalently the event

is called a coalescence event. Considering the process forwards in time, the equivalent event

of a node splitting into two lineages is called a divergence event.

In the case of interspecific datasets (meaning datasets involving different species), rooted

genealogical trees are called phylogenetic trees. In intraspecific population genetics datasets

such as the ones addressed in this thesis, rooted genealogical trees usually assume some version

of the coalescent model described in Subsection 1.2.1, and are thus named coalescent trees.

A typical coalescent tree has the following binary form shown in Figure 1.2.

The information obtained from the tree is the order in which coalescence events occured,

as well as the relative times at which they happened. However, precise temporal locations

of mutations cannot typically be extracted, and the exact states of unobserved ancestral

sequences is not usually inferred (see Wilson et al., 2003). A variation of the usual coalescent

is one where the states of unobserved ancestral sequences are determined (see Li et al., 2000),
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1 4 7 2 3 6 5

t6

t5

t4

t3

t2

t1

time

Figure 1.2: Example of a coalescent tree. In this tree, nodes 4 and 7 are the most closely
related, having their Most Recent Common Ancestor (MRCA) time t1 ago. The second most
recent coalescence event was between sequences 3 and 6, which coalesced a time t1 + t2 ago.
The process continues until the top of the tree, where the MRCA of all sequences appears, a
time

∑

i ti ago.

or the precise times when specific mutations occurred are specified (see Markovtsova et al.,

2000).

1.1.1 Challenges in tree estimation

Haplotype and coalescent trees are both used to summarize the evolutionary history of a

sample of sequences. In practice, the true tree is unknown, as is the underlying evolutionary

process generating the sequences. Drawing inferences about the tree is difficult for many

reasons:

• The exact model of the evolutionary model is not known. Although model-based infer-

ence is possible, assessing model-fitness is very difficult.

• The parameters of the evolutionary model are not known and have to be estimated.

Owing to the complexity of the model and sparsity of the data, such estimates are

rarely accurate, and there is often great variation between different samples.

• Often sequences which existed in the past have gone extinct, or are not sampled, and

there are multiple possibilities of what they may have been; see Figure 1.3.

• Homoplasy is the result of convergent evolution and is present when sequences are

similar, but are not derived from a common ancestor.



1.1 Overview of genetics 8

The presence of homoplasy (e.g. due to back-mutations) hugely increases the number of

possible histories consistent with the data. An example of homoplasy is given in Figure

1.4. Homoplasy leads to the presence of loops (called reticulations) in a haplotype tree,

as displayed in the example. There have been several approaches to address reticulate

evolution; see Xu (2000).

• The parsimony assumption implies that if two sequences are one DNA change apart,

they are assumed to be one mutation apart. Although it can greatly reduce the com-

putational complexity of ancestral tree inference, it may be untrue when homoplasy is

present. Even if all sequences are sampled and none has gone extinct, it is not possible

to determine the history uniquely, since the parsimony assumption can never be verified.

For example, we cannot verify that 3 sequences arose as in the left-hand panel of Figure

1.5 rather than the right-hand one.

ATC

GTG

Figure 1.3: Example of unobserved ancestral sequence: even if we know that precisely two
mutations occurred between the two sequences shown, it is not possible to know in which order
they occurred, and thus it is not possible to determine whether the unknown intermediate
sequence is GTC or ATG.

TA

TTAT

AA

TA

TTAT

AA

AT

TAAA

TT AT

TAAA

TT

AT

TAAA

TT

AT

TT

TA

AA

Figure 1.4: Example of homoplasy: the tree on the left represents the true mutational
history. However, given the data, it is not possible to distinguish between the 4 possibilities
given by the four sub-trees shown on the right of the network in the middle.
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ATC

GTG

ATC

GTG

ATG

ATG

CTG

Figure 1.5: Example of unknown 2 possible mutational histories. In the absence of homo-
plasy, the only possible mutational history which could yield the observed three sequences is
the one on the left. However, homoplasy cannot be checked, and it is not possible to know
whether there was an unobserved mutation as in the figure on the right.

1.1.2 Coalescent trees versus haplotype trees

Both coalescent and haplotype trees are used to represent the evolutionary history of se-

quences, but they focus on different aspects of the process.

Haplotype trees specify every ancestral sequence that has been present in the evolutionary

history of interest, including those that may be extinct, but provide no information about the

event times; see Posada and Crandall (2001). They usually rely on the parsimony principle,

which is often regarded as an inherent disadvantage (see Felsenstein, 1978). This means that

sequences are generally assumed to evolve according to the “minimum-evolution” principle

(see Rzhetsky and Nei, 1993; Desper and Gascuel, 2002). When multiple sequences corre-

sponding to the same haplotype are present in the sample, they are simply collapsed onto

their haplotypes. If a mutation is undetected (i.e., a mutation which occurred is not de-

picted on the haplotype tree), this will usually not affect the shape of the haplotype tree (see

Templeton et al., 1987). However, in the presence of homoplasy, or when datasets contain

very distantly related sequences (this phenomenon is called deep divergence), the parsimony

assumption may lead to false conclusions; see Felsenstein 1983).

In addition, haplotype trees do not explicitly draw inferences about the ancestral haplo-

type. Although there have been some studies on root inference (see Castelloe and Templeton,

1994), rooting a haplotype tree is still a challenging problem. In some cases it is possible to

infer the oldest haplotype by using a haplotype of a different species (called an outgroup)

which is known to be ancestral to the taxon under study. The haplotype of the sample which

is genetically closest to the outgroup is assumed to be the ancestral haplotype; see Maddison

et al. (1984). However, it is often not possible to determine the genetically closest haplotype

and hence outgroups cannot always be used.

On the other hand, coalescent trees give a precise order and time frame of all divergence

events, but do not usually specify the mutations which occurred in history. Sequences are not

collapsed onto haplotypes, which allows homoplasy of whole sequences (i.e., two sequences
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are identical by state, but not identical by descent) to be detected. When event times are

of interest, coalescent trees are more reliable and can yield more accurate conclusions (see

Felsenstein, 1978) based on reasonably simple models. However, the computational com-

plexity of coalescent trees is frequently prohibitive. A number of very sophisticated statistical

tools have been developed to reduce the computational complexity of coalescent tree inference

(see Huelsenbeck and Ronquist, 2001), but they usually do not allow for specific mutational

steps to be determined, and they often exhibit extremely long run times.

1 2 3 4 5 1 2 3 4 5

5

4

3

2

1

6

Figure 1.6: Examples of a typical coalescent tree, a coalescent tree specifying mutations, and
a haplotype tree. In the figure on the left, the history is summarized by a coalescent tree. In this
example, individuals 3 and 4 are the ones which are the most closely related with their MRCA
being the youngest one in the sample. However, it is not possible to identify the sequence state
of their MRCA, since any number of mutations may have occurred along any of the branches
of the tree. The middle figure shows a coalescent tree which also specifies mutations. In this
example mutations are shown on the tree by small black dots on the branches. In this case
the MRCA of 3 and 4 has the same type (i.e., sequence) as sequence 3, whereas sequence 4 is
one mutation apart. On the right, we show an example of a haplotype tree, where unnumbered
nodes represent sequences which are not sampled. We cannot distinguish the relative times
in which events occurred. However, we can determine the precise number of mutations which
occurred, as well as the relative genetic similarity of individuals.

In other words, although coalescent trees theoretically allow for more accurate inference,

they can be computationally prohibitive, with haplotype trees being the only feasible alter-

native.

1.2 Inference about the tree

Before describing particular approaches, we give a brief overview of coalescent theory (Sub-

section 1.2.1) and discuss several properties of mutation models (see Subsection 1.2.2), many

of which are used in the methods described subsequently.

We then (Subsections 1.2.3 - 1.2.6) present a number of different methods which have been
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developed (see Griffiths and Tavaré, 1995; Felsenstein, 2001, 2003, 1983; Templeton et al.,

1992; Meligkotsidou and Fearnhead, 2005; Tavaré, 1986; Desper and Gascuel, 2002; Gascuel

and Steel, 2006; Atteson, 1997, 1999) in order to draw inferences about the haplotype or

coalescent tree relating to the sequence data in question. We divide the methods into four

categories: coalescent-based, distance-based, maximum-likelihood and parsimonious methods.

Many of these are summarized and compared by Kuhner and Felsenstein (1994); Makarenkov

et al. (2006); Holder and Lewis (2003); Stamatakis (2004).

1.2.1 The coalescent

Wakeley (2008) noted that “Coalescent theory provides the foundation for molecular pop-

ulation genetics and genomics”. Coalescent theory, first developed by Kingman (1982), is

a retrospective model relating a set of sequences back to their MRCA through a series of

coalescence events. It is regarded as an fundamental model of population genetics.

Kingman (1982) described evolution by viewing it backwards in time, based on the as-

sumptions of constant population size and random mating. In a sample of N sequences, the

time to the next coalescence event which reduces it to N −1 sequences is proportional to
(

N
2

)

.

The coalescent does not model the mutation process. However, given a mutation model,

the two can be combined to express the probability of a coalescent with mutations. Assuming

that mutations occur independently as a Poisson process at rate θ/2, they can be thought of

as being poured down the coalescent tree (see Tavaré, 2003).

Using the coalescent model with mutations, it is possible to simulate a sample from a

coalescent tree with mutations of size N through the following algorithm which is due to

Ethier and Griffiths (1987):

Algorithm 1.2.1.

1. To start with, choose an initial DNA sequence from the stationary nucleotide distribu-

tion π, and immediately split that node. This is because the first event necessarily has

to be a split rather than a mutation. If that were not the case, then the MRCA of the

sample would be the mutated sequence, which breaches the assumption that the root

of the tree is the MRCA of the sample.

2. Thereafter, if there are k lines in the ancestry, select one at random. Wait an exponential

amount of time with parameter k(k − 1 + θ)/2, and then decide to split at that point

with probability (k − 1)/(k − 1 + θ) or mutate otherwise according to P (for example

this may be given by (1.1)), the mutation process matrix.

3. Continue until there are N + 1 lines, and throw away the last sequence.
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Several extensions of the coalescent model have been developed, to account for a variable

population size (see Slatkin, 2001), selection (see Neuhauser and Krone, 1997) and recombi-

nation (see Hudson, 1983).

1.2.2 Mutation models

A number of models have been developed to represent the mutation process (see Hein et al.,

2005). There are several desirable properties for the representation of the process, which

simplify inference and computation of likelihoods. We highlight the main ones.

A1 No recurring mutations, which implies that no more than one mutation occurs at the

same nucleotide site. This is the key assumption in the infinitely-many-sites model, but

it may be invalid since recurring mutations do occur.

A2 Equal mutation rates across all sites. Mutation rates across all sites are frequently not

equal, since certain sites mutate are much more common than on others.

A3 Equal mutation rates between all nucleotides. Nucleotides A-G and C-T have similar

chemical properties, and mutations within the two pairs are much more common than

the remaining ones, so equal mutation rates between nucleotides is usually not a valid

assumption.

A4 Models that assume independence of sites are usually constructed for statistical conve-

nience, notwithstanding the fact that biological feautures (e.g. codon usage) render this

assumption questionable.

A5 Stationarity of nucleotide frequencies in the ancestral sequence. This assumption implies

that the relative frequency of the four nucleotides remains the same throughout time.

There have been several studies on the applicability of stationary models (see Gu and

Li, 1998)

A6 Time-reversibility of the chain is a stronger assumption than stationarity. It implies

that not only are the nucleotide frequencies at equilibrium, but also that the mutation

process is identical forwards and backwards in time.

A7 Models assuming parent-independent mutations imply that the probability of obtaining

type j after a mutation is independent of the parent type i. This assumption is usually

biologically unrealistic, but is used for statistical convenience.

A8 Models assuming that no selection is possible, which means that mutations cannot result

in an individual having a higher probability of survival and hence a higher probability

of its descendants prevailing in the population.
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Here we present the most general time-reversible mutation model under assumptions A4,

A5, A6 and A8, namely the Generalised Time-Homogeneous Time-Reversible model (REV)

(see Tavaré, 1986). We consider L (the length of the sequences) parallel independent mutation

processes and represent the state of each nucleotide sire l of sequence i as Xi
l . Mutations occur

as a Markov Process with generator Q-matrix

Q = φj















· v1πG v2πC v3πT

v1πA · v4πC v5πT

v2πA v4πG · v6πT

v3πA v5πG v6πC ·















where the πis (i = A, G, C, T ) represent the equilibrium probabilities of the nucleotides, and

the mutation coefficients v1, . . . , v6 the relative mutation probabilities. The extra parameter

φj denotes the site-specific mutation rate for each site j. A Markov process at time t with

generator matrix Q and initial distribution equal to the distribution δi (here δ is the Kronecker

δ and represents a known initial state i at time 0) can be viewed as a Markov chain with

transition matrix

P
(t)
ij = {exp(Qt)}ij . (1.1)

This implies that mutations happen as a Poisson Process with rate φjqi when at each state i

in site j, where qi is the sum along row i of the rates of jumping to other possible states.

In this model the vis are important because certain mutations are more likely than others

(for example as with transition/transversion bias), whereas the φis allow for different mutation

rates between each nucleotide site, and represents the fact that certain sites mutate more

frequently than others, but the relative probabilities of mutating to each possible nucleotide

remain the same. From now on for notational simplicity we refer to (πA, πG, πC , πT ) as

(π1, π2, π3, π4) respectively. This process is time-reversible since it satisfies the detailed-

balance equations πiqij = πjqji, i, j = 1, . . . , 4 (see Norris, 1997), which is a sufficient (and

necessary) condition for time-reversibility.

1.2.3 Coalescent-based Bayesian methods

Inference about the coalescent tree is a challenging problem. Here we present a number of

Bayesian model-based methods which have been developed. In order to draw likelihood-based

inferences on coalescent trees, calculating the probabilities of trees is essential. After describ-

ing the peeling algorithm which enables the calculation of the probability of a coalescent tree,
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the key difficulty becomes to devise an efficient method of exploring the space of possible trees

within the search algorithm used, whether this is Importance Sampling (IS), Markov chain

Monte Carlo or Approximate Bayesian Computation (ABC). In Subsection 1.2.3 we present

some importance sampling techniques (including some valuable approximations) have been

suggested. We continue with some MCMC techniques, concentrating on tree representation

and moves, since these are two the main challenges that will become relevant later. More

recently, Approximate Bayesian Computation (ABC) methods have been implemented to ad-

dress intractable likelihood issues (see Beaumont et al., 2002), presented in Subsection 1.2.6.

The peeling algorithm

Although simulating from a coalescent tree is relatively straightforward, directly calculating

the probability of a given tree of size N with sequences of length L is not immediately possible.

Assuming that nucleotide sites evolve independently, the likelihood is the product of L terms,

so the likelihood calculation is of complexity O(L). Since most of the sites are not variable,

this can be reduced to O(m) where m is the number of SNPs, with m ≤ N . Using the

Markovian nature of the coalescent process, the evaluation of the likelihood can be split into

L steps using a peeling (also called pruning) algorithm (see Felsenstein, 1983). Specifically,

let ui denote an unknown nucleotide in the ancestral sequence which is represented by node i

of the tree. We label the two descendant sequences of ui as A(i) and B(i). By independence,

on a given tree topology T and given ui we have:

P(A(i), B(i) |ui, T ) = P(A(i) |ui, T ) × P(B(i) |ui, T ),

where the probabilities may be readily calculated using P
(t)
ij = {exp Qt}ij . Then the total

probability of the tree can be written as

∑

nodes

∏

nodes

P(A(i), B(i) |ui, T ),

summing over all the possible states of each internal node, and multiplying over all the

probabilities of coalescence events (which are independent using the Strong Markov property).

The peeling algorithm reduces the complexity of the above calculation from O(N × 4L) to

O(N × 4 × L) by summing starting from the leaf rather than the root nodes and moving to

the top of the tree, in other words starting with the innermost sum.

Calculating the exponential of a matrix may be carried out in many different ways (see Van

Loan, 1978; Moler and Van Loan, 2003), many of which fail at singularities (e.g. repeated

eigenvalues) or do not always form a converging series. In this case owing to the special
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property of Q having zero row sums, we use Poisson embedding in order to calculate exp{Qt}

by transforming Q into a stochastic matrix which has a convergent series.

We express the probability as

exp(Qt) = exp

{

qmaxt

(

Q

qmax
+ I

)}

exp (−qmaxtI)

where qmax = maxi | qii | .

Since the Q-matrix has the property that its rows sum to 0, the matrix Q
qmax

+ I will

be stochastic, as will
(

Q
qmax

+ I
)n

for any integer n. We can then write down the Taylor

expansion of

exp

{

qmaxt

(

Q

qmax
+ I

)}

as

exp

{

qmaxt

(

Q

qmax
+ I

)}

=
∑

i

(qmaxt)
i

(

Q
qmax

+ I
)i

i!
.

Since ( Q
qmax

+ I)i is stochastic, it will clearly be bounded for any i. Moreover, (qt)i

i! =
∏

1≤j≤i
qt
j → 0 as i → ∞, because for large values of i the most terms of the product

will be less than 1 and tending to 0. Hence we see that

(qmaxt)
i

(

Q
qmax

+ I
)i

i!
→ 0 as i → ∞.

Thus, we can use the first few terms of the power series to find an approximation of the

probability.

Using the time-reversibility of the evolutionary process, it can be shown that the likelihood

of the tree is independent of the location of the root. For example, considering the two

descendant braches of the root, subtracting t from the time to the next split of one and

adding it to the time to the next split of the other one preserves the likelihood. In effect,

we can view this as “picking up” an unrooted tree from any point on its branches without

affecting the likelihood. Felsenstein (1983) called this the Pulley Principle.

Importance sampling approaches

One of the first methods of inferring phylogenies using importance sampling (see Section 1.5)

is described in a number of papers by Griffiths and Tavaré and is implemented in the soft-

ware genetree available at http://www.stats.ox.ac.uk/~griff/software.html; see Grif-
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fiths and Tavaré (1994a,b, 1995). Their method was subsequently improved with a more

efficient proposal (see Stephens and Donnelly, 2000) by introducing an approximation for the

stationary distribution of the mutation process. Later on De Iorio and Griffiths (2004a) gen-

eralized the approximation by showing that it can be viewed as a diffusion-process generator.

The algorithm by Stephens and Donnelly (2000) is defined for a sample of N chromosomes

of two distinct types α and β, but can easily be generalised for SNPs by introducing four types

and replacing chromosomes with nucleotide positions. The key approximation considered by

Stephens and Donnelly (2000) and De Iorio and Griffiths (2004a) is based on the fact that

the probability π(· |AN ) of selecting a random individual from a set of genetic types AN and

mutating it according to a mutation probability matrix P a geometric number of times with

parameter θ
N+θ can be approximated by

π̂(β |AN ) =
∑

α∈E

∞
∑

m=0

Nα

N

(

θ

N + θ

)m n

N + θ
(Pm)αβ ,

where Nα is the number of chromosomes of type α in AN . This approximation satisfies a

number of important properties of the true distribution π.

Tree moves described by Newton et al. (1999)

One of the earliest Markov chain Monte Carlo algorithms (see Section 1.5) for inferring phylo-

genetic trees from a set of N DNA sequences was presented by Yang and Rannala (1997), and

was later improved by Newton et al. (1999). Although here we are interested in coalescent

trees, the tree representation and moves described are applicable to both phylogenetic and

coalescent trees.

Concentrating on inference about the tree topology determined by a permutation param-

eter σ (determining the order in which sequences coalesced) and the divergence times t, we

present the tree representation used by Newton et al. (1999) and describe the tree moves they

developed, updated through a Metropolis-Hastings (MH) step.

The following representation of tree topologies is used, using nested parentheses, such as

top(τ) = (((1, (4, 7)), (2, (3, 4))), 5) (1.2)

to represent the tree in Figure 1.7.

To account for the 2N−1 equivalent tree topologies, the convention when joining up two

branches is to place the branch which contains the smallest number on the left, defining a

canonical ordering.

In order to draw conclusions about the joint distribution of σ and t, a MCMC sampler



1.2 Inference about the tree 17

1 4 7 2 3 6 5

Figure 1.7: The tree topology represented by (1.2)

with target distribution

π(t, σ |D)

for sequence data D is constructed. The chain is initialized by a tree topology (t, σ), where σ is

a permutation of {1, 2, . . . , N}. Then they carry out the following update. Choose at random

one of the 2N−1 equivalent trees, and perturb the inter-mutation times slightly according to

a uniform random variable. In particular, starting from a vector of times t, generate a new

vector t′ of times by

t′i = ti ⊕ ǫi, for i = 1, 2, 3, ..., N − 1

where ǫi are independent identically distributed Uniform(−δ, δ) random variables for some

tuning parameter δ, and ⊕ indicates addition reflected into the interval (0, tmax). Although

this changes the times only by a small amount, the change may alter the branching structure,

yielding a very different tree topology. The proposed move is then accepted or rejected

according to the corresponding MH ratio.

The above proposal method ensures that the tree proposed is quite ‘near’ the current tree.

However such a proposal also allows for enough mixing as the candidate tree can have quite

a different branching structure even though the likelihood will be similar.

A similar approach is presented by Li et al. (2000), where the ancestral nucleotide se-

quences are added as an auxiliary parameter, updated (rather than summed over) at each

MCMC iteration.
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Tree moves described by Mau et al. (1999)

As in the previous method, Mau et al. (1999) propose a similar algorithm for inferring phy-

logenetic trees from N DNA sequences from a slightly different perspective. Again, the tree

representation and moves decribed can also be used for coalescent trees.

Evolution has two components that may be modelled as a stochastic process: the branch-

ing created by speciation and extinction to form a phylogeny, and the propagation of charac-

ters along the branches of that phylogeny. In the method by Mau et al. (1999) the phylogeny

is treated as a parameter in a model for the propagation of data along each lineage.

A phylogenetic (or coalescent) tree may be viewed as a weighted tree Ψ, in which each edge

has an associated positive weight. The branch lengths (edge weights) are the vertical distances

between connected nodes. The ordering in which the mergings occur define coalescent levels,

whereas the times at which these mergings occur denote coalescent times. Such a tree can be

uniquely defined either by its labelled history and coalescence times as described by Newton

et al. (1999) in the previous section, or by its topology and branch lengths, as described by

Mau et al. (1999). The number of topologies and labelled histories grows rapidly with N ,

equal to (2N − 3) × (2N − 5) × . . . × 1 (inductively) and N ! × (N − 1)!/2N−1 respectively.

We form the matrix whose entries are determined by the within-tree distances between leaf

nodes. Each permutation of the leaves generates a different matrix, and a rooted tree where

all leaf nodes are equidistant from the root is called cophenetic. Clearly, such matrices are

composed of at most N distinct entries. A cophenetic matrix with a canonical ordering has

the important property that its super-diagonal (the diagonal of the sub matrix formed when

deleting the first column and nth row) contains each distinct non-zero cophenetic distance.

Below is an example of a canonical cophenetic matrix, describing the distances for the tree

in Fig. 1.8, where coalescent times T are set at (0.8, 0.3, 0.7, 0.5, 0.9, 1.5):

5 7 4 1 2 6 3

5 0 9.4 9.4 9.4 9.4 9.4 9.4

7 0 1.6 4.6 6.4 6.4 6.4

4 0 4.6 6.4 6.4 6.4

1 0 6.4 6.4 6.4

2 0 3.6 3.6

6 0 2.2

3 0

Here notice that 2.2 = 2×(t1+t2) so that the distance between 3 and 6 is the vertical distance
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that has to be travelled to get from 3 to 6 on the haplotype tree (so up and down again). 5

is the last one to coalesce and so the distance from all other nodes is equal to 9.4, which is

twice the total height of the tree.

1 4 7 2 3 6 5

t6

t5

t4

t3

t2

t1

Figure 1.8: Sample phylogeny on seven taxa

The stochastic model used by Mau et al. (1999) describes the joint distribution of y =

{yv, v ∈ V = I ∪ L}, the historical record at I and current status at L for a given site.

This method describes a different way to represent phylogenies by considering the stochastic

process above, and thus a different way of proposing and updating trees. More detail may be

found in Newton et al. (1999).

Newton et al. (1999) propose a two-stage proposal distribution. The first stage uses the

current tree Ψ to propose a canonical representation (σ, t), where t is the set of times-to-

coalescence, and the second stage perturbs t. Specifically, by using a random binary variable

at each of the N − 1 internal nodes, a particular super-diagonal {di,i+1 : i = 1, . . . , n − 1}

of a canonical cophenetic matrix is selected. Then, the elements of t are independently

perturbed by a uniform ǫ, which can be selected to have small or large interval to moderate

the acceptance rate.

Tree moves described by Larget and Simon (1999)

Larget and Simon (1999) summarized some of the existing MCMC methods suggested, and

proposed a new approach for updating the trees, which is local rather than global. This is

achieved by picking one of the internal edges (i.e., not connected to any of the leaves) at

random, and rearranging the nodes to which it is connected according to a distribution which
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based on the lengths of the edges replaced. More detail may be found in Larget and Simon

(1999).

Altekar et al. (2004) suggest a similar Metropolis-Coupled Markov Chain Monte Carlo

((MC)3) method which addresses slow mixing and getting stuck in local optima. The method

is similar to simulated tempering. Two chains run in parallel, a “hot” and a “cold” one, and

the overall chain jumps between the two. This approach is implemented by the software

MrBayes (see http://mrbayes.csit.fsu.edu), one of the most sophisticated phylogenetic

MCMC inference programs available; see also Huelsenbeck et al. (2002).

Tree moves described by Markovtsova et al. (2000)

A similar MCMC method is proposed in this article, implemented for a variety of different

models. The basics steps are the same as in the subsections above, but an alternative sampler

is proposed. We describe it in detail since it will be used later.

Algorithm 1.2.2.

1. Pick a level, l say (l = N,N − 1, . . . , 3), according to some proposal kernel.

2. For the chosen l observe the structure of coalescence at levels l − 1 and l − 2. There

are two possible structure types, depending on whether the coalescence at level l − 2

involves the line which results from the coalescence at level l − 1. These are shown in

Figure 1.9. When the structure has type A, the kernel randomly chooses one of the

three possiblities shown in Figure 1.10. When level l has structure B, then the kernel

always swaps to the symmetric structure as shown in Figure 1.11.

1 2 3 1 2 3 4

Figure 1.9: The two structure types A and B for a coalescence level.

3. Generate new times T ′
l and T ′

l−1 according to an arbitrary distribution, and leave the

other times unchanged. Thus only alter the times corresponding to the levels at which
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1 2 3 1 2 3 31 2

Figure 1.10: The three possibilities of moving to, when the structure of level l is of
type A. In this case the kernel randomly chooses one of the three.

1 2 3 4
1 2 3 4

Figure 1.11: The two possibilities of arrangements when the structure of level l is of
type B. In this case the kernel always chooses to swap.

the topology has been changed. This ensures that (Λ′,T ′) is similar to (Λ,T ) and

therefore has a reasonable probability of being accepted.

By using appropriate proposal distributions, the Hastings ratio can be simplified. Specif-

ically, since pairs of lines are chosen uniformly to coalesce, all topologies are equiprobable

a priori. Furthermore, if the updated times are generated from an exponential distribution

with parameter l(l − 1)/2 (where l represents the level), and mutation rates are proposed

independently of the current values, the Hastings ratio becomes

min

{

1,
P(D |G′)

P(D |G)

}

This approach proves efficient enough to allow mixing, at the same time being straight-

forward to implement.
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1.2.4 Distance-based methods

Distance-based methods (including Neigbour-Joining and Median-Joining methods) construct

a branch-weighted haplotype network based on pairwise phenetic distances of sequences which

are computed a priori. If the sequence distances are sufficiently close to the number of

evolutionary events between them, these methods can provide sufficiently accurate results (see

Desper and Gascuel, 2002; Rzhetsky and Nei, 1993; Atteson, 1997, 1999) based on the phenetic

distance matrix. However, as mentioned before (see Subsection 1.1.2), this is frequently not

the case, and also cannot reliably be verified. The main advantage of distance-based methods

is their small time complexity that makes them applicable to the analysis of large datasets.

When homoplasy or deep divergence have occurred, they have little chance of success at

inferring the true evolutionary history of the individuals.

Median-joining networks and Reduced Median networks (see Bandelt et al., 1999, 1995)

are implemented in the software Network found in http://www.fluxus-engineering.com/

sharenet.htm.

1.2.5 Maximum-Likelihood methods

The maximum likelihood approach for inferring phylogenies from sequence data was intro-

duced by Felsenstein (1983). Felsenstein’s method does not assume a constant evolutionary

rate, and it compares possible histories by assigning probabilities to them based on an evolu-

tionary model.

Maximum likelihood methods are powerful and flexible tools in model-based inference

and can give statistically reliable conclusions. Likelihood functions are known to be a con-

sistent and powerful basis for statistical inference. Their main drawback is the prohibitive

computational complexity, as well as the usual problem of assessing model-fitness. Currently

they are implemented through software packages such as PHYLIP (see http://evolution.

genetics.washington.edu/phylip.html).

1.2.6 Parsimonious methods

Recall that the parsimony assumption implies that if two sequences are one DNA change

apart, they are assumed to be one mutation apart. Even though parsimonious methods are

similar to distance-based methods, they are different in that parsimony infers the trees by

evaluating the possible mutations between the sequences. The overall objective of maximum

parsimony is to infer the tree with minimum total length, i.e., with the smallest total number

of evolutionary changes which explain the observed data. For example, see Figure 1.12 below.
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TATATATTAATTAAATAAAA

Figure 1.12: Given a dataset of sequences AAAA, AAAT, AATT, TATT, TATA, the unique
minimum possible tree is shown above.

In contrast to the parsimonious minimum-tree inferred in the figure, distance based meth-

ods would not be able to distinguish between pairs of sequences TATA-AATT, which are both

two mutations and two SNPs apart, and TATA-AAAA, which are four mutations apart but

still 2 SNPs apart.

Parsimonious methods can, under certain conditions, provide estimates of the true tree

which are as accurate as Maximum-Likelihood estimates; see Tuffley and Steel (1997). As

with distance methods, parsimonious inferences may lead to false conclusions if extensive

homoplasy is present, or deep divergence is observed, resulting in long unbranched lineages.

Nested Clade Analysis: forming the haplotype tree. Here we describe the parsimo-

nious method used by Templeton et al. (1992) in order to reconstruct the haplotype tree.

Their method is implemented in the software TCS (see Clement et al., 2000, 2002), available

at http://darwin.uvigo.es/software/tcs.html.

Templeton et al. (1992) define the parsimony assumption as the probability that any two

haplotypes which differ at j sites are actually j mutations apart, denoted by Pj . The aim is

to estimate Pj for all j and investigate the limits of parsimony. In order to test whether the

parsimony assumption is valid, the maximum parsimony probability of the data has to be

estimated. Templeton et al. (1992) suggest setting the acceptance level by convention at 95%.

This means that the assumption that the number of mutations leading from one haplotype to

another one is no more than the number of observed mutations (i.e., the number of different

nucleotides) will be rejected if the probability of the data based on that assumption is less

than 5%. If the assumption is rejected, then it is not possible to obtain accurate results.

An estimator for evaluating the limits of parsimony (meaning the smallest probability of

maximum parsimony being true) is constructed based on a simplified evolutionary model of

a fixed probability of mutations. Ideally, all sites will be parsimonious, although this is rarely

true in reality. In order to estimate the probability that the maximum parsimony assumption

is not true, consider the oldest polymorphic site, the index site (without specifying it). The

total probability that two haplotypes A and B differ at the index site, differ at j − 1 other

polymorphic sites, and share in common the presence of m cut sites (meaning that they have
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m letters in common in the DNA sequence under consideration) is approximated by:

L(j,m, q1) = (1 − q1) [1 − q1/b] (1 − q1)
2m × {2q1 [2 − q1(b + 1)/b]}j−1

×{1 − 2q1 [1 − q1/b]} =

= (2q1)
j−1(1 − q1)

2m+1 [1 − q1/b] × [2 − q1(b + 1)/b]j−1

×{1 − 2q1 [1 − q1/b]} . (1.3)

Here q1 is the probability of a nucleotide change in a single site of the two haplotypes A,

B since their respective lineages diverged at the index site, m is a constant based on the

similarity between the two haplotypes and b ∈ [1, 3] represents the transition bias (compared

to transversion), so that b = 3 if there is no bias and b = 1 if there is an extreme bias.

The value of b is taken to be 3 unless there is evidence to suggest otherwise from previous

experiments. A detailed explanation for the derivation of the above expression may be found

in Templeton et al. (1992).

Combining (1.3) with a uniform prior on q1, a standard Bayesian estimator of q1 is thus

q̂1 =

∫ 1
0 q1L(j,m, q1)dq1
∫ 1
0 L(j,m, q1)dq1

(1.4)

Now consider mutations that arose after the second oldest mutation associated with a different

site. The probability of these mutations in a block of r nucleotides is designated by q2.

Similarly qi represents the probability of mutations which arose after the jth oldest mutation

associated with a different site. An estimator for Pj , the probability that two haplotypes

differing at j sites but sharing m have a parsimonious relationship, is:

P̂j =

j
∏

i=1

(1 − q̂i). (1.5)

Having established a formula for estimating the parsimony limits between haplotypes,

Templeton et al. (1992) iteratively calculate it for pairs of haplotypes starting from 1-step

parsimony and moving on to 2-step and so on, until a complete haplotype tree is obtained.

The steps followed are described below.

Algorithm 1.2.3.

Step 1: Take j = 1 and thus estimate P1 using (1.4), (1.5), i.e., the probability of

parsimony of haplotype pairs that only differ in one site. If any of them is less than

95%, terminate the algorithm. If not, link up all haplotypes that differ by one site. In
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addition, it is often the case that other mutational changes are obvious, and so they can

be integrated into our 1-step network (see Lloyd and Calder, 1991).

In this step, homoplasies may be observed. However, even at homoplasy events, no

loops should be formed.

Step 2: Increase j by 1, and calculate Pj for all possible pairs. If parsimony is accepted,

unite the two (j − 1)-step haplotype networks through the two haplotypes that differ

by j steps to form a j-step network.

Repeat step 2 until all haplotypes are in a single connected graph, or in connected

subgraphs which between them do not necessarily have a parsimonious relationship. In

the case of a high probability of parsimony, a spanning tree is obtained which includes

all the observed haplotypes as nodes, and the process termninates. So far no loops

should be present, since only sites which are parsimony informative are considered. The

graph is not connected, move to step 4.

Step 3: Unite the separate networks identified in the previous step into a single haplo-

type tree, considering both parsimonious and non-parsimonious linkages. Let x be the

number of mutational steps involving sites that connect two networks under maximum

parsimony. Then, the probability that y or fewer of the x polymorphic site mutations

are non-parsimonious is:

y
∑

i=0

∑

I

qj(k)

x
∏

k=1

(

1 − qj(k)

)

(1.6)

where I refers to the set of all permutations of the x age ranks of the mutations. Here

only the total number of mutations that occurred beyond those required by parsimony

is of interest. As a result, consider all permutations of the age ranks (with which these

additional mutations are associated) that yield the same number of total additional

mutations. This is achieved by placing age ranks into two classes of size i and x − i,

and then summing over all permutations of the age ranks that result in these class

sizes. These alternative permutations are indicated by j(k), which refers to the kth

permutation in the set I. The first product in (1.6) is defined to be 1 when i = 0.

Find the minimum value of y such that (1.5) is greater than or equal to 0.95. The

set of plausible haplotype trees contains all connections between disjoint networks that

include the maximum parsimony solutions as well as any connections involving up to y

additional mutational steps.

This results in a set of both parsimonious and non-parsimonious networks. In this step,
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some loops may appear, implying that the tree is not unique. Although homoplasy is

frequently present, it is highly unlikely that evolution actually formed a full loop (Tem-

pleton et al., 1992). In the case of ambiguity of the haplotype network, when there is

no unique most likely tree, various criteria are used Crandall and Templeton (1993);

Templeton et al. (1992). For example, within a haplotype tree, rare haplotypes are

more likely to be leaf haplotypes, and common ones more likely to be interior. Also,

in the case of phylogeographic data, singleton haplotypes are more likely to be con-

nected to haplotypes from the same population as opposed to haplotypes from different

populations (see Templeton, 1998).

Approximate Bayesian Computation in population genetics

MCMC algorithms rely upon evaluation of the likelihood of the data given the model param-

eters. We showed how the peeling algorithm can be used to calculate the probability of a

coalescent tree based on a simple evolutionary model. However, when more complex models

are required, the calculation becomes intractable. To overcome intractable likelihoods, ABC

methods have been developed (see Section 1.5). Beaumont et al. (2002) describe how ABC

can be employed in population genetics using summary statistics based on the number of

segregating sites. An appropriate metric ρ is proposed, as well as criteria for choosing the

tolerance level ǫ. Beaumont et al. (2002) describe how a series of simulated statistics S′ from

different values of a model parameter φ can be used within a linear regression in order to

adjust the weighting of each φ based on the deviation of the simulated statistics S′ from the

true S, and to weaken the effect of the discrepancy between S and S′.

More recently, Beaumont (2003) developed an improved ABC algorithm where the simu-

lated statistics S′ are treated as an auxiliary parameter in the model and are updated within

MCMC in the usual way, preserving time-reversibility of the sampler.

1.3 Phenotypic clustering analysis

The objective of phenotypic clustering analysis is to identify nucleotide mutations which are

associated with a significant change in the phenotypic effect. We describe two methods of

phenotypic clustering analysis (see Subsections 1.3.1 and 1.3.2), both developed by Templeton

et al. based on a haplotype tree (inferred through the method described in the previous

Subsection 1.2.6).
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1.3.1 Nested clade analysis for phenotypic data

The first step of NCA is defining a nesting on the haplotype tree. Once the nested tree is

obtained, nested levels are tested for significant associations with phenotypic effects. The main

assumption in NCA is that if an undetected mutation causing a phenotypic effect occurred at

some point in the evolutionary history of the population, it would be embedded in the same

historical structure represented by the haplotype tree. In other words, even if some mutation

is not detected, the shape of the predicted haplotype tree would still be correct, and hence

the hidden mutation would only be present in the correct branch.

The nesting algorithm is as follows (see Templeton et al., 1987). The 0-step clades are

just the haplotypes represented as leaves in our haplotype tree. Given the n-step clades,

the (n + 1)-step clades are formed by taking the union of all n-step clades which can be

joined up by moving one mutational step back from the terminal node of each n-step clade.

Any internal n-step clades which are not included in one of the nested clades are nested

by considering nodes which are adjacent to a nested n-step clade as terminal. The process

continues recursively until all the nodes in the haplotype tree have been nested. The nesting

process is easier understood through an example; see Figure 1.13.

5
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7

8

4

3

21

6

1 3 2

6 5 7 8

Figure 1.13: An example of a haplotype tree, unnested (left) and nested (right). The pro-
cedure of nesting the tree on the left follows a number of steps. First we joined up leaves
to their neighbours. In the case where two leaves are joined to the same neighbour, the two
leaves are nested together (i.e., clade 1-3-2). So we obtain 5-6, 7-8 and 1-3-2 as our 1-step
clades. In effect, these 3 groups are collapsed onto only 1 node each, behaving like a leaf: we
now have 5, 7 and 3 representing the 3 groups (7, 8, 1, 2 were ‘chopped’). In the next step,
we join up 7 (and the nodes associated with it from the previous step) and 5 (likewise), and
we also join up 3 and 4 (as shown in diagram). Finally, our last step only involves joining
the whole thing together.

The nesting algorithm is not well defined; for example, see Figure 1.14. In these cases

Templeton and Sing (1993) provide extra criteria on how to proceed. If an unnested node
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Figure 1.14: An example of incomplete nesting. The procedure described above is not always
well-defined, as there are special cases which are ambiguous, or where nesting is not complete.
For example, in this figure, on the first step we nest 1-2 and 4-5, leaving 3 stranded (as the
next nesting step is just nesting the whole thing which has no practical use in terms of the
analysis

(or clade) represents an unobserved haplotype, then it is simply left ungrouped with no

complications. However, if it belongs to the sample, it needs to be grouped with another

clade. The following guidelines are suggested: first, the stranded clade should be grouped

with the nesting category that has the smallest sample size because such a grouping tends

to maximise statistical power. Secondly, if the smallest sample size is observed in more than

one alternative, then the stranded clade should be nested with the alternative to which it is

connected through a non-polymorphic site mutation.

Once the nested haplotype tree is formed, it is used to associate it with significant (or

insignificant) geographical or phenotypic data through the following algorithm. Starting

from level 1, at each level, an ANOVA is performed, and Residual Sum of Squares (RSS)

contributions are examined to identify clades which contribute most. To avoid the possibility

of “overspill”, where the effect of significant mutations carries through to different clades

and masks the true effect, significant clades are examined and compared using Bonferroni

comparisons.

1.3.2 Tree scanning

An improvement to Nested Clade Analysis is achieved with the tree-scanning method de-

scribed by Templeton et al. (2005), available at http://darwin.uvigo.es. In this approach,

all possible individual mutations are tested for significance, by separating the haplotype tree

into two parts which are treated as ANOVA groups. The mutations which exhibit the most

significant effect are then assumed to be associated with a change in the phenotype.

1.4 Phylogeographic analysis

There have been several studies on different aspects of phylogeographic analysis. Avise (2000)

present a detailed introduction to phylogeographic inference. A review of a few existing

methods is given by Pearse and Crandall (2004), Crandall and Templeton (1993), Knowles

and Maddison (2002) and Emerson et al. (2001), where various approaches to identification

of population structure, quantification of gene flow and inference of demographic history are
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described.

We present four main approaches. Firstly, methods which are not based on phylogenetic

inference are described in Subsection 1.4.1. We then describe how the change of various

genetic characteristics may be used in order to draw phylogeographic conclusions in Subsection

1.4.2. In Subsection 1.4.3 we describe how population subdivision can be investigated using

migration models. Finally, we describe the clustering approach of NCPA in Subsection 1.4.4.

1.4.1 Non phylogeny-based approaches

One of the main population clustering algorithms based on genotype data is presented by

Falush et al. (2003) and implemented in the software STRUCTURE available at http:

//pritch.bsd.uchicago.edu/structure.html. The method is based on treating the the

genotypes as categorical data, and inferring population clusters which show a better fit with

the data based on a simple model of population structure.

In their paper, Falush et al. (2003) define two possible population models, with and

without admixing respectively. Suppose genotypes of N diploid individuals for a total of L

loci are given. In the first model of no admixture, each individual is assumed to originate from

one of the K populations. Here X denotes the observed genes, Z the populations of origin of

individuals (which will be inferred) and P the unknown allele frequencies in the populations.

Specifically:

(x
(i,1)
l , x

(i,2)
l ) = genotype of the ith individual at the lth locus,

where i = 1, 2, . . . , N and l = 1, 2, . . . , L;

z(i) = population from which individual i originated;

pklj = frequency of allele j at locus l in population k,

where k = 1, 2, . . . ,K and j = 1, 2, . . . , Jl.

For a model which allows admixing, Falush et al. (2003) introduce a parameter Q which

represents the admixture proportions for each individual, so that

q
(i)
k = proportion of the genome of individuals i which originated from population k,

and the vector Z becomes

z
(i,a)
l = population of origin of allele copy x

(i,a)
l .

These define a multinomial-type likelihood which can be used to update the parameters of
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interest using an MCMC algorithm. The number of clusters K is allowed to vary, and an

approximation is proposed to overcome computational complexity caused by the K updates.

1.4.2 Using the change in characteristics along clines

In contrast to clustering approaches, there has been substantial evidence that global genetic

variation in humans is mainly clinal (see Handley et al., 2007). Clines represent the lin-

ear change along a character with increasing geographic distance. This implies that genetic

characteristics vary in a continuous way, rather than being governed by the extistence of

break-points in the geography or throughout history. As a result, clustering approaches are

not always appropriate, rather models which investigate the change in genetic characteristic

quantities along a cline can yield significant conclusions. For example, measuring the change

in genetic differentiation through FST , which represents the correlation between two ran-

domly selected genes from the population (see Wright, 1951) shows an approximately linear

relationship with respect to pairwise geographical distance between populations, as shown in

Linz et al. (2007).

Liu et al. (2006) use a stepping-stone model to analyze the worldwide demography of

human populations and investigate past colonization events. Their approach is based upon

the estimated coalescence times and their variation across the globe. Five parameters are

considered in the study: the time since the spread of modern humans, the growth rate in a

new (i.e., colonized) population, the migration rate, the maximum capacity of the initial and

all subsequent populations. The model provides an excellent fit to the data.

Handley et al. (2007) discuss the two different representations of human demography and

genetic variation, namely clusters and clines. However, although the genetic variation is

mostly clinal (with clines explaining more than 75% of the total FST ), there is evidence that

breakpoints exist, and a synthetic model is probably most appropriate. Introducing clustering

information to the model adds an extra 2% to the amount of genetic variance explained by

the model.

1.4.3 Migration models

A number of approaches have been developed to investigate migration patterns in subdivided

populations. They are mostly based on introducing a migration probability in the coalescent

process, so that the possible events are coalescence, mutation and migration. If an individual

migrates, a new tree is built afresh in the new location. This may be viewed as a single

tree, where each lineage has a specific colour representing the population it belongs to, with

coalescence events only allowed between individuals which belong to the same population
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(i.e., bear the same colour). Several migration models have been developed. Two of the main

ones are island models which assume equal rates of migration between any two subpopulations

(see Latter, 1973), and stepping-stone models where population structure is represented as

a set of subpopulations which can send and receive migrants to their left and right-hand

neighbours only (see Kimura and Weiss, 1964). Some more sophisticated models asusme that

migrations occur to the four nearest neighbouring populations as points on a lattice (lattice

migration models, see Matsuda et al., 1992), or take into account environmental factors which

encourage or discourage migration (see Ray et al., 2005).

Bahlo and Griffiths (2000) proposed an algorithm which De Iorio and Griffiths (2004b)

subsequently improved by taking an approach which relies on Importance Sampling (IS)

proposal distributions based on the diffusion-generator approximation of gene frequencies for

a single population, as presented by De Iorio and Griffiths (2004a).

1 4 7 2 3 6 5

Figure 1.15: A coalescent tree with population subdivision. Here, three migration events can
be identified, all originating from the green population to found the pink, yellow and light blue
populations.

A similar approach is used by Nielsen and Wakeley (2001) in order to construct a MCMC

algorithm for assessing whether an isolation or migration model shows a better fit with the

data.

1.4.4 Nested Clade Phylogeographic Analysis

Following the haplotype tree inference described in Subsection 1.2.6, NCPA was developed

by Templeton (1998) in order to draw phylogeographic conclusions. Three major geograph-

ical dispersal patterns that can cause a significant spatial/temporal association of haplotype

variation are considered (see Templeton, 1998; Avise et al., 1987; Ibrahim et al., 1996):

• Restricted gene flow occurs when haplotypes take time to spread geographically. This

implies that the spread of clades increases with time, and that descendant haplotypes
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have a geographical range smaller than their ancestors and remain within the area for

a number of generations. As a result, the geographical centres of all the clades nested

together are close under restricted gene flow, and nested clade distances exhibit similar

patterns.

• Past fragmentation occurs when environmental changes force a population to be

fragmented, i.e., split into subpopulations. It restricts the geographical distribution, so

that a clade distance cannot increase beyond the geographical range of the fragmented

subpopulations. In the case of old fragmentation events, clade distances which remain

constant will on average be longer than the average length of the branch in the tree.

• Finally, range expansion results in haplotypes with a geographically broad range, and

descendant haplotypes which arose post-expansion become increasingly distant from the

haplotypes in the original area.

NCPA follows similar steps to NCA, adapting the ANOVA with appropriate testing of

geographical clustering patterns. Given the haplotype tree, the nested clades are formed as

in Subsection 1.3.1. The geographical data are quantified in two ways: the clade distance Dc,

which represents the geographical range of a clade, and Dn, which measures how that partic-

ular clade is geographically distributed relative to its closest evolutionary clades (i.e., clades

in the same higher-level category). Specifically, Dc is the average distance of haplotypes from

that clade from the geographical centre of the clade. Dn is the average distance of a haplotype

form that clade to the geographical centre of all higher-level clades which contain the clade

in question. Both these distances are a measure of the spatial spread of a clade, where only

physically feasible paths are taken into account (i.e., routes which are possible for the species

to have taken).

Templeton (1998) suggest that associations between the clade distance and the nested

clade distance should be tested. The hypothesis of no association is tested by permutation

tests. The precise calculations of the algorithm (implemented in the software Geodis available

at http://darwin.uvigo.es/software/geodis.html, see Posada et al. 2000) were recently

published by Posada et al. (2006) and assessed in Templeton (2004). If the null hypothesis of

no association is rejected, precise phylogeographic events of restricted gene flow, fragmentation

and range expansion are predicted following a descriptive inference key (see Appendix in

Templeton, 1998).

Both NCA and NCPA suffer from a number of drawbacks, and have been frequently

criticized; see Petit (2008), Petit and Grivet (2002), Knowles (2004), Panchal (2007), Panchal

and Beaumont (2007). They rely upon choosing a unique tree at the first stage of the analysis,

and do not allow for the uncertainty of the tree to be taken into account at the subsequent
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steps. In addition, NCA involves ANOVA and as a result suffers from problems associated

with multiple testing and poor resolution in terms of identifying the level of clade at which

significant mutations occur (see Brooks et al., 2007). In many cases the criteria provided

can be interpreted in several ways, hence the results can be subjective; see Panchal (2007),

Panchal and Beaumont (2007). The phylogeographic hypotheses are based upon a descriptive

inference key, which does not explicitly take into account a rigorous probability model for

patterns of population dispersal. Finally, the permutation testing of NCPA has been shown

to lead to false conclusions based on simulations (see Petit, 2008).

1.5 Overview of Markov chain Monte Carlo

In this section we present a brief overview of MCMC, describing various MCMC samplers.

We introduce some convergence diagnostics which are used to assess whether the MCMC

samplers have reached equilibrium. We then discuss the limitations caused by intractable

likelihoods and how they can be addressed. Finally, we briefly present some alternatives to

MCMC.

MCMC methods are some of the main methods implemented in Bayesian inference in

order to estimate the posterior distribution of a set of parameters given the data. The key

idea behind MCMC is to simulate a sequence of datapoints by constructing a Markov chain

whose stationary distribution is the posterior distribution of our parameters given our data;

see Geyer (1991), Geyer (1992), Gilks et al. (1995), Brooks (1998), Green (2000), Robert and

Casella (2004), Green et al. (2003). It is based upon the ergodic theorem, which states that

if (Xn)n≥0 is an irreducible Markov chain on state space I with initial distribution λ and

transition matrix P , then for any bounded function f : I → R we have

P

(

1

n

n−1
∑

k=0

f(Xk) → f as n → ∞

)

= 1,

where

f =
∑

i∈I

πifi,

and π is the stationary distribution of the chain. Specifically, if the function f is the identity

function, so that f(Xk) = Xk, then

1

n

n
∑

k=0

Xk → Eπ{X}

almost surely; see Norris (1997). If, in addition, the Markov chain is aperiodic, then the
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chain converges to equilibrium almost surely. This means that

P (Xn = j) → πj as n → ∞ ∀ j.

Finally, if (Xn)n≥0 satisfies the detailed-balance equations

πipij = πjpji ∀i, j,

the chain is also time-reversible. This means that the chain (Yn)0≤n≤N = (XN−n)0≤n≤N

for some N is also a Markov chain, with transition matrix P and stationary distribution π.

In other words, the chain is the same whether we view it backwards or forwards in time.

Markov chain Monte Carlo is very useful in situations where the posterior distribution is

not exact or is intractable, and it allows inference about the joint posterior distribution of a

large number of parameters.

One of the main algorithms for constructing a chain with equilibrium distribution equal to

the posterior distribution of the parameters is the Metropolis-Hastings (MH) algorithm.

Suppose we wish to draw inferences about a parameter θ given data D. Then we define a

Markov chain which moves from θ(t) to θ(t+1) according to the following transition kernel.

We propose a θ′ using a proposal distribution q(θ(t) → θ′). The proposed state is accepted

(implying that θ(t+1) = θ′) with probability α = min(1, A) where

A =
q(θ′ → θ(t))

q(θ(t) → θ′)

π(θ′ | D)

π(θ(t) | D)

If the proposed value is rejected, then we set θ(t+1) = θ(t). The distribution q is virtually

arbitary, provided it ensures irreducibility and aperiodicity of the chain, but it affects the

speed at which the chain reaches equilibrium. It is easy to check that the MH chain satisfies

the detailed-balance equations and thus is time-reversible.

Using Bayes’ theorem,

π(θ | D) =
f(D | θ)p(θ)

P(D)
,

where p(θ) is the prior distribution for θ, and A becomes

A =
q(θ′ → θ(t))

q(θ(t) → θ′)

f(D | θ′)

f(D | θ(t))

p(θ′)

p(θ(t))

There are a few special cases of the MH algorithm. For example, if q(θ → θ′) is chosen to

be precisely the posterior distribution q(θ → θ′) = π(θ′|D), then the acceptance probability

becomes 1 (this is called a Gibbs’ sampler). Also, if the transition kernel q(θ → θ′) is
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symmetric, i.e., q(θ → θ′) = q(θ′ → θ), then the acceptance probability becomes

A =
f(D | θ′)

f(D | θ(t))

p(θ′)

p(θ(t))
,

called a random walk Metropolis algorithm.

It is sometimes the case that the dimension of the parameter θ is not known. This implies

that, from iteration to iteration, the size of the parameter space Θ changes. In those cases,

Reversible Jump (RJ) MCMC is implemented; see Green (1995). Suppose we propose to

move from a point θ(t) ∈ Θ(t) to a point θ′ ∈ Θ′. Then let g be the dimension-matching map

g(θ(t)) = θ′. The acceptance probability becomes α = min(1, A) where

A =
q(θ′ → θ(t))

q(θ(t) → θ′)

π(θ′ | D)

π(θ(t) | D)

∣

∣

∣

∣

∣

∂g(θ(t))

∂θ(t)

∣

∣

∣

∣

∣

,

where the matrix Jij = ∂g(θ)i

∂θj
is the Jacobian. RJMCMC preserves reversibility of the chain,

and ensures that the stationary distribution is indeed the posterior distribution of the param-

eters.

An MCMC sampler can never simulate an infinite number of observations. However, in

order to obtain an accurate estimate of the posterior distribution of the parameter θ, it is

essential to investigate whether the Markov chain has reached equilibrium. Although it is

impossible to find a test which can provide a definitive result about whether the chain has

converged to equilibrium, a number of diagnostics have been developed which enable us to

assess the convergence (see Brooks and Roberts, 1998; Cowles and Carlin, 1996). In simple

cases, observation of the trace plots of the chain for each parameter may suggest convergence,

if the samples seem uncorrelated and move ”adequately” around the parameter space.

One of the methods recommended by Brooks and Roberts (1998) was developed by Gelman

and Rubin (1992) and later extended by Brooks and Gelman (1998), and is implemented

within the coda package in R. It is based on running several independent chains with starting

points which are overdispersed in terms of the posterior distribution of each parameter. It

provides estimates of how much the convergence can potentially be improved by running the

chain for longer, called Potential Scale Reduction Factors (PSRF). When the PSRF is

close to one, the chain is assumed to have converged. Brooks and Gelman (1998) extended this

method to take into account more information regarding PSRFs, suggesting that a graphical

approach is more informative. The plots show whether the PSRF has really converged, or

whether it is still fluctuating.

In practice, and especially in biological problems, it is frequently the case that the likeli-

hood function f(D | θ) is intractable or computationally expensive. Recently, Approximate
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Bayesian Computation (ABC) methods have been developed (see Marjoram et al., 2003),

which may be used within MCMC. The main idea is that instead of calculating f(D | θ), we

simulate D′ | θ, so that the acceptance probability becomes

A =
q(θ′ → θ(t))

q(θ(t) → θ′)

p(θ′)

p(θ(t))
1{D=D′},

and it is easy to check that this chain also has stationary distribution equal to the posterior

distribution of the parameters. When a sufficient statistic S is available, the MH ratio can

be reduced to

A =
q(θ′ → θ(t))

q(θ(t) → θ′)

p(θ′)

p(θ(t))
1{S=S′}.

Notably, the indicator function 1 can only be used for discrete data. For continuous data, it

can be substituted by 1{ρ(D,D′)<ǫ}, where ρ is a distance metric and ǫ is a small value (which

is not necessarily fixed). The disadvantage of such methods is that they may naturally lead

to very high rejection rates. Moreover, for continuous data, the use of the distance metric ρ

and a threshold ǫ introduces a bias to the acceptance probability and hence to the estimates

of the analysis. A number of variants of ABC have been suggested to improve the efficiency

and accuracy of the algorithm in population genetics (see Beaumont et al., 2002; Beaumont,

2003; Beerli and Felsenstein, 2001; O’Neill et al., 2000).

An alternative to MCMC are Sequential Monte Carlo samplers (Doucet et al., 2006),

which are based on the idea of Importance Sampling (IS) (see Ripley, 1987). IS is used

when sampling from the posterior distribution π(θ | D) is not possible, but we can draw n

values of θ from a distribution q(θ(t)) which is called the importance distribution. We then

calculate

θ̂ =
n
∑

t=1

w(t)θ(t),

where w(t) = π(θ(t) | D)

q(θ(t))
are the importance weights. It is easy to check that θ′ is an unbiased

estimate of θ | D. The challenge here is to select an importance distribution which minimizes

the variance of the estimator, for example by using a distribution which is “similar” to the

target posterior distribution. SMC methods are based on a sequential implementation of the

IS algorithm to achieve efficient and accurate estimators.
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A Bayesian approach to nesting

We now describe a Markov chain Monte Carlo method of analysing sequence data in which

both steps of NCA (inferring the haplotype tree and identifying significant clusters) are car-

ried out simultaneously. Our holistic approach ensures that the uncertainty of the tree is

propagated through to the phenotypic/phylogeographic analysis. Furthermore, it allows the

joint posterior distribution of the parameters to be quantitatively assessed, and offers itself

to modifications and additions to the mutation and clustering models assumed.

In this Chapter we consider the simple case where the exact history of the region of the

DNA sequences under study is known, and it is assumed that no homoplasy is involved. This

new method is an alternative to the last step of NCA, namely the one where nested clades

are inferred and tested for significance.

In Section 2.1 we develop an algorithm for analysing one-dimensional phenotypic data,

aiming to identify SNPs which are correlated with a significant change in the phenotypic

effect. To this end, we fix the number of significant mutations, and propose an appropriate

model for the data so as to apply a clustering algorithm. We describe a MCMC sampler

in order to draw inferences about the distribution parameters based on the clustering model

and the known haplotype tree. This method is extended in Section 2.2 to phenotypic data

of two or more dimensions, where a Reversible-Jump MCMC algorithm is constructed that

identifies the specific dimensions (representing phenotypic characteristics) which show the

highest significant change with mutations. The phenotypic clustering model is modified in

Section 2.3 to fit phylogeographic data, so that geographical clusters can be identified, and

we propose an adaptive MCMC technique to ensure convergence of the chains. In Section

2.4 we generalise our results for any number of clusters, by proposing an adaptive Reversible-

Jump MCMC algorithm which draws inferences about the clustering of the data, allowing

the number of clusters to vary.
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2.1 Phenotypic clustering for one-dimensional traits

We are given a set of DNA sequences along with a measurement of some characteristic trait

(i.e., phenotype) for each individual. It is assumed that the precise mutational history of the

sampled sequences is known and that the sequences can be collapsed onto haplotypes. This

implies that each haplotype may be observed more than once, with a different phenotypic

measurement each time. The objective of the analysis is to identify whether one (or more)

of the mutations in the sample of DNA sequences is associated with a significant change in

the phenotypic trait. This is equilavent to a simple clustering problem, where clusterings are

constrained so that they are consistent with the known haplotype tree. Since we have assumed

that the exact mutational history is known, this reduces to identifying which mutations from

a fixed set define the best partition of the phenotypic data.

If a mutation is associated with a change in the characteristic trait, then any individuals

carrying haplotypes with that mutation will have significantly different phenotype values to

individuals that do not. Accordingly, K significant mutations will split the data into K + 1

significantly different hard clusters defined on haplotypes. A coloured haplotype tree, where

each node is a haplotype and each edge a mutation, is well suited to illustrate a clustering

structure within this setting. The colour of each node denotes the phenotypic cluster of each

haplotype, and the size of each node shows the number of times the respective haplotype was

observed in the sample. For two significant mutations the corresponding haplotype tree may

look like Figure 2.1 below.

Figure 2.1: Example of a haplotype tree as defined in the text under a clustering structure of
two significant mutations. The black dots represent unsampled (but known) haplotypes. Here
the pink star-like haplotype is the most common one as indicated by the size of the circle.
Three population clusters are identified: pink, green and light blue. There are two mutations
causing a significant effect in the phenotype: the one between the pink and green nodes, and
the one between green and light blue nodes.

Provided the true haplotype tree is known, identifying significant mutations is equivalent

to partitioning the data into clusters which are defined by K edges on the tree. Since sequences

are collapsed onto haplotypes, we note that observations from the same haplotype are always
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clustered together.

Formally, we have a sample of size N of some phenotypic effect, which corresponds to

a sample of Nh ≤ N haplotypes. We wish to infer mutations that are associated with a

significant phenotypic change; in this section we assume that there exist precisely K of them,

where K is known. These mutations are represented by a set of K edges on the haplotype

tree, so that the resulting K +1 clusters are significantly different in terms of the distribution

of the characteristic trait.

We introduce the following notation. We are given phenotypic data Y = {Yij} totalling

N datapoints, so that Yij represents the jth datapoint of haplotype i. We denote the set

of distinct significant edges of the known haplotype tree by e, representing the mutations

associated with a significant change in the phenotype. Here yk denotes the sample mean of

cluster k and nk the sample size of cluster k, so that
∑

nk = N , the total sample size. Finally,

we define an allocation variable c, so that the jth datapoint of haplotype i belongs to cluster

cij . Here cij for each i is the same for all j, since all observations from the same haplotype

are forced to belong to the same cluster. This implies that nk =
∑

j,l 1{cjl=k}.

Throughout this thesis we assume that our data are normally distributed because all

datasets analyzed here are approximately normally distributed. In principle the method can

be applied to any distribution by virtue of our computational, sample-based approach. In

this section we consider the case where the phenotypic effect is one-dimensional and normally

distributed, implying that the distribution-defining parameters of the K+1 clusters are simply

µ1, µ2, . . . , µK+1 and σ2
1 , σ2

2 . . . , σ2
K+1 The data are transformed so that the sample mean is

0 and sample variance is 1, without loss of information.

Specifically, we assume the following distributions (here k denotes the cluster):

σ−2
k ∼G(a, b)

µk ∼N (0, σ2
µ)

ek ∼U{1, . . . , Nh − 1} without replacement

Yij |e,µ,σ2 ∼N (µcij , σ
2cij),

(2.1)

where G, N , U denote the Gamma, Normal and Uniform distribution respectively. In the

absence of specific prior information, a and b are taken small so that the prior distribution of

σ−2
k has a large variance, and σ2

µ is set large. The hierarchical structure of the parameters in

Model (2.1) is summarized in Figure 2.2.

Note that the conjugate prior for µk is actually N (0, ασ2
k), where α is a constant. This

prior implies that a small variance of the phenotype within each cluster indicates a small

variance between clusters, which imposes an unrealistic constraint on the prior belief for µk
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(see Garthwaite and Al-Awadhi, 2001). As a result, we use an independent prior N (0, σ2
µ).

a bσµ

µ σ2

e

c

Y

(a)

Y

a bσµ

µ σ2

e

c

(b)

Figure 2.2: Here we represent the parameters of our model as a Directed Acyclic Graph
(DAG) on the left, and a conditional independence graph on the right. A DAG is interpreted
as follows (see Gilks et al., 1995): for any node v, conditioning on the value of its parent nodes
(i.e., the nodes which have an arrow directed towards v), means that no other nodes would
be informative about v except its descendants. We adhere to the convention of representing
fixed or observed quantities by squares, and circles for parameters which are estimated. The
conditional independence graph is obtained by “moralising” (i.e., connecting) each node’s
parents. This graph will be augmented in later sections to demonstrate how parameters are
added to the hierarchical parameter structure of our algorithms.

From the given distributions we obtain the following conditionals:

σ2
k | Y,e ∼ IG

(

a +
nk

2
, b +

∑

j,l 1{cjl=k} (yjl − yk)
2

2

)

, (2.2)

µk | Y,e, τ ∼ N

(

yk τnk

τnk + 1
σ2

µ

,

(

τnk +
1

σ2
µ

)−1
)

, (2.3)

σ2
k | Y,e,µ ∼ IG

(

a +
nk

2
,

∑

j,l 1{cjl=k} (yjl − µk)
2

2
+ b

)

. (2.4)

We construct an MCMC sampler which explores the space of possible clusterings, drawing

inferences about the means of each cluster as well as the underlying common variance. Notably

the cluster means and variances are only relevant to a specific clustering: for two different

clusterings, the set of cluster means of one is nonsensical in relation to the other. This

implies that the clustering cannot be updated without updating the means and variances

simultaneously. We denote by µ
(t)
i , i = 1, . . . ,K + 1, the value of the mean of the ith cluster

at iteration t, and similarly for the rest of the parameters.
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We want to construct a MCMC sampler with target distribution

π(e,µ,σ2 | Y) ∝ f(Y | e,µ,σ2)p(µ)p(σ2)p(e). (2.5)

Inference about (2.5) allows us to identify branches which are significantly different to each

other in terms of the phenotype of interest, yielding the correspondence with NCA suggested

by Templeton et al. (1987). Templeton uses nested clades in order to partition the data,

and assesses their significance by using analysis of variance (ANOVA). Here we assess the

significance of each clustering according to its posterior distribution.

We describe the MCMC algorithm in detail. The chain is initialized by generating a set

of significant edges e(0), K + 1 different means µ
(0)
k and variances σ2

k
(0)

, all from the prior

distribution. We then iterate through the following steps1.

A1a: First we update e. We randomly pick one of the K edges e
(t)
k uniformly from our

haplotype tree (not allowing edges which are already in e(t)). We form the clusters

defined by the new set of edges, and calculate their means yk and their sample sizes nk.

A1b: We propose K + 1 variances σ2
k
′

from the conditional distribution σ2
k | Y,e′ given in

Equation (2.2).

A1c: We propose K + 1 means µ′
k from µk | Y,e′, σ2

k
′
given in Equation (2.3).

A1d: Compute

AA =
π(e′,µ′,σ2′ | Y)

π(e,µ,σ2 | Y)

q(µ′ → µ)

q(µ → µ′)

q(e′ → e)

q(e → e′)

q(σ2′ → σ2)

q(σ2 → σ2′)

=
f(Y |e′,µ′,σ2′)

f(Y |e,µ,σ2)

p(µ′)

p(µ)

p(σ2′)

p(σ2)

π(µ |e,σ2)

π(µ′ |e′,σ2′)

π(σ2 | Y,e)

π(σ2′ | Y,e′)
,

where

p(e′k) =
1

Nh − 1
,

p(σ2′
k) =

σ2
k
′a−1

ba exp
(

−bσ2′
k

)

Γ(a)
,

p(µk) =
1

√

2πσ2
b

exp

(

−
µ2

k

2σ2
b

)

,

1Throughout this thesis, MCMC steps are marked by an uppercase letter representing the type of the anal-
ysis (for example phenotypic or phylogeographic), a number corresponding to a distinct Metropolis-Hastings
update, and a lowercase letter indicating the proposal step within each MH update.
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and

f(Y | e′,µ′,σ′) =
∏

i,l

√

σ2′
k

2π
exp

(

−
σ2′

k(yil − µ′
cil

)2

2

)

,

π(µ′ |e′,σ2′) =
K+1
∏

k=1

√

nkσ2′
k + 1

σ2
µ

2π
exp



−
1

2

(

µ′
k −

σ2′
knky

′
k

σ2′
kn

′
k + 1/σ2

µ

)2
(

σ2′
kn

′
k +

1

σ2
µ

)



 ,

π(σ2′ | Y,e′) =

K+1
∏

k=1

σ2a+
nk
2
−1

k

(

P

(yjl−yk)
2

2 + b

)a+
nk
2

Γ(a + nk
2 )

exp

{

−

(

∑

(yjl − yk)
2

2
+ b

)

σ2
k

}

.

With probability min (1, AA) we accept

(e(t+1), µ′′,σ′′) = (e′, µ′,σ′),

and otherwise

(e(t+1), µ′′,σ′′) = (e(t), µ(t),σ(t)).

A2: We then generate σ
(t+1)
k for each k from the posterior conditional

σ2
k | Y,e(t+1), µ′′

k

given in Equation (2.4), and accept with probability 1 as in standard Gibbs sampler;

see Brooks 1998.

A3: Finally, similarly to step A2, we generate µ(t+1) from

µk | Y,e(t+1),σ(t+1),

and return to step A1.

The chain described above is aperiodic since there is a non-zero probability of staying at the

same state. In addition, it is irreducible, since it is always possible to move from any clustering

e1 to any other e2 in a maximum of K iterations by changing each of the edges in e1 to the

corresponding ones in e2 at each iteration, and using the fact that the proposal distributions

of µ and σ2 have infinite support. Hence, the stationary distribution of the chain is indeed the

target distribution (2.5) of the parameters of interest, and the chain converges to equilibrium

as t → ∞ almost surely (see Norris, 1997).

We continue with some technical and statistical issues.
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1. As with all MCMC clustering methods, an inherent label-switching issue arises here

because of the permutational symmetry of the cluster parameters. Clusters have to be

labelled consistently from iteration to iteration in order to draw conclusions about the

parameters of each one. For example, if there are three clusters with means (−1, 0, 1) at

one iteration and (0, 0.5, 1) (subject to permutation) at the next, it is not clear how to

relate one to the next. To overcome label-switching we employ two approaches, proposed

by Stephens (2000) and Scott and Wang (2006) respectively, presented in Appendix A.

For computational efficiency the preferred method is by Scott and Wang (2006), which

relies upon inferring the optimal labelling at each iteration after burn-in by relating it

to the maximum likelihood estimate of clusterings inferred during burn-in.

2. In problems involving very large trees, an efficient proposal for e is essential, since

most clusterings are highly improbable. An alternative proposal for e at Step A1a is

to propose an edge uniformly from the edges adjacent (i.e., ones that share one of the

endpoints) to the current ones.

The disadvantage of such a proposal kernal is that the chain moves slowly to and

from distant regions in the graph and may get stuck in local optima. Although it is

often beneficial, it should not be applied without strictly monitoring convergence to

investigate multimodality of the clusterings.

It is also possible to update all K edges simultaneously, but this leads to a very low

acceptance rate, although it may improve mixing and perform better with multimodal

clustering distributions.

3. If a cluster is empty, then we treat it as not containing any information, as we would

prior to the data. Although such clusters are physically nonsensical, we will see in later

sections (see Sections 2.4 and 3.9) that it is important to allow them.

haplotype
unsampled

Figure 2.3: An unsampled haplotype of degree two.
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4. Statistically more important, in a situation like Figure 2.3 where an unsampled hap-

lotype is connected to only two other haplotypes (i.e., it has degree two), proposing

either of the two edges to be significant will have exactly the same effect in terms of the

clustering. It is not possible to distinguish between the two mutations involved, and

the results of our posterior probability should be interpreted as the sum of the posterior

masses of the two significant edges.

5. If a mutation which is subsequently reversed by back-mutation is suspected to be causal,

then a move proposing that it divides the data into two different clusters naturally

implies that, in fact, the data should be split into three clusters. This means that the

dimension of the parameter space may vary from iteration to iteration. Especially when

the number of causal mutations is assumed to be greater than 1, the complexity of the

analysis may thus increase greatly. However, when merely associations are investigated,

this is not necessary: even in the case where a mutation appears at more than one edge

in the mutational tree, the two edges are analyzed independently.

4

13

7

10

11

12

9

5 6

8

3 1

2

Figure 2.4: The tree topology and clustering used in this example
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Example: simulated dataset We use the following simulated dataset S1 to demonstrate

our algorithm. We consider a dataset of 13 haplotypes (shown in Figure 2.4), each of which

appears 5 times in the sample. We pick two mutations to be associated with a significant

change in a one-dimensional phenotype, and generate phenotypic data for each haplotype.

Specifically, we ensure that the mutations that occurred between haplotypes 1-13 and 2-4 are

significant, so that there are three clusters (depicted in green, light blue and pink in Figure

2.4). Observations from the light blue cluster are normally distributed with N (0, 1), the pink

cluster N (−1, 1) and the green cluster N (1, 1).

We specified the priors in Equation (2.1), with a = b = 0.0001 and σ2
b = 1000. We ran our

analysis using a uniform significant edge proposal starting from two different starting points

for 5000 steps, and discarded the first 500 as burn-in. The maximum a posteriori (MAP)

estimate of the clustering coincides with the true one for both chains, with posterior mass

> 0.998. The estimated cluster means and variances are given in Table 2.1.

(µ1, σ
2
1) (µ2, σ

2
2) (µ3, σ

2
3)

(0.22,0.54) (0.77,0.25) (-1.25,0.56)

Table 2.1: Estimated means and variances for the clusters with distributions N (0, 1),
N (1, 1), N (−1, 1) of dataset S1. The estimates coincide with the sample means and vari-
ances of the correct clusters.

We investigate the rate of convergence of the sampled Markov chains. Considering the

trace and density plots of the 6 parameters shown in Figure 2.5, the mixing for both chains

seems very good and the estimates for the posterior densities for the two seeds match very

well. The acceptance rate with a uniform proposal distribution was 0.06. In this case it is

clear that convergence is almost guaranteed since there are only
(13

2

)

= 78 different clusterings

to be assessed within the MCMC.

Figure 2.6 shows the Gelman and Rubin Potential Scale Reduction Factor plots for S1,

suggesting that our chain has indeed converged; see Gelman and Rubin (1992); Brooks and

Gelman (1998).

Using an adjacent proposal for the significant edges e we repeated the same algorithm for

the same dataset S1. The results are illustrated in Figure 2.7. In this case the acceptance

rate rose to 0.10, and the speed of convergence was improved. This is also suggested by the

Brooks-Gelman plot in Figure 2.8.

To investigate the accuracy of our analysis when the data are less clearly structured, we

repeated the experiment by generating dataset S2 from N (0, 16), N (−1, 16) and N (1, 16). We

present the corresponding trace plots in Figure 2.9. Note that, due to the increased variance,

a larger number of iterations was required, here 50,000. Although our method identified the
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Figure 2.5: Trace and density plots for the 6 parameters of the simulated dataset S1, using
a uniform proposal. The burn-in period is not shown: this is because during burn-in, clusters
are unidentifiable, because the labelling is initiated post burn-in. The trace plots are thinned
by a factor of 5.

correct mutations, observation of the density plots shows an unusual shape for the posterior

distribution of µ1 and σ2
3 , by a slight “bump” on the curves. This is because in this case, the

clustering with second highest posterior mass (probability 0.05 vs 0.94 of the MAP estimate)

causes multimodality in the distribution of the means.
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Figure 2.6: Gelman and Rubin potential scale reduction factors using a uniform proposal
for dataset S1. All shrink factors are below 1.1, suggesting that our chains have reached
convergence.
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Figure 2.7: Trace and density plots for the 6 parameters, using an adjacent proposal for
dataset S1. The trace plots are thinned by a factor of 10.
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Figure 2.8: Gelman and Rubin potential scale reduction factors for the adjacent proposal
for dataset S1. By comparing the values of the shrink factors to the ones obtained using a
uniform proposal, we see that the adjacent proposal results in a faster convergence.
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Figure 2.9: Trace and density plots for normally distributed data with variance 4 using a
uniform proposal for dataset S2. The trace plots are thinned by a factor of 40. Notice the
“bump” of the first and last estimated density plots, indicating multimodality of the parame-
ters.
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2.2 Phenotypic clustering for multi-dimensional traits

We now extend the analysis described in the previous section so that it is applicable to d-

dimensional phenotypic data. As before, our objective is to identify mutations which are

associated with a significant change in the phenotype, and we assume that the haplotype tree

and the number of significant mutations K are known.

Phenotypic datasets often include a large number of measurements, many of which are

independent of the mutations we are studying. Thus, we want to modify our method so

that it is also possible to identify the specific measurements which show the most significant

correlations with the mutations considered.

In order to allow the number of dimensions to vary, we introduce a binary variable zi, i =

1, . . . , d which is 1 if that dimension is taken into account and 0 otherwise. Here we denote

|z| the magnitude of z, equal to the number of non-zero elements. This approach is presented

by Tadesse et al. (2005).

Intuitively, the aim is to find which phenotypic traits maximise the ratio of the likelihood

of the data before and after the clustering. The equation

P(Y | z, c,µ,Σ)

P(Y | z,µ,Σ)
=

P(c | Y, z,µ,Σ)

P(c | z,µ,Σ)
∝ P(c | Y, z,µ,Σ)

implies that we are interested in the posterior distribution of the clustering given the data.

Note for the above identity that we are assuming that c has a uniform prior distribution.

As before, the data are transformed so that the sample mean of each component is 0 and

the variance of each component is Id, unless there is prior information suggesting otherwise.

For each cluster k the Model (2.1) thus extends to

zi ∼ B(1, 0.5) i = 1, . . . , d,

Y |e,µ,Σ ∼ N|z|(µi,Σi),

ek ∼ U{1, . . . , Nh} without replacement

µk |z,Σk ∼ N|z| (0, V ) ,

Σk ∼ IW(γ,Ψ),

γ |z ∼ U{1, . . . , g} γ > |z| + 1,

(2.6)

where IW denotes the Inverse Wishart distribution, V is set large and γ, g small to allow for

vague priors. Note here that µk | z and Σk | z have dimension |z| and |z| × |z| respectively. In

other words, the vectors and matrices in Model (2.6) change size depending on z, requiring a

RJMCMC algorithm. The parameter structure of the hierarchical Model 2.6 is summarized
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graphically in Figure 2.10.

Generalizing to d > 1 dimensions requires adaptation of the conjugate prior for the co-

variance matrices. A natural conjugate choice is the Inverse Wishart distribution, which is

a generalization of the Gamma distribution in Model (2.1). However, it incurs some serious

drawbacks. The prior variance of Σ decreases as the degrees of freedom γ increase, but is

required to be a positive integer and cannot be arbitrarily small. This implies that we cannot

have a prior as vague as G(0.0001, 0.0001) as we did in the one-dimensional case; in fact it

is required that γ > |z| + 1, otherwise the prior becomes improper (but may still be usable).

This means that for a moderately large d, the prior distribution for Σk has a very small vari-

ance, which is unrealistic since this is merely based on a statistical constraint rather than any

prior knowledge of the data. As a result, it is often beneficial to assume a Generalized Inverse

Wishart (GIW); see Garthwaite and Al-Awadhi (2001). Alternatively, if the different phe-

notypic measurements can be assumed to be independent, independent Gamma distributions

can be assumed for each component (in other words, the covariance matrices are diagonal).

The hyperparameter g is introduced to reduce the sensitivity of our results on the prior

of Σk by letting the data choose an appropriate prior (see Richardson and Green, 1997).

Different values of γ will dictate larger or smaller values for K. A prior which favours clusters

with smaller variance will lead to a larger K being chosen, so that the data can be split into

many small clusters. We will see in Section 2.4 that the posterior estimate of K is highly

sensitive to the choice of γ. We wish to reduce this dependence, and hence introduce the

hyperparameter.

From the distributions in Model 2.6 we obtain

Σk |z,Y,e, γ ∼ IWz



nk + γ,Ψ +
∑

j,l

I{cjl=k}yjly
T
jl − nkyiy

T
k



 , (2.7)

µk |z,Y,e,Σi ∼ N z

d

(

Σ−1
k ny

V −1 + nΣ−1
k

,
1

V −1 + nΣ−1
k

)

, (2.8)

Σk |z,Y,e, γ,µ ∼ IWz



N + γ,Ψ +
∑

j,l

I{cjl=k}(yjl − µk)
T (yjl − µk)



 . (2.9)

We want to construct a MCMC sampler with target distribution

π(z,e, γ,Σ,µ | Y) ∝ f(Y |z,e,Σ,µ)p(K)p(µ |z)p(γ |z)p(Σ |z, γ)p(e).

The MCMC algorithm takes the following form. The chain is initialized by generating z(0),

e(0), γ(0), µ(0), Σ(0) from their prior distributions. Subsequently iterate the steps described
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Figure 2.10: The DAG for the phenotypic clustering of multi-dimensional traits, adapted
for more dimensions. Here the black parameters are the same as in the one-dimensional case;
new parameters are shown in pink.

below.

B1: Propose z′, increasing or decreasing |z| by 1. Note that |z| must be positive and cannot

exceed d.

B2a: Propose a value for γ from its prior U{|z| + 2, . . . , g} and conditional on γ > |z| + 1.

B2b: Update e in the same way as in the one-dimensional case in Step A1a. Pick one of

the K edges ei at random and change it to another one randomly from the tree with a

uniform proposal. Identify the K + 1 clusters and calculate their sizes nk and sample

means yk.

B2c: Propose a set of new covariance matrices Σ′
k from the distribution Σk |z

′,Y,e′, γ′ given

in Equation (2.7).

B2d: Propose µ′
k from µk |z

′,Y,e′,Σ′
k above (Equation 2.8).

B2e: The acceptance probability is given by min(1, AB), where

AB =
π(z′,e′, γ′,µ′,Σ′ | Y)

π(z,e, γ,µ,Σ | Y)

q(z′ → z)

q(z → z′)

q(γ′ → γ)

q(γ → γ′)

q(µ′ → µ)

q(µ → µ′)

q(Σ′ → Σ)

q(Σ → Σ′)

q(e′ → e)

q(e → e′)

=
f(Y |z′,e′, γ′,µ′,Σ′)

f(Y |z,e, γ,µ,Σ)

p(µ′ |z′)

p(µ |z)

p(Σ′ |z′, γ′)

p(Σ |z, γ)

q(z′ → z)

q(z → z′)

×
π(µ |z,e,Σ)

π(µ′ |z′,e′,Σ′)

π(Σ |z,Y,e)

π(Σ′ |z′,Y,e′)
|J |
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Here

p(z) =
1

2d

p(e) =

K
∏

i=1

1

N − i + 1
,

p(γ) =
1

g

q(z → z′) = 0.5 + 0.5 × 1{|z|=0} + 0.5 × 1{|z|=d} (2.10)

p(µ |z) =

K+1
∏

k=1

(2π)−d/2 × |V |−1/2 exp

(

−
1

2
µT

k |V |−1
µk

)

,

p(Σ |z, γ) =
K+1
∏

k=1

(

2γd/2 × πd(d−1)/4 ×
d
∏

k=1

Γ

(

γ + 1 − k

2

)

)−1

× |Ψ|γ/2

×|Σk|
(d+γ+1)/2 × exp

(

−
1

2
tr
(

ΨΣ−1
k

)

)

,

and it can be calculated that

f(Y | z, e,µ, Σ) =
Y

i,l

(2π)−d/2 |Σcil
|−1/2 exp

„

−
1

2

`

yil − µcil

´T
Σ−1

cil

`

yil − µcil

´

«

,

π(µk | z, e,Σ) =
Y

i,j

1{cij=k} (2π)−d/2 ×

„

1

V −1 + nkΣ−1
k

«−1/2

×

exp

0

@−
1

2

 

µk −
nkyijΣ

−1
k

V −1 + nkΣ−1
k

!T
„

1

V −1 + nkΣ−1
k

«−1
 

µk −
nkyijΣ

−1
k

V −1 + nkΣ−1
k

!

1

A ,

π(Σk | z,Y, e, γ) =

 

2(nk+γ)d/2 × π
d(d−1)/4

d
Y

i=1

Γ

„

ni + γ + 1 − i

2

«

!−1

×|S|(nk+γ)/2 × |Σk|
−(nk+γ+d+1)/2 × exp

„

−
1

2
tr
`

SΣ−1
k

´

«

, where

S = Ψ +
Y

i,j

1{cij=k}yijy
T
ij − niyky

T
k .

Finally, the determinant of the Jacobian in this case is equal to one, since almost

all parameters are generated afresh for z′, independent of previous values. The only

exception is e, of which only one entry is changed. In other words, the move can be

expressed as a set of independent moves (and leaving some parameters unchanged),

yielding a Jacobian which is equal to the identity matrix with determinant |J | = 1; see

Green (1995).

We calculate the ratio AB and accept the step with probability min (1, AB) .
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If we accept, we set

(z(t+1),e(t+1), γ(t+1),µ′′,Σ′′) = (z′,e′, γ′,µ′,Σ′),

otherwise we set

(z(t+1),e(t+1), γ(t+1),µ′′,Σ′′) = (z(t),e(t), γ(t),µ(t),Σ(t)),

B3: We then generate Σ(t+1) from the posterior conditional given in (2.9)

Σ |z(t+1),Y,e(t+1), γ(t+1),µ′′

(and accept with probability one as in standard Gibbs sampler).

B4: Lastly, same as step 2, we generate µ(t+1) from

µ |z(t+1),Y,e(t+1),Σ(t+1).

B5 Repeat steps B2-B4, keeping the dimension indicator z constant, then go back to step

B1.

As in the previous section, this chain is irreducible and aperiodic, since the clustering

moves are the same and all proposal distributions ensure support over the whole parameter

space.

Example: simulated dataset Using the same haplotype structure and significant mu-

tations as the previous example (Section 2.1), we generated a three-dimensional dataset S3.

In this case observations from the blue cluster are normally distributed with N3(µ1,Σ1), the

red cluster N3(µ2,Σ2) and the green cluster N3(µ3,Σ3), where the means and variances are

shown below. We assumed priors with V = 1000I3, Ψ = I3, g = 20.

We repeated the phenotypic clustering algorithm for 5,000 iterations, this time aiming to

both identify mutations associated with changes in the phenotype, but also to infer which

phenotype shows the strongest significant change. In this case the distinction is clear in the

data, and the first and third components are the ones which show a significant association

with the clustering with postrior mass 1. We plot the most problematic trace and density

plots for the first and third components in Figure 2.11.
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
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







.

Although for most of the chains the mixing appears very good, we notice that the trace

plot for µ31, for example, shows multiple jumps in the chain for both seeds, most likely caused

by a slight multimodality of the clustering, causing the means to change significantly.
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Figure 2.11: Trace and density plots for dataset S3 of a few representative parameters in
the three-dimensional case, showing excellent mixing.
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2.3 Phylogeographic clustering

In this section we are given a sample of N DNA sequences along with the corresponding

geographical location (instead of the phenotype) where each sequence was sampled. The

sequences correspond to Nh haplotypes, and we assume that the haplotype tree is fixed. We

wish to identify population clusters which are consistent with the geographic and genetic

information available.

Our first task is to devise clusterings defined on haplotype trees which are consistent

with the geographical distribution of haplotypes, following phylogeographic phenomena such

as range expansion (see Templeton, 1998; Avise, 2000). Because of the complexity of such

events, we do not model them explicitly. The main assumption we make is that sequences (as

opposed to haplotypes in the previous sections) can be divided into hard geographical clusters,

implying that each sequence is assumed to belong to a specific geographical population cluster

(see De Iorio and Griffiths, 2004b). We thus aim to cluster individuals such that, genetically,

haplotypes may be shared across clusters due to moving individuals. Here we restrict the

phylogeoraphic setting by considering a simple island migration model (see De Iorio and

Griffiths, 2004b), but the approach can easily be extended.

2.3.1 Construction of phylogeographic clusters

In this subsection we develop a construction of phylogeographic clusters on haplotype trees

which are consistent with simple migration island models, yielding shared haplotypes. We

begin by presenting examples of population movement in order to provide an intuitive under-

standing of the effect of phylogeographic events on a haplotype tree rather than a coalescent.

We then describe the properties of the phylogeographic clustering in detail, and finally we

describe Algorithm 2.3.1 which defines all clusterings that are consistent with migrating hap-

lotype.

First recall the simple migration model used by De Iorio and Griffiths (2004b), and con-

sider a scenario where an ancestral population (depicted as green in Figure 2.12 below) is the

source for the colonization of another three, shown in yellow, pink and light blue. We need

to translate such migration scenarios in terms of their effect on haplotype trees.

Consider the following example. Assume that haplotype i belongs to population A. If

one of the individuals carrying haplotype i migrates from population cluster A to start a new

population B, then haplotype i will be found in both clusters A and B. Assuming that no

more migration (or other phylogeographic) events occurred, all of the descendants of i will

either belong to cluster A (if their ancestral sequence belongs to cluster A) or cluster B (if

their ancestral sequence belongs to cluster B). An example of the resulting haplotype tree
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1 4 7 2 3 6 5

Figure 2.12: A coalescent with subdivided populations: the green is the ancestral popula-
tion, from which sequences subsequently migrated to found the pink, yellow and light blue
populations.

is illustrated in Figure 2.13, where as usual the colour indicates the cluster to which each

sequence belongs. To illustrate that more than one migration event may occur, and also that

some haplotypes may migrate to more than two clusters, we extend the above example in

Figure 2.14, which represents the collapsed coalescent of Figure 1.15 onto a haplotype tree

(here simplified for graphical simplicity).

Figure 2.13: Example of a migrating haplotype shared between two populations, here green
and pink. As before, nodes represent haplotypes, with the size of the circle representing the
number of times that haplotype appears in the sample. The colour of each node shows the
population cluster in which it belongs, with one haplotype being shared between the two clusters.
Two haplotypes are connected by an edge if they are one mutation apart.

We now introduce a general setting in which phylogeographic clusterings can be described.

The clusters are seeded by K migrating haplotypes denoted s1, . . . , sK (not necessarily dis-

tinct), where K is fixed in this section. Each of the migration events between two populations

results in the migrating haplotype being present in both populations. We denote the clusters

that haplotype sk is shared between as the set C(sk), where |C(sk)| is directly reflected in the

vector s by the number of times the value of sk appears in s, plus one.

Based on the vector s1, . . . , sK , we describe how all the sequences are allocated to clusters

given the set of migrating (and as a result shared) haplotypes s. Remember that the main

assumption of the clustering is that each sequence is allocated to precisely one cluster. All
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1 2

Figure 2.14: Example of a migration haplotype tree. In this case the pink-green haplotype
named 1 is shared between the pink and green population clusters with half of its copies found
in each, whereas the green-blue-yellow named 2 is shared between the green, blue and yellow
clusters with half of its copies found in the green cluster, and a quarter in each of the remaining
two. In this case the yellow cluster only contains copies of haplotype 2. As in previous sections,
black dots represent unsampled (but known) haplotypes.

sequences corresponding to a migrating haplotype sk belong to one of the |C(sk)| clusters.

Each migrating haplotype has a number of branches starting from it, which end either at a leaf

node or at another migrating haplotype. For each of those branches, all sequences contained

in it are clustered together in one of the |C(sk)| clusters. Note that this implies that sequences

(i.e., datapoints) corresponding to a haplotype which did not migrate are forced to belong

to the same cluster, whereas sequences from a migrating haplotype may belong to different

clusters.

It is perhaps easier to think of clusterings seeded by the vector s of migrating haplotypes

in terms of migrations of the corresponding individuals. Taking the example in Figure 2.14

and assuming the green cluster is ancestral, the migrating haplotypes are s = 1, 2, 2 and they

are shared between two and three clusters respectively, i.e., |C(s1)| = 2, |C(s2)| = 3. This

corresponds to the three migration events of an individual migrating from the green cluster to

a new population (pink), and individuals with haplotype 2 migrating to two new populations

(yellow and light blue). It is thus clear that the number of times a specific haplotype occurs

in s is equal to the number of clusters it is shared between minus one.

Introducing K migrating haplotypes leads to the existence of K + 1 clusters. This is

easy to see by considering the migration example described above. Each migrating haplotype

represents a migration which introduces a new population cluster, thus K shared haplotypes

result in K + 1 population clusters.

All such phylogeographic clusterings can be achieved by the following Algorithm 2.3.1

which describes a step-by-step method of constructing clusterings which are consistent with

K migrating haplotypes based on a fixed haplotype tree of Nh haplotypes.

Algorithm 2.3.1.
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1. Pick K of the Nh haplotypes with replacement, and denote them by s1, . . . , sK .

2. Pick one of the K migrating haplotypes sk. The number of clusters that sk is shared

between is equal to the number of times it appears in the vector s, plus 1. If the selected

haplotype is shared between |C(sk)| clusters, introduce clusters 1, . . . , |C(sk)| associated

with that haplotype. Then iterate the following steps.

3a. Select one of the K haplotypes sk which has at least one cluster associated with it. If

the clusters associated with it are fewer in number than the clusters it is shared by,

introduce new clusters associated with this haplotype to complete the set.

3b. Allocate each of the datapoints of the chosen haplotype sk to one of the associated

clusters C(sk).

3c. Allocate each of its adjacent nodes along with their branches (until either a leaf or

another migrating haplotype is reached) to one of the associated clusters. If a migrat-

ing haplotype is reached, associate it with that cluster. Go back to Step 3 until all

haplotypes have been fully assigned to clusters.

The Algorithm 2.3.1 above is formed by following the properties of a phylogeographic clus-

tering described in the current subsection, and as a result, any consistent clustering may be

obtained.

Example

Using Algorithm 2.3.1 we demonstrate how the clustering of Figure 2.14 may be obtained

from the haplotype tree.

• Start with Step 1. The three migrating haplotypes are picked to be 1, 2, 2.

• Continue with Step 2. Pick haplotype 1, which is shared between two clusters, and

assume that the two clusters are 1 and 2 (in this case pink and green).

• Move on to Step 3. Haplotype 1 is the only one which has any clusters associated with

it, so pick haplotype 1.

• In Step 4, allocate each of the datapoints of 1 to the pink or the green cluster one by

one. In this case half of them are allocated to the pink and half to the green cluster, as

indicated by the proportions of pink and green on the haplotype node.

• In Step 5, allocate each of its adjacent branches to a cluster. All apart from one branch

reach a leaf before reaching the other migrating haplotype. Those leaf branches are
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allocated to the pink or green clusters (in the Figure the tree has been re-arranged so

that all the pink ones lie on the left and all the green on the right; this need not be the

case).

We allocate the branch connecting haplotype 1 and haplotype 2 to the green cluster,

and thus assign one of the three clusters in which haplotype 2 is found to be the green

one.

• Return to Step 3 and select haplotype 2 which now has the green cluster assigned to it.

We assign yellow and light blue for the remaining two.

• Continue with Step 4 and assign each of the sequences of haplotype 2 into one of the

three available clusters. In this case half of the sequences are allocated to the green

cluster, a quarter to the light blue and a quarter to the yellow.

• Continue with Step 5 and assign each of the adjacent branches which have not yet

been allocated to a cluster into green, light blue or yellow. Note here that none of the

adjacent branches is allocated to the yellow cluster.

Note that the same clustering may be obtained for a number of different choices for the steps

of Algorithm 2.3.1 (e.g. if we select haplotype 2 in step 2), up to re-arrangement of colours.

Once the complete clustering is determined, it is possible to separate all the datapoints

into hard clusters. However, it is not possible to directly extract the historical information of

the geographical movements. For example, in Figure 2.12, we cannot distinguish whether the

yellow cluster was formed before or after the light blue, and whether it was e.g. a migration

from the pink or green cluster. It is only possible to make a (subjective) interpretation of the

output (for example using the fact that smaller populations are more likely to be younger;

see Emerson and Hewitt 2005), also using external sources of information (for example about

past glaciation of the area; see Hewitt 2000). Devising a method which would directly infer

historical events requires modelling complex phylogeographic phenomena and would greatly

increase the complexity of the algorithms.

The construction of clusters described in this subsection is analogous to an island model

(Latter, 1973) for population subdivision, since any two populations are likely to share a

haplotype, irrespective of their geographical distance. In addition, we remark that the phylo-

geographic clustering does not explicitly account for past fragmentation events. Notice that if

a population undergoes fragmentation, a number of haplotypes which originally belonged to

the same population will subsequently belong to the two fragment populations. As a result,

all their descendants will belong to only one of the two. The resulting haplotype tree may

look like Figure 2.15. The haplotype sharing construction described here does not allow for
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Figure 2.15: A subdivided population which is a result of past fragmentation. Initially one
population was present, to which the three pink/green haplotypes belonged. The population
was subsequently fragemented, so that the three haplotypes are found in both fragments. All
their descendants after the split belong exclusively to one of the two populations.

such a clustering, but would instead only identify the three migrating haplotypes as being

shared between four clusters. The construction could be extended to allow explicitly for such

clusterings.

2.3.2 The clustering model

We now develop the phylogeographic clustering model. Because geographical data may be

interpreted as two-dimensional distributed data (in this case assumed normal), the resulting

model is very similar to the models described in previous sections. In fact, by virtue of the hi-

erarchical approach, it is sufficient to replace only the parameters relating to the construction

of clusterings.

We use Algorithm 2.3.1 to motivate a prior distribution for clustering constructions. Here

we are assuming that a priori, any sequence is equally likely to correspond to a migrating

haplotype. Referring back to the simplified migration setting described on page 60, this is

equivalent to any individual being equally likely to migrate. This means that the probability

of a haplotype being shared is proportional to the number of times it appears in the sample,

yielding

p(s′) =
K
∏

k=1

min(|sk|, 1)

n
,

where |sk| is the sample size of haplotype sk.

As in previous sections, we use the notation cij to represent the cluster of the jth datapoint

corresponding to haplotype i. In this case the allocation parameter cij is forced to be the

same for all j for haplotypes which are not shared, but is allowed to take different values for

shared ones. Assuming that the clusters chosen for each of the datapoints and branches of



2.3 Phylogeographic clustering 64

haplotype sk in Steps 3b and 3c of Algorithm 2.3.1 are selected randomly from the |C(sk)|

clusters, the priors for the clustering c can be written as:

p(c) = p(c, s) = p(s)p(c|s)

=

K
∏

k=1

min(|sk|, 1)

N
|C(sk)||sk|+deg(sk), (2.11)

where deg(si) is the degree of haplotype sk, i.e., the number of adjacent haplotypes. Note

that here we correct |sk| by min(|sk|, 1) to account for the fact that some haplotypes are

extinct or unsampled, but may still have a non-zero probability of having migrated.

As before, we transform the data so that the sample mean is 0, but we do not transform

the variance of each direction separately. In geographical terms, the North-South direction is

spatially equivalent to the East-West, and hence should be treated identically.

Modifying the models (2.1), (2.6), the phylogeographic clustering model in full amounts

to

Y |e,µ,Σ ∼N2(µi,Σi),

sk ∼U{1, . . . , n} with replacement,

c, s ∼U

{

K
∏

k=1

|sk|

N
|sk|

|C(sk)|deg(sk)|C(sk)|

}

,

µk |Σk ∼N2 (0, V ) ,

Σk ∼IW(γ,Ψ),

γ ∼U{4, . . . , g}.

(2.12)

The hierarchical structure of the parameters is summarized by a DAG in Figure 2.16. The

distributions in Model (2.12) give that

Σk | Y,e, γ ∼ IW



nk + γ,Ψ +
∑

j,l

I{cjl=k}yjly
T
jl − nkyiy

T
k



 . (2.13)

µk | Y,e,Σk ∼ N2

(

Σ−1
k ny

V −1 + nΣ−1
k

,
1

V −1 + nΣ−1
k

)

(2.14)

Σk | Y,e, γ,µ ∼ IW



N + γ,Ψ +
∑

j,l

I{cjl=k}(yjl − µk)
T (yjl − µk)



 (2.15)
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The objective of the analysis is to draw inferences about the target distribution

π(s, c, γ,Σ,µ | Y) ∝ f(Y | s, c,Σ,µ)p(µ)p(γ)p(Σ | γ)p(s, c).

Ψ γV

µ Σ

s

c

Y

g

(a)

Y

Ψ γV

µ Σ

s

c

g

(b)

Figure 2.16: As before, the DAG of the hierarchical parameter structure of the phylo-
geographic model. Here the black parameters correspond to the basic parameters of one-
dimensional phenotypic clustering, and the parameters which were added to the model in
this section are shown in green.

The correspondence between our approach and the approach taken by Templeton (1998)

is easy to see. Templeton uses two ways of quantifying geographical clusters: Dc which is the

average distance of haplotypes within a clade from its centre, and Dn, which is the average

distance of a haplotype from the geographical centre of all higher-level clades containing the

clade of interest. In our approach, Dc represents Σk for cluster k, and we are looking for

shared (migrating) nodes which will best explain the significance of the geographical location

of haplotypes belonging the two adjacent clusters. This is the equivalent of inferring migrating

nodes such that Dn is most significant in terms of Dc.

Following the phenotypic clustering analysis from the previous section, most parameters

can be updated in the same way. However, we need to construct an MCMC update in order

to move around the space of possible clusterings.
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2.3.3 MCMC clustering moves

The nature of the phylogeographic clustering setting we are assuming implies that the size of

the allocation parameter space is vast: there are Nh possibilities for each of the K migrating

haplotypes, for which each of their datapoints as well as their adjacent haplotypes can be

allocated to one of the available clusters. However, most of these combinations are highly

unlikely given the data. Returning to Figure 2.14, if the pink and green cluster are geograph-

ically significantly different, it is improbable that one of the green adjacent nodes actually

belongs to the pink cluster. In this subsection we develop a proposal kernel exploring the

space of possible clusterings efficiently.

In Algorithm 2.3.1 we presented a method by which phylogeographic clusterings are chosen

at random. In an MCMC setting, it can be modified so that the choices are made efficiently

and allow mixing of the chains. To this end, we discuss some technical properties of the

clustering algorithm.

First notice that is not easily possible to construct a local version of Algorithm 2.3.1;

unless the algorithm is completed, the clustering cannot be updated, because the resulting

clustering may be physically non sensical and contradict the migrating haplotype structure.

Hence, for each MCMC iteration, all clusters are initially empty, datapoints are gradually

added using a variant of Algorithm 2.3.1 until complete, and only then can the proposed

move be accepted or rejected.

One possibility for improving the efficiency of Algorithm 2.3.1 is to iteratively calculate the

sample mean and sample covariances of each cluster as datapoints are added to the clusters

at each iteration. The calculated means and covariances may subsequently be used to assess

which of the available clusters shows a better fit with the next datapoint (or haplotype branch)

to be allocated.

It can be checked that, in the case of traditional unconstrained clustering, the allocation

parameter cij corresponding to observation yij follows the distribution:

P(cij = l |µ,Σ,w) ∝ wjΣ
−1
j exp

(

−
1

2
(yij − µl)

T Σ−1(yij − µl)

)

,

(see Richardson and Green, 1997). The unconstrained clustering requires that each datapoint

may be allocated to any of the clusters individually, which is not the case with the clustering

structure described here.

Here clusters are constrained by the phylogeographic clustering structure on the haplotype

tree, which dictates that allocating an adjacent node to one of the clusters implies allocating

a whole branch of the tree to that cluster. A similar approach to unconstrained clustering

can be taken in this case. For the assignment of each of the adjacent nodes of sk into one
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of the clusters m ∈ C(sk), we recalculate the sample means and covariance matrices of the

clusters, and allocate the next branch to cluster m according to

P(cij = m |nodes already assigned) ∝
∏

Σ
−1
m exp

(

−
1

2
(yij − µm)T Σ

−1
m (yij − µm)

)

,

where the product is taken over the whole branch, and we take µm to be the sample mean

up to the latest addition of a datapoint, and similarly Σl to be the sample covariance. In

this way, we allow the proposal to extract information about the clusters using the allocation

values which have been proposed so far within the same MCMC iteration.

Investigating convergence of preliminary test runs, we choose the following proposal dis-

tribution Algorithm 2.3.2 for constructing a clustering at iteration t, given the clustering and

cluster parameters of the previous iteration t − 1. The algorithm is quite technical, but is

essential for allowing satisfactory mixing of phylogeographic MCMC samplers. Intuitively, it

is based upon attempting to preserve the clusters of as many datapoints as possible. This is

achieved by preserving (where possible) the clusters of migrating haplotypes from the previous

iteration.

Remember here that Algorithm 2.3.1 provides a kernel which proposes clusterings by

cumulatively allocating datapoints to clusters until all datapoints have been clustered. The

algorithm proceeds by iterating Steps 1-5, and is performed once during each MCMC iteration,

at the end of which the proposed clustering is accepted or rejected. The Algorithm 2.3.2

described here is a variant of 2.3.1, using specific proposal distributions for each step which

take into account the clustering of the previous iteration.

Algorithm 2.3.2.

During burn-in, for each iteration initially we set all clusters to be empty, with sample

mean and covariances µ,Σ equal to their prior estimates. After burn-in, initially set all

clusters involved with migrating haplotypes which have not been changed since the previous

iteration to have mean, variance and sample size as in the previous iteration (µi,Σi, ni) =

(µ
(t−1)
i ,Σ

(t−1)
i , n

(t−1)
i ) respectively.

Then carry out the following steps:

1. Select one of the migrating haplotypes of s(t−1) from the previous iteration and change

it to s′k, proposing the new haplotype randomly.

2. For each of the migrating haplotypes s′k shared by |C(sk)
′| clusters, if it was shared

by |C(sk)|
(t−1) ≥ |C(sk)

′| clusters at the previous iteration too, assign this migrating

haplotype to be shared between the first |C(sk)|
(t−1) − 1 clusters of the set C(sk)

(t−1),

leaving the last cluster of C(sk)
′ null.
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3. Select at random one of the migrating haplotypes s′k which has not been allocated to

clusters; if none such exist, the algorithm has completed. If it was previously a migrating

haplotype with at least |C(sk)
′| available clusters, then the last cluster of C(sk)

′ is set

to same one as the previous iteration. Otherwise the next available cluster from the list

of all clusters is chosen.

4. Select at random one of the datapoints j of the migrating haplotype sk which has not

been assigned to a cluster, and assign it to one of the available clusters m ∈ C(sk) with

probability

∝ p(cskj = m | Y,Σ,µ, s) ∝
∣

∣Σm

∣

∣

−1/2
exp

(

−
1

2

(

yskj − µm

)T
Σ
−1
m

(

yskj − µm

)

)

.

Update the sample means and covariances µcskj
,Σcskj . If all datapoints of sk have been

assigned to a cluster, move on to the next step, else repeat this step.

5. Select one of the adjacent nodes l of sk which has not been assigned to a cluster yet.

Each adjacent node defines a branch, which starts at the adjacent node and ends either

at a leaf node, or at another migrating haplotype. Assign all datapoints j of all the

haplotypes i along the branch to one of the clusters m ∈ Cf(sk), with probability

∝ p(∪i,jcij = m | Y,Σ,µ, s) ∝
∏

i,j

∣

∣Σm

∣

∣

−1/2
exp

(

−
1

2

(

yij − µm

)T
Σ
−1
m

(

yij − µm

)

)

,

where the product is taken over all datapoints of all haplotypes along the branch. If

the branch ends at a migrating haplotype, then assign one of its associated clusters to

be m. If all adjacent branches have been allocated to clusters, go back to Step 3. Else

repeat this step.

Using Algorithm 2.3.2, we adapt the MCMC algorithm described in previous sections for

the phylogeographic data.

The chain is initialized by generating s(0), c(0), γ(0),µ(0), Σ(0) from the prior distributions.

Subsequently iterate the following steps.

C1a First we update s. We randomly pick one of the K nodes si and change it to another

one uniformly from the tree.

C1b Split sequences into clusters using Algorithm 2.3.2.

C1c Propose a new value γ′ from its prior U{4, g}.
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C1d Propose new covariance matrices Σ′
k from the distribution Σk | Y, s′, c′, γ′ given in Equa-

tion (2.13).

C1e Propose µ′
k from µk | Y,Σ′

k, s
′, c′ given in Equation (2.14).

C1f Calculate

AC =
π(s′, c′, γ′,µ′,Σ′ | Y)

π(s, c, γ,µ,Σ | Y)

q(s′, c′ → s, c)

q(s, c → s′, c′)

q(γ′ → γ)

q(γ → γ′)

q(µ′ → µ)

q(µ → µ′)

q(Σ′ → Σ)

q(Σ → Σ′)

=
f(Y | s′, c′,µ′,Σ′)

f(Y | s, c′,µ,Σ)

p(s′, c′)

p(s, c)

p(Σ′)

p(Σ)

p(µ′)

p(µ)

q(s′, c′ → s, c)

q(s, c → s′, c′)

π(µ | s, c,Σ)

π(µ′ | s′, c′,Σ′)

π(Σ | Y, s, c)

π(Σ′ | Y, s′, c′)
.

Accept the move with probability min (1, AC) and set

(s(t+1), c(t+1), γ(t+1),µ′′,Σ′′) = (s′, c′, γ′,µ′,Σ′),

otherwise set

(s(t+1), c(t+1), γ(t+1),µ′′,Σ′′) = (s(t), c(t), γ(t),µ(t),Σ(t))

C2 Generate Σ(t+1) directly from the posterior conditional Σ | Y, s(t+1), c(t+1), γ(t+1),µ′′

given in Equation (2.15).

C3 Generate µ(t+1) directly from the posterior conditional µ | Y, s(t+1), c(t+1),Σ(t+1) of

Equation (2.14). Go back to step C1.

Lemma 2.3.3. The algorithm 2.3.2 described above preserves irreducibility and aperiodicity

of the chain.

Proof. Clearly, it is always possible to change one of the migrating haplotypes to be haplotype

1, without loss of generality. Similarly, we may repeat the same, until haplotype 1 is the only

migrating haplotype. Hence, we can get to this clustering from any other clustering, and the

chain is irreducible.

Aperiodicity is guaranteed because there is always a positive probability of staying in the

same state.

Lemma 2.3.4. Randomizing the order in which datapoints and branches are clustered in

Steps 3 and 4 of algorithm 2.3.2 described above preserves time-reversibility of the chain.

Proof. Notice first that the move c(t−1) → c(t) may be achieved in a number of different

combinations of steps in the algorithm, depending on the order in which we choose to propose

the migrating haplotypes and their datapoints; remember that the move can only be accepted
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or rejected once they have all been proposed. Randomizing the order in which the migrating

haplotypes are proposed is equivalent to having a pool of proposals qi and randomly selecting

one (see Geyer, 1992, 1991).

In the standard MCMC setting, the ratio of the proposal distributions would then be

equal to:
q(c(t) → c(t−1))

q(c(t−1) → c(t))
=

∑

i qi(c
(t) → c(t−1))

∑

i qi(c(t−1) → c(t))
,

where the sum is taken over all the possible step combinations which may lead to the same

clustering.

However, in this setting we use the order of the update as an extra parameter, say zc,

and assume that all step combinations have equal probability a priori. At each iteration we

propose a step combination and then update the clustering using the proposal distribution

q(c(t−1) → c(t)) =
∑

i

Ii=zcqi(c
(t−1) → c(t)).

Clearly q is a distribution, since all but one term will be zero, and qi is a distribution. This

means that the overall proposal ratio becomes simply

q(z
(t)
c → z

(t−1)
c )

q(z
(t−1)
c → z

(t)
c )

q(c(t) → c(t−1))

q(c(t−1) → c(t))
=

q(z
(t)
c → z

(t−1)
c )

q(z
(t−1)
c → z

(t)
c )

q
z(t−1)(c(t) → c(t−1))

q
z(t)(c(t−1) → c(t))

,

and this can be treated as a standard time-reversible MCMC sampler.

Returning to the phenotypic analysis, we can see that the phylogeographic clustering

can also be thought of as a phenotypic clustering, when the significant mutation occurs at

a nucleotide site which is not sampled. Much like a migration event, one of the sequences

corresponding to the same haplotype would show a significant change in the phenotype. The

phenotypes of the descendants of that haplotype will then depend on whether or not the

sequences involve the unsampled mutation. The analysis of the previous sections can easily

be extended to compare between the two possible clustering constructions in order to infer

whether it is more likely that the significant mutation is included in the sample or not.

Example: simulated dataset We generated dataset S4 using the same haplotype tree as

before, assuming that two haplotypes are shared between two and three populations respec-

tively, namely haplotypes 1 and 9, shown in Figure 2.17.
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µ1 =

(

−3

−3

)

, Σ1 =

(

1 0

0 1

)

,

µ2 =

(

5

5

)

, Σ2 =

(

1 0

0 1

)

.

µ3 =

(

0.1

0.2

)

, Σ3 =

(

1 0
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)

.

µ4 =

(

1

1

)

, Σ4 =

(

0.1 0

0 0.1

)

.
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Figure 2.17:

The MCMC algorithm correctly identified the clustering structure, and showed excellent

mixing as shown in Figure 2.18.



2.3 Phylogeographic clustering 72

0 200 400 600 800

−
1

.5
0

−
1

.4
8

−
1

.4
6

−1.52 −1.50 −1.48 −1.46 −1.44

0
1

0
2

0
3

0
4

0
5

0

D
e

n
s
it
y

0 200 400 600 800

−
4

.7
8

−
4

.7
6

−
4

.7
4

−4.79 −4.78 −4.77 −4.76 −4.75 −4.74 −4.73 −4.72

0
1

0
2

0
3

0
4

0
5

0

D
e

n
s
it
y

0 200 400 600 800

0
.0

0
0

5
0

.0
0

1
0

0
.0

0
1

5

0.0000 0.0005 0.0010 0.0015 0.0020

0
5

0
0

1
0

0
0

2
0

0
0

D
e

n
s
it
y

0 200 400 600 800

0
.0

0
0

5
0

.0
0

1
5

0
.0

0
2

5

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

D
e

n
s
it
y

µ1

µ3

Σ21

Σ31

µ1

µ
1

µ3

µ
3

Σ21

Σ
2
1

Σ31

Σ
3
1

iteration

iteration

iteration

iteration

Estimated density, bandwidth=0.005

Estimated density, bandwidth=0.005

Estimated density, bandwidth=10−4

Estimated density, bandwidth=10−4

Figure 2.18: Trace and density plots for dataset S4, showing excellent mixing. The trace
plots are thinned by a factor of 8.
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2.4 Analysis for an unknown number of clusters

In practice, we almost never know the true number K of underlying significant edges or

migrating haplotypes. We therefore have to draw inference about the number of significant

clusters we are trying to split our data into. To this end, we use a Reversible-Jump MCMC

method similar to the one described in Richardson and Green (1997), which allows moving

between parameter spaces with different sizes.

Ψ γV

µ Σ

δ
λ

e/s
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(a)
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Figure 2.19: Finally, this DAG shows all the parameters introduced in this Chapter. The
colours correspond to different types of analysis: the black represents the basic parameters
(descibed in the current Section 2.1), pink represents parameters for analysis of multidimen-
sional traits (Section 2.2), the green for phylogeographic analysis (Section 2.3) and the blue
for analysis with a variable number of clusters (Section 2.4). A few parameters (λ, ζ, δ) have
been added to illustrate how non-uniform priors may be included. Depending on whether the
clustering is phenotypic or phylogeographic, the clustering will be seeded by e or s respectively.
Note here that in the one-dimensional case, V = σ2

µ, Σk = σ2
k, Ψ = a and γ = b.

The Models (2.1), (2.6) and (2.12) are augmented by adding a parameter K, which is

assumed to have a uniform prior in [0,Kmax], i.e.,

p(K) ∝ 1, 0 ≤ K ≤ Kmax.

The hierarchical structure of the parameters for both the phenotypic and phylogeographic

case is shown in Figure 2.19.

Here the hyperparameter γ becomes important. Clearly, the number of clusters is heavily

dependant upon the spread of each cluster. Thus, a prior for the covariance favouring small

clusters will tend to result in a large K, and vice versa. The variable γ allows the joint

posterior of the number of clusters and their spread to be inferred.
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2.4.1 Phenotypic analysis

In the case of phenotypic analysis with a fixed number of components (i.e., dimensions,

represented by z), we want to construct an MCMC sampler with target distribution

π(K,e, γ,Σ,µ | Y) ∝ f(Y |K,e,Σ,µ)p(K)p(µ)p(γ)p(Σ | γ)p(e).

In phenotypic clustering, introducing a new cluster is equivalent to adding another edge to

the vector of signifiant mutations, and similarly removing a cluster is equivalent to removing

a mutation, thus merging two clusters which are genetically adjacent (i.e., are separated by

a single mutation).

The chain is initialized by generating K(0), e(0), γ(0), µ(0), Σ(0) from the prior distribu-

tions. Subsequently iterate the steps described below.

D1 Carry out Steps A1-A3 (or B1-B5 if the data is multi-dimensional, keeping z constant)

for a fixed K.

D2a With probability psplit split one of the existing clusters into two so that K(t+1) = K(t)+1,

and uniformly select an edge to be added to e. Otherwise, with probability pmerge =

1 − psplit combine two of the existing clusters into one so that K(t+1) = K(t) − 1 and

uniformly select one of the entries of e to be removed. Calculate the sample means of

the new clusters.

D2b Propose values for µ and Σ for the new clusters formed.

(a) If we decide to merge two clusters k1 and k2 into k′, we propose Σ′
k′ | Y,e′, γ (see

Equation (2.7)), and µ′
k′ | Y,e,Σk′ (see Equation (2.8)). The remaining covariances of

clusters which are not affected by the move are left unchanged.

(b) Similarly, if we decide to split one of the existing K(t) + 1 clusters, we propose

Σ′
k1

,Σ′
k2

,µ′
k1

,µ′
k2

from the distributions given in Equations (2.7), (2.8). Again, the

remaining covariances of clusters which are not affected by the move are left unchanged.
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D2c The acceptance probability of a merging move becomes α = min(1, AD) where

AD =
f(Y |e′, γ,µ′,Σ′)

f(Y |e, γ,µ,Σ)

p(e′)

p(e)

p(µ′

k′ )

p(µ′

k1
)p(µ′

k2
)

p(Σ′

k′)

p(Σ′

k1
)p(Σ′

k2
)

q(K − 1 → K)

q(K → K − 1)
|J |

×
q(e′ → e)

q(e → e′)

q(µ′
k′ → µk1

,µk2
)

q(µk1
,µk2

→ µ′
k′)

q(Σ′
k′ → Σk1 ,Σk2)

q(Σk1 ,Σk2 → Σ′
k′)

q(K − 1 → K)

q(K → K − 1)
|J |

=
f(Y |e′, γ,µ′,Σ′)

f(Y |e, γ,µ,Σ)

p(e′)

p(e)

p(µ′

k′ )

p(µ′

k1
)p(µ′

k2
)

p(Σ′

k′)

p(Σ′

k1
)p(Σ′

k2
)

×
q(e′ → e)

q(e → e′)

q(µk1
)q(µk2

)

q(µ′
k′)

q(Σk1)q(Σk2)

q(Σ′
k′)

psplit

pmerge
|J | ,

using Equations (2.7), (2.8), and

p(e) =
1

(Nh−1
K(t)

)

q(e → e′) =
1

K(t)
for a merging move, and

q(e → e′) =
1

Nh − K(t)
for a splitting move,

We check here that, for a merging move K(t+1) → K(t) − 1, the priors and proposals

for the vector e cancel:

q(e′ → e)

q(e → e′)

p(e′)

p(e)
=

1
Nh−K(t)

1
K(t)+1

×

( Nh

K(t)−1

)

(Nh−1
K(t)

)
= 1. (2.16)

Finally, as before (see Section 2.2) the determinant of the Jacobian in this case is equal

to one, since the move can be expressed as a combination of independent moves, yielding

a Jacobian with determinant |J | = 1.

Similarly, the acceptance probability of a splitting move becomes α = min(1, A−1
D ), with

some terms replaced appropriately.

D2d If we accept, we set

(K(t+1),e(t+1),µ(t+1),Σ(t+1)) = (K ′,e′,µ′,Σ′),

otherwise we set

(K(t+1),e(t+1),µ(t+1),Σ(t+1)) = (K(t),e(t),µ(t),Σ(t)),

A run through steps A1-A3 (or B1-B5) and D2 produces a chain with a stationary distribution
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the desired posterior. Since splits and merges always have positive probability, the chain

remains irreducible and aperiodic as in the previous sections.

Notice here that the prior distribution p(e) =
(Nh−1

K

)

is only true if all possible clusterings,

including ones involving empty clusters, are permissible. If empty clusters are not allowed

in the analysis, the number of clustering possibilities which do not result in empty clusters

has to be computed but is generally intractable. Although for a fixed K the normalization

constant remains constant throughout the analysis and hence need not be calculated, allowing

K to vary implies that empty clusters have to be included. Analogously, the same is true for

phylogeographic clustering analyses described in the next subsection.

In the case of multi-dimensional phenotypic data, there is clearly a strong dependence be-

tween the parameter z indicating which phenotypic traits are informative and K. Specifically,

if |z| = 0, then K = 0 shows a perfect fit with the data since it is the empty model.

2.4.2 Phylogeographic analysis

In the case of phylogeographic data, our objective is to construct an MCMC sampler with

target distribution

π(K, s, c, γ,Σ,µ | Y) ∝ f(Y |K, s, c,Σ,µ)p(K)p(µ)p(γ)p(Σ | γ)p(s, c). (2.17)

Given a new clustering, the proposal and probabilities of the means and covariances are

analogous to the phenotypic clustering, but the clustering move represented by Step D1a

above is slightly more complicated. The algorithm is given below.

The chain is initialized by generating K(0), s(0), c(0), γ(0), µ(0), Σ(0) from the prior distri-

butions. Subsequently iterate the following steps.

E1 Carry out Steps C1-C3 for a fixed K.

E2a Propose to add or subtract a migrating haplotype sk with probabilities psplit and pmerge

as before.

(a) For a merging move, select two of the clusters C(sk) between which sk is shared, say

k1 and k2, and merge them into one cluster k′. The probability of this move becomes

q(s, c → s′, c′) =
1

K(t) ×
(|C(sk)|

2

)
(2.18)

(b) For a splitting move, add one of the Nh haplotypes to the vector s. Then all of the

datapoints and adjacent haplotypes of the added node have to be inserted to one of the

available clusters. Since this may heavily affect the distribution of all the clusters, we
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start with s′ and re-allocate all the datapoints of all the haplotypes to clusters according

to Algorithm 2.3.2. The probability of this move is equal to

q(s, c → s′, c′) =
1

Nh
q(c′|s′), (2.19)

where q(c′|s′) is calculated through Algorithm 2.3.2.

E2b We propose values for µ and Σ for the new clusters formed.

(a) If we decide to merge two clusters k1 and k2 into k′, we propose Σ′
k′ | Y,e′, γ (see

Equation (2.7)), and µ′
k′ | Y,e,Σk′ (see Equation (2.8)). The remaining covariances of

clusters which are not affected by the move are left unchanged.

(b) Similarly, if we decide to split one of the existing K(t) + 1 clusters, we propose

Σ′
k1

,Σ′
k2

,µ′
k1

,µ′
k2

from the distributions given in Equations (2.7), (2.8). The remaining

covariances of clusters which are not affected by the move are left unchanged.

E2c The acceptance probability of a merging move becomes α = min(1, AE) where

AE =
f(Y | s′, c′,µ′,Σ′)

f(Y | s, c,µ,Σ)

p(s′, c′)

p(s, c)

p(µ′

k′)

p(µ′

k1
)p(µ′

k2
)

p(Σ′

k′)

p(Σ′

k1
)p(Σ′

k2
)

×
q(s′, c′ → s, c)

q(s, c → s′, c′)

q(µk1
)q(µk2

)

q(µ′
k′)

q(Σk1)q(Σk2)

q(Σ′
k′)

psplit

pmerge
|J | ,

using Equations (2.7), (2.8), (2.18) and (2.19). As before, |J | = 1.

Similarly, the acceptance probability of a splitting move becomes α = min(1, A−1
E ). We

decide to accept or reject the proposed move, with some terms replaced appropriately.

E2d If we accept, we set

(K(t+1), s(t+1), c(t+1),µ(t+1),Σ(t+1)) = (K ′, s′, c′,µ′,Σ′),

otherwise

(K(t+1), s(t+1), c(t+1),µ(t+1),Σ(t+1)) = (K(t), s(t), c(t),µ(t),Σ(t)),

Cycling through steps C1-C3 and E2 produces an irreducible chain with stationary distribu-

tion (2.17).

Example: simulated dataset Using the simulated datasets S1 (one-dimensional pheno-

type, two significant mutations), S3 (three-dimensional phenotype, two significant mutations)
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K 0 1 2 3 4 5

S1 0.05 0.04 0.80 0.07 0.02 0.01
S3 0.00 0.05 0.86 0.06 0.03 0.01
S4 0.00 0.01 0.04 0.80 0.12 0.03

Table 2.2: The posterior probabibilities for the number of clusters in each of the datasets S1,
S2 and S4. Indeed, the RJMCMC sampler identified the correct number of clusters in each
case.

and S4 (phylogeographic dataset, three migrating haplotypes), we repeated the analysis al-

lowing the number of clusters to vary. The posterior distribution of the number of clusters

for the three different analyses are shown in Table 2.2.



Chapter 3

Inference about the haplotype tree

In this Chapter we provide a Bayesian alternative to inferring the rooted haplotype tree from

sequence data, which corresponds to the first step of Nested Clade Analysis. Together with

the clustering algorithms described in the previous Chapter, this completes our method of

phenotypic and phylogeographic cluster analysis.

In Section 3.1 we develop a fully Bayesian model for the haplotype trees, using the coa-

lescent (see Kingman, 1982) and the Generalized Time-Reversible (GTR) mutation process

(see Tavaré, 1986). Given the mutation parameters and the root of the tree, we propose a

feasible approximation of the probability of a haplotype tree in order to allow computationally

tractable inferences.

To prepare inference on the tree, we gradually increase the number of unknown parameters

and illustrate the methods through simulated data at each stage. In Sections 3.2 - 3.4 we

keep the haplotype tree and its root fixed, and describe how to draw inferences about the

nucleotide frequencies, mutation coefficients and site-specific mutation rates. In Section 3.5

we treat the root of a fixed haplotype tree as unknown, and describe an algorithm to estimate

it.

In Section 3.6 we invert the previous conditioning and infer the haplotype tree given the

root and mutation parameters. First we assume that homoplasy (meaning correspondence

of nucleotides that are not derived from the same ancestor) is not present. Recall that the

haplotype tree comprises a tree topology and sequences corresponding to each node. We

describe a deterministic algorithm to construct the tree topology. This procedure usually

involves inserting missing intermediate sequences. Even though in the absence of homoplasy

the tree topology is unique, the sequences of intermediate nodes can only be determined

up to permutation of mutations as described in Section 3.6. Inference about the unknown

intermediate sequences is described in Section 3.7. This approach is then extended in Sections

3.8 - 3.9 for datasets where the tree topology derived from the data may not be unique,
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i.e., when homoplasy may be present. We devise a method of representing and obtaining tree

topologies which affords efficient inference, and illustrate it through an example.

In Sections 3.10 - 3.11 we describe how phenotypic and/or phylogeographic clustering can

be combined with inference about the haplotype tree to obtain the joint posterior distribution

of the tree and the phenotypic/phylogeographic data. Finally, in the last Section 3.12 we

propose sequence data can be combined with both phenotypic and phylogeographic data

simultaneously, by describing an integrated two-fold clustering construction on the haplotype

tree.

3.1 The haplotype tree model

Because haplotype trees are based on mutations, we supplement the coalescent with the GTR

mutation model to develop the hierarchical structure of the parameters. The coalescent and

the GTR mutation model are well established tools in population genetics. In this section

we employ them to develop a hierarchical model for inferences on haplotype trees under the

Bayesian paradigm.

The coalescent has already been introduced in Section 1.2.1 of the Introduction. It de-

scribes the evolutionary history of a set of genes by tracing them back to their most recent

common ancestor. Considering evolution backwards in time, in a sample of N genes, coales-

cence events occur at rate
(N

2

)

(assuming constant population size). As discussed previously

(see Algorithm 1.2.1), given a mutation model with Poisson rate θ/2 and transition matrix

P (t), the coalescent can also be used to calculate the relative probability of mutation or split

events on a tree (see Ethier and Griffiths, 1987). If k ancestral sequences are present in the

population, the time t of the next event is exponentially distributed with parameter k(k−1+θ)
2

and the probability of the next event being a split is

k − 1

k − 1 + θ
; (3.1)

otherwise a mutation occurs with probabilities according to the the transition matrix P (t).

We now specify the transition matrix P (t) by employing the GTR model (see Subsection

1.2.2). We assume that the generator matrix Q determines the transition matrix P (t) =

exp(Qt), where Q is given by

Q = φj















· v1πG v2πC v3πT

v1πA · v4πC v5πT

v2πA v4πG · v6πT

v3πA v5πG v6πC ·















. (3.2)
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The GTR mutation model is the most general model which is statistically convenient to

implement. Based on the mutation model (3.2), the time of mutations for the nucleotide Xi
l

of sequence i at site l is exponentially distributed with parameter

φlqXi
l

:= φl

∑

j

qXi
l j

. (3.3)

This allows us to relate θ/2 to the mutation process generated by Q, because the overall

mutation rate θ/2 represents the probability that any nucleotide of a sequence mutates. Under

GTR, the rate at which a nucleotide of sequence i mutates is given by

L
∑

l=1

φl

∑

j

qXi
l j

.

This implies that the rate of a randomly selected sequence mutating equals

θ

2
=

1

Nt

Nt
∑

i=1

L
∑

l=1

φlqXi
l
,

where the sum over i is taken over all Nt sequences present at time t. From now on (for

notational simplicity) we replace 1
Nt

∑Nt
i=1

∑L
l=1 φlqXi

l
by θ

2 .

In analogy to (3.1), we employ (3.3) to calculate the probability that a specific sequence

splits or mutates next.

P(sequence n splits) =
1

Nt

Nt − 1

Nt − 1 + θ

P(lth site of sequence n mutates) =
1

Nt

φlqXn
l

((Nt − 1)/2 + θ/2)
.

(3.4)

Based on (3.4) we calculate the probabilitiy of a haplotype tree in the next Subsection.

3.1.1 The probability of a haplotype tree

Haplotype trees are (naturally) composed of haplotypes, which implies that equations such

as (3.4) must be calculated in terms of haplotypes. These are then extended from probabil-

ities of single events to probabilities of a series of events. A haplotype tree determines the

events which occurred in history, but does not specify the precise order in which these events

occurred. Therefore, we derive the probability of a haplotype tree by summing over all the

possible series of events which occurred.

Within the context of haplotypes, sequences which correspond to the same haplotype are

not identifiable. Therefore, the probability that haplotype h mutates or splits is equal to the
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sum over the |h| probabilities (3.4) of all the sequences n corresponding to that haplotype,

using the additive property of independent exponential rates. In other words,

P(haplotype h splits) = |h| × P(sequence n splits),

P(lth site of haplotype h mutates) = |h| × P(lth site of sequence n mutates).
(3.5)

We can now calculate the probability of a series of mutation and split events, conditional

on the total number of events. The event probabilities (3.5) are conditional on an event

occurring, and thus similarly for a series of events, the probability can only be calculated

conditional on the total number of events. Here we denote the temporal order of mutation

and split events with H, with Ht being the tth event and H the total number of events.

Conditional on the root r, the site-specific mutation rates φ, the nucleotide frequencies π and

the mutation rates v, we have

P(H |H, r,φ,π,v) =
∏

t

P
(

Ht | r,φ,π,v
)

, (3.6)

where the probabilities are given by Equations (3.4), (3.5). Note here that subsequent events

are independent by the memoryless property of the exponential distribution, which allows us

to calculate the joint posterior of the history H as the product of individual events Ht.

We can now calculate the probability of a haplotype tree, denoted by T , given the root r

and the mutation parameters φ,π,v, by summing over the probabilities (3.6) of all temporal

orderings Hj which are consistent with the tree. In other words,

P(T | r,φ,π,v) =
∑

j

P(Hj |Hj , r,φ,π,v), (3.7)

where Hj is consistent with T . Equation (3.7) is key to fully specify a model for inference

about the haplotype tree.

3.1.2 The haplotype tree model

In this subsection we develop a Bayesian model for the haplotype tree T , the root r and the

mutation parameters (φ,π,v) under sequence data S. The objective of the analysis is to

estimate the rooted haplotype tree (T , r), implying that (φ,π,v) are nuisance parameters.

We remark that the haplotype tree T contains all the information available in the sequence

data, and hence, conditional on the tree, the data are independent of the mutation process

parameters.1

1To allow flow of the text, the calculations of several expressions are not presented within this subsection,
but may be found in Appendix B.
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We begin by assuming that, in the absence of any information about the mutation process,

any haplotype tree T is equiprobable. We may express the haplotype tree T as the tree

topology T together with the nucleotide state τ of all nodes on the tree, i.e., T = (T, τ). In

the first few sections to follow, both T and τ (i.e., the haplotype tree) are known. Similarly to

the haplotype tree, we assume that all tree topologies are equally likely a priori given the root,

as are all nucleotide states of missing intermediates given the tree topology. Furthermore,

we assume that a priori any sequence is equally likely of being the root, and that (φ,v) are

independent of the root and of each other. Finally, we assume that the nucleotides of the

root follow a multinomial distribution given the nucleotide frequencies. All these priors can

be summarized as

P(T | r) ∝ 1 (3.8)

P(T | r) ∝ 1 (3.9)

P(τ |T ) ∝ 1 (3.10)

p(r) ∝ 1, (3.11)

p(r,φ,π,v) = p(r,π) × p(φ) × p(v) (3.12)

p(r |π) ∝
4
∏

i=1

π
nr

i
i , (3.13)

where nr
i represents the number of nucleotides of type i which are found in the root r.

Lemma 3.1.1. Using the specified priors (3.8)-(3.13), the joint posterior of the mutation

parameters given the rooted haplotype tree is given by

P(φ,π,v | S,T , r) ∝ P(T | r,φ,π,v) × p(r) × p(π | r) × p(φ) × p(v) (3.14)

Proof. See Appendix B.

Lemma 3.1.2. Similarly, we can calculate the posterior distribution for the root

P(r | S,T ,φ,π,v) ∝ P(T | r,φ,π,v) × p(r |π) (3.15)

Proof. See Appendix B.

The two Lemmas 3.1.1, 3.1.2 above, together with Equation (3.7), provide us with the

posterior distributions of all the parameters except the haplotype tree T .

Only a little remains to compute the posterior of the haplotype tree T given the sequence

data. Recalling that the haplotype tree fully describes the data S, the likelihood of the data
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becomes

L(S | T , r,φ,π,v) =

{

1 if T consistent with S

0 otherwise

Note that although only one S is consistent with the haplotype tree T , there are several

haplotype trees represented by the set Ω consistent with the sequences. Applying Bayes’

Theorem, the posterior distribution of the haplotype tree is

P(T | S, r,φ,π,v) ∝

{

P(T | r,φ,π,v) if T ∈ Ω

0 otherwise,
(3.16)

where the normalization constant may be calculated as

∑

Ti∈Ω

P(Ti | r,φ,π,v).

For a number of reasons the infinite state space Ω which is consistent with S is problematic.

We contend that under an argument of relaxed parsimony (discussed in detail in Sections 3.6

- 3.8), it is possible to reduce the state space to a finite (but vast) set Ω := Ω(S) of realistic

haplotype trees.

Remember that the probability of a tree can only be calculated conditional on the total

number of mutation and split events, here denoted by H. However, the set Ω may contain

trees involving a different number of events. In order to calculate the probability of one of

those trees, we require

P(T | r,φ,π,v) ∝ P(T |H, r,φ,π,v) × P(H | r,φ,π,v).

Assuming a uniform prior on H such that

P(H | r,φ,π,v) ∝ 1, (3.17)

we obtain that P(T | r,φ,π,v) can be calculated using (3.7) and simply multiplying over all

the events for any size of tree H.

These developments allow us to formulate a model for the haplotype tree under the

Bayesian paradigm. The broad structure is given in the Directed Acyclic Graph of Figure

3.1, and the details are as follows.

To complete the model, we collect Equations (3.8) to (3.17), and assume the following

priors for the mutation parameters and the rooted haplotype tree:
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Figure 3.1: (a) DAG specific to the model implemented; (b) Corresponding conditional
independence graph.

(π1, π2, π3, π4) ∼ D(B1, B2, B3, B4)

v1, v6 ∼ G(1/σ2
v , 1/σ2

v)

v2, v3, v4, v5 ∼ G(1/(βσ2
v ), 1/σ2

v)

φl ∼ G(g1, g2)

φl | T ∼ G(g1 × mi, g2)

r ∼ U{1, . . . , Nh}

T ∼ U{Ti}.

(3.18)

Here Ti ∈ Ω and β represents the transition/transversion bias specific to each sample. Fur-

ther, D denotes the Dirichlet distribution which is the conjugate prior for the multinomial

distribution of r |π and B1, . . . , B4 are taken small. We assume a priori that the number of

mutations at each nucleotide site l given the tree topology is gamma distributed with param-

eter proportional to the number of mutations ml at that site. Usually, we set σ2
v large, g1, g2

small to provide a vague prior, unless there is available information suggesting otherwise.

Model (3.18) provides several important contributions to inference on the rooted haplotype

tree. Based on explicit distributions about haplotype trees, it supplies a rigorous mathemati-

cal framework for estimation. It is consistent with many of the empirical predictions raised by

Crandall and Templeton (1993) and Posada and Crandall (2001). For example, older alleles

have a greater probability of becoming interior haplotypes: this may be directly derived from
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(3.7), since interior haplotypes naturally allow a much larger number of orderings in which

events may have occurred. Furthermore, haplotypes of greater frequency are more likely to

have a higher degree (i.e., more mutational connections in the tree): the probability of a muta-

tion increases according to frequency of the haplotype; see (3.5). Perhaps the most important

advantage of this model is that the posterior probability of a haplotype tree (3.16) can be

explicitly expressed, which allows for backward rather than forward inference. In other words,

we start from the data and reconstruct the tree, rather than fixing a tree and comparing with

the data.

We remark that here there is no direct way of assessing the validity of the parsimony

assumption. In the setting of our model, parsimony becomes invalid when one of the φis is

too large compared to the rest. This would imply that sequences should not be collapsed onto

haplotypes, since the large φi may have caused correspondence of whole sequences. Instead,

that nucleotide site should be ignored. This could be incorporated in our model to account for

such a possibility, by adding a binary parameter for each nucleotide site indicating whether

it is parsimonious or not.

3.1.3 Approximating the probability of a haplotype tree

In order to draw inferences about the haplotype tree under the model presented in (3.18),

calculation of P(T | S, r,φ,π,v) is required. Remember that here

P(T | S, r,φ,π,v) ∝
∑

j

P(Hj | r,φ,π,v), (3.19)

where Hj is any temporal ordering of events consistent with T 2 The number of different

temporal orderings which are consistent with a haplotype tree increases dramatically with

the sample size N .

To overcome computationally intractable likelihoods when these involve multiple integrals

or sums, a number of Approximate Bayesian Computation (ABC) approaches have been

suggested (see Beaumont, 2003; Becquet and Przeworski, 2007; Beerli and Felsenstein, 2001;

O’Neill et al., 2000). Here we follow the method presented by Beaumont (2003) to approximate

distribution (3.7) in order to devise a computationally feasible MCMC algorithm. Specifically,

to approximate (3.7), we perform importance sampling within MCMC (see Section 1.5).

We draw J temporal orderings Hj from an importance distribution q(Hj) which allows a

positive probability on all orderings consistent with the haplotype tree. We then calculate an

2In this subsection, for notational simplicity, we assume that T ∈ Ω.without loss of generality, which implies
that P(T | S , r, φ, π, v) ∝ P(T | r,φ, π, v); see (3.16).
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approximation to (3.7) by averaging over the importance weights

P̂H(T | r,φ,π,v) =
1

J

∑

j

1

q(Hj)
P(Hj | r,φ,π,v), (3.20)

In the following few sections we consider the simulated orderings H = {H1, . . . ,HJ} as an

auxiliary variable within MCMC updates of individual parameters, and approximate the

posterior distribution of the haplotype tree by (3.20). Beaumont (2003) shows that such a

chain is time-reversible with target distribution P̂H(T | r,φ,π,v) which is itself an unbiased

approximation of the true posterior P(T | r,φ,π,v) given in Equation (3.7).

Notably the choice of the importance distribution is arbitrary, provided it allows a positive

weight on all possible Hi. Here we define q(H |T , r) by the following Algorithm 3.1.3, which

constructs a temporal ordering by starting at the MRCA of the sample (i.e., the root sequence)

and iteratively picking the next mutation or split event. Before we move on to fully describe

the algorithm, we present an example in order to discuss which mutation and split events are

consistent with a haplotype tree.

Example

Suppose the haplotype tree is given by the top tree of Figure 3.2. For ease of exposition, the

numbers on the nodes here represent the sample sizes of each haplotype rather than the label

of each haplotype.

Simulating a temporal ordering implies that, starting with the ancestral sequence, we

specify a series of split and mutation events which occurred by mimicking evolution, eventually

resulting in the fixed haplotype tree. Here we represent each event by updating the numbers

on each haplotype according to the number of times it is observed at each time-point in the

sample. For example, the bottom panel of Figure 3.2 is a possible temporal ordering of the

observed tree given in the top panel.

Observe now that, for example, the root node could not have split any further: this would

result in three copies of the ancestral haplotype, which is inconsistent with the haplotype tree

which specifies precisely two. In addition, it would not have been possible for the intermediate

haplotype to mutate after Step 3 above, since then it would disappear from the ancestral

sequences, and another mutation would not have been possible. In other words, consistent

events are defined as follows.

• A split event is consistent with the haplotype tree, if it does not imply that the sam-

ple size of that haplotype will exceed the number of times it appears in the complete

haplotype tree, plus the number of mutations that haplotype will be forced to undergo
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Figure 3.2: Top panel: In this tree the mrca of the sample (the top haplotype) is observed
twice in the sample. Note that one of the intermediate haplotypes in not observed in the
sample (and hence has zero sample size). Bottom panel: nodes without a number represent
haplotypes which have not arisen yet. At first one sequence is present, the ancestral sequence,
which split into two (remember that the first event is always a split). Then one of those two
identical sequences split again to give us a total of three. One of those three then mutate to
give us the intermediate haplotype, which in turn splits and then mutates (and goes extinct)
to give us the right-hand leaf. Finally, the intermediate haplotype mutates again to give us
the left-hand leaf, which then also splits to give another copy of itself.

in following steps (so, in the example, the intermediate haplotype after Step 5 will be

forced to undergo exactly one more mutation).

• Similarly, a mutation is possible if (a) is true, and (b) OR (c) are true:

(a) it is represented by an edge on the haplotype tree, where the ancestral sequence of

the edge has already appeared in the ancestral sample

(b) the ancestral sequence of the edge corresponding to that mutation does not go

extinct

(c) the ancestral sequence of the edge goes extinct, and there are not more events in-

volving that sequence which have not yet occurred but are forced by the haplotype

tree.

We can now describe Algorithm 3.1.3 which generates temporal orderings consistent with

a fixed haplotype tree T .
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Algorithm 3.1.3.

This algorithm generates temporal orderings by mimicking the ancestral history of the

sample, starting with the root and ending with the observed sequences.

1. Start at the root. Initially only one copy of the root haplotype is present. Split it into

two copies and repeat the next step until all mutation or split events determined by the

haplotype tree have occurred.

2. For all sequences present, consider all mutations and splits that are consistent with the

haplotype tree.

For each of those events calculate

P(sequence n splits) ∝
1

Nt0

Nt0 − 1

Nt0 − 1 + θ

P(lth site of sequence n mutates) ∝
1

Nt0

φiqXn
l

((Nt0 − 1)/2 + θ/2)

(3.21)

where Nt is the number of sequences present by that iteration of Algorithm 3.1.3. Note

here that the probabilities are only proportional to the expressions above. This is

because not all mutations and splits are possible on a given haplotype tree are possible,

and hence the expressions do not sum to one.

Select one of the available events to occur with probabilities proportional to (3.21), and

repeat this Step.

For each temporal ordering H generated from this algorithm, the probability q(H |T , r)

can be calculated by first normalizing the terms in (3.21) at each step and then multiplying

over them. By construction, any H consistent with T may be generated under Algorithm

3.1.3 because at all the steps, the consistent events have non-zero probability.

We have now completely specified the approximation of the posterior distribution (3.19).

The approximation is also used to calculate the probabilities of the mutation process param-

eters and the root of the tree:

P̂H(φ,π,v |T, r) = P̂H(T | r,φ,π,v) × p(r) × p(π | r) × p(φ) × p(v) (3.22)

P̂H(r | T ,φ,π,v) =
P̂H(T | r,φ,π,v) × p(r |π)

PH(T |φ,π,v)
. (3.23)

Using Equations (3.20), (3.22), (3.23), it is now possible to construct a Markov chain

Monte Carlo sampler to simulate from the posterior distribution

π̂H(T , r,φ,π,v | S) (3.24)
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The chain is initialized by generating a tree T (0), a root r(0) uniformly from T (0), mutation

rates φ(0) from their prior, nucleotide frequencies π(0) from π | r and mutation coefficients

v(0) from their prior.

3.2 Updating the mutation rates

In this section we describe how to draw inferences about the mutation rates φ given a known

rooted haplotype tree, nucleotide frequencies π, mutation coefficients v and the sequence data

S. All information contained in S is implicit in the haplotype tree T , and thus given the tree,

φ is independent of the data.

E1a Propose to update one of φ1, . . . , φL by using again a reflective proposal, so that

φ′
i =

{

φi + ǫ if vi + ǫ > 0

−(φi + ǫ) otherwise

where ǫ ∼ U [−Eφ, Eφ].

E1b Propose H
′ = {H′

1, . . . ,H
′
J} according to q(H |T , r) described above.

E1c This move is then accepted with probability min(A, 1), where A is given by

A =
q(φ′ → φ)

q(φ → φ′)
×

P̂H′(φ′ | S,T , r,π,v)

P̂H(φ | S,T , r,π,v)
.

=
P̂H′(φ′ | T , r,π,v)

P̂H(φ | T , r,π,v)
.

=
P̂H′(T | r,φ′,π,v)

P̂H(T | r,φ,π,v)
×

p(φ′
i)

p(φi)
(3.25)

using Equation (3.22).

If the move is accepted we set (φ(t+1),H) = (φ′,H′), otherwise we set (φ(t+1),H) =

(φ(t),H).

In practice, the number of sites it often large (more than 200), and calculation of the

probability P̂H′(T | r,φ′,π,v) is computationally expensive. In addition, there is usually

little information to draw inferences about all the φs, since very few mutate more than once,

implying that accurate estimates are impossible. On average, the number of times a site

mutates is proportional to the mutation rate of that site. Sites l that do not show any

mutations in our sample naturally yield φl = 0. As a result, it is often more efficient to

reduce the number of parameters by using the prior φl | T and letting φl = φ(ml). Here ml is
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the mutations number of mutations at site l on tree T . In other words, all sites which mutate

only once are assumed to have the same mutation rate, and so forth.

3.3 Updating the nucleotide frequencies

We now describe an update for the nucleotide frequencies π.

E2a Propose to update π by proposing new values π’ from the distribution

p(π | r) ∝ p(r |π) × p(π) (3.26)

=

4
∏

i=1

π
nr

i
i ×

∏

πBi+i−1
i

Beta(π)
,

which implies that π | r ∼ D(B1 + nr
1, B2 + nr

2, B3 + nr
3, B4 + nr

4). Here nr
i represents

the number of times nucleotide i is observed in the root haplotype r.

E2b Propose H
′ = {H′

1, . . . ,H
′
J} according to q(H |T , r) described above.

E2c This move is then accepted with probability min(1, A), where A is given by

A =
q(π′ → π)

q(π → π′)
×

P̂H′(π′ | S,T , r,φ,v)

P̂H(π | S,T , r,φ,v)
.

=

Q

π
Bi+nr

i −1

i
Beta(π)

Q

π′
i
Bi+nr

i
−1

Beta(π′)

×
P̂H′(T | r,φ,π′,v)

P̂H(T | r,φ,π,v)
×

p(π′ | r)

p(π | r)

=
P̂H′(T | r,φ,π′,v)

P̂H(T | r,φ,π,v)
(3.27)

using Equation (3.22).

If the move is accepted we set (π(t+1),H) = (π′,H′), otherwise we set (π(t+1),H) =

(π(t),H).

3.4 Updating the mutation coefficients

The mutation coefficients v are updated in a similar way to the mutation rates. As before,

the mutation coefficients are independent of the sequence data S given the haplotype tree T .

E3a Propose to change one of vi randomly by a reflective proposal vi → v′i by generating
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ǫ ∼ U [−Ev, Ev ] and then setting:

v′i =

{

vi + ǫ if vi + ǫ > 0

−(vi + ǫ) otherwise

E3b Propose H
′ = {H′

1, . . . ,H
′
J} according to q(H |T , r) described above.

E3c The Hastings ratio becomes

A =
q(v′ → v)

q(v → v′)
×

P̂H′(v′ | S,T , r,φ,π)

P̂H(v | S,T , r,φ,v)
.

=
P̂H′(v′ | T , r,φ,π)

P̂H(v | T , r,φ,π)
.

=
P̂H′(T | r,φ,π,v′)

P̂H(T | r,φ,π,v)
×

p(v′i)

p(vi)
(3.28)

using Equation (3.22).

If the move is accepted we set (v(t+1),H) = (v′,H′), otherwise we set (v(t+1),H) =

(v(t),H).

Example

The total algorithm to draw inferences about the mutation parameters then follows steps

E1-E3. This means that we sequentially update the mutation rates, nucleotide frequencies

and mutation coefficients.

We generated dataset S5 of 200 sequences of length 700 each from the prior distributions,

taking the following parameters:

(π1, π2, π3, π4) ∼ D(1, 1, 1, 1)

v1, v6 ∼ N (7, 0.5)

v2, v3, v4, v5 ∼ N (1, 0.5)

φi ∼ G(1, 1)

We ran the described MCMC sampler assuming the known haplotype tree as fixed. We present

the trace and density plots of a few representative parameters, as well as the corresponding

Gelman-Rubin plots.

The same dataset was used in subsequent sections to demonstrate the results of our

algorithm in the three cases where the rooted haplotype tree is known (current section),
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Figure 3.3: Trace and density plots for simulated dataset S5 with a known root starting from
two different seeds. The dashed lines represent the true values of the parameters. The trace
plots are thinned by a factor of 10. All parameters show excellent mixing, and the posterior
densities match for the two chains.

where the haplotype tree is known but the root has to be inferred (next Section 3.5) and

finally where the tree is unknown (Section 3.9). At the end we make a comparison of the

estimates of the parameters in order to investigate how increasing the uncertainty of the

model affects the reliability of the estimates.
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Figure 3.4: Potential Scale Reduction Factor plots for simulated dataset S5 with a known
root, suggesting that the chains have converged.

3.5 Updating the root

We now consider the case where the root of the haplotype tree is unknown given a fixed

haplotype tree and mutation process parameters. As with the mutation parameters, the root

is independent of the sequence data S given the haplotype tree.

In order to update the root, we need to select a proposal kernel q(r → r′). We present

three proposal kernels below:

• Uniformly from all haplotypes, so that q(r → r′) = q(r′) ∝ 1
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• Uniformly proportional to each node’s degree, so that q(r → r′) = q(r′) ∝ degree(r′).

Generally older haplotypes are more likely to have mutated more times, so it is more

likely that haplotypes with a higher degree will be the root.

• Uniformly from adjacent nodes, so that q(r → r′) =
Ir′ adjacent to r

degree(r) . The oldest haplotype

clearly has to be adjacent to the second oldest, implying that the oldest haplotypes are

generally adjacent to each other.

Using one of the available proposal kernels, the root update becomes:

E4a Propose a new root according to the preferred proposal kernel q.

E4b Propose H
′ = {H′

1, . . . ,H
′
J} according to q(H |T , r) described above.

E4c Using the expression (3.23), the probability of accepting the proposed move becomes

min(1, A), where

A =
q(r′ → r)

q(r → r′)

P̂H′(r′ | T ,φ,π,v)

P̂H(r | T ,φ,π,v)

=
q(r′ → r)

q(r → r′)

P̂H′(T | r,φ,π,v)

P̂H(T | r′,φ,π,v)
×

p(r |π)

p(r |π)
(3.29)

If the move is accepted we set (r(t+1),H) = (r′,H′), otherwise we set (r(t+1),H) =

(r(t),H).

Example

The algorithm to draw inferences about the root haplotype and mutation process parame-

ters then follows steps E1-E4. This means that we sequentially update the root, nucleotide

frequencies, mutation coefficients and mutation rates.

First we implement it on dataset S5 as before using a uniform proposal for the root, and

obtain estimates for the mutation parameters which are no less accurate than the analysis

with a known root in Example 3.4. Similarly to earlier, the mixing is excellent and the

Gelman-Rubin plots suggest convergence. Here we do not show the plots since they do not

show any significant differences to the previous Example.

We now generate 20 datasets of 200 sequences of length 100 (denoted by simulation S6)

and investigate how frequently the algorithm estimates the correct root. The results of the

algorithm are shown in Table 3.1. The correct haplotype is identified only five out of 20

times. This is not surprising: the evolutionary process assumed has a very large variance on

the shape of haplotype trees, and hence the true posterior distribution of the root given the
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Haplotype 1 2 3 4 5 6 7 8 9 10 11
Frequency 5 2 5 3 2 1 0 1 0 1 0

Table 3.1: The results of the MCMC algorithm on the 20 simulated datasets S6. The
haplotypes are labelled according to their temporal order (with haplotype 1 being the ancestral
haplotype).

data may deviate a lot from the true value of the root. For example, if the root haplotype

does not go extinct, we expect the tree to have a root with lots of adjacent haplotypes. On

the other hand, if the root goes extinct, we expect to see possibly deep divergence, yielding

a very different shape.

Although the estimates for the root are inherently unreliable because of the variation in

the model, we will see at the end of this Chapter 3.11 that when the sequence data S is

combined with geographical data for each individual, ancestral locations may be estimated

with a high probability of success.

3.6 Defining the tree space Ω

In the presence of homoplasy, the haplotype tree is unknown and the tree space is infinite.

Here we describe how a finite set of realistic (in terms of a relaxed parsimony assumption)

haplotype trees Ω may be obtained from the sequence data S. Recall that in Subsection

3.1.2 we defined the posterior probability of a haplotype tree based on the set Ω. Homoplasy

has two effects on the haplotype tree. Firstly, by allowing an arbitrary number of interme-

diate mutations, infinitely many haplotype trees are consistent with S, most of which have

a vanishing probability; this is illustrated in Figure 3.5. Secondly, homoplasy may lead to

the presence of loops in the haplotype network, so that multiple parsimonious trees may be

consistent with the sequence data; see Figure 3.6. These two effects combined with missing

ATA

AAA

ATA

AAA

ATA

AAA

ATA

AAA

AGA
AGA

ACA

AGA

AAA

ACA

Figure 3.5: Examples of possible haplotype trees consistent with the data AAA, ATA. Fol-
lowing the examples in this Figure, we can see how an infinite number of consistent trees may
be constructed by adding homoplasious mutations. The parsimony assumption discards all but
the first tree.
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Figure 3.6: Example of a haplotype network involving a loop. Following the parsimony
assumption, sequences which are one SNP apart are assumed to be one mutation apart, and
are connected. It is not possible to determine which of the three trees on the right is correct.

intermediate sequences imply that there may be a vast space of possible haplotype trees which

have a significant probability given the sequence data S.

In cases such as Figure 3.5, it is reasonable to assume that the true haplotype tree is

represented by the left-most tree, following a parsimonious argument for sequences which are

one SNP apart (and hence do not require the insertion of missing intermediate sequences). In

most cases, however, the available DNA sequence data result in more than one disconnected

tree, requiring the insertion of unknown intermediate sequences. We construct a deterministic

parsimony-based Algorithm 3.6.1 below to infer a set of realistic haplotype trees Ω. Algorithm

3.6.1 is quite technical, but is based on the intuitive idea that we set a mutational step limit ds,

and assume that any pair of disconnected sequences which is di SNPs apart will be a maximum

of di + ds mutations apart. The set Ω is constructed by cumulatively adding intermediate

sequences following the relaxed parsimony assumption defined by ds, the mutational step

limit.

Algorithm 3.6.1.

First we pick a number of steps ds, which will be the number of mutations by which

we relax the parsimony assumption for missing intermediate sequences. This means that we

assume that if two sequence are k letters apart, then they are at most k + ds mutational

steps apart. We then connect sequences of the sample which are one DNA change apart, thus

forming a number of groups of connected nodes in a graph.

1. We connect any haplotypes which are one SNP apart, and count the number of discon-

nected groups of nodes. If the sequence data S form a connected tree, we assume that

it is indeed the true haplotype tree T so that Ω = {T } and the algorithm terminates.

For every pair of groups, we find the closest distance between two nodes belonging to

each group. We will refer to these pairs of nodes as the representatives between two

groups (not always unique). When no homoplasy is present, these are unique for each
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pair of groups. If the graph is connected (i.e., all sequences belong to the same group),

the algorithm terminates.

2. Then we find the minimum of these minimum distances dmin.

3. We find all pairs of sequences (i, j) which belong to different groups and have distance

(in terms of number of SNP mutations apart) d(i, j) ≤ dmin + ds. If no such pair can

be found, go to Step 5 for the minimum pair of haplotypes.

4. For each pair (i, j) we then check if i has an adjacent node k which has d(k, j) ≤ d(i, j),

and similarly for j. If either of these is true, we repeat this step for the next pair of

edges. Else we go to the next step.

5. We then find all the pairs of groups which have the reference node as one of their two

representatives. We store the separating mutation positions between each one of these

representatives and the reference node.

6. Then we find the separating mutation(s) which occurs most frequently between those

pairs, and we pick one of them, which we call the “reference mutation”. This mutation

has to be the one that occurred closest to the reference node, and so we create an extra

node which is identical to the reference node except at the reference mutation position.

When the reference mutation is not unique, without loss of generality we pick the first

such nucleotide site. If any of these new nodes has already been created, clearly we do

not add the same sequence twice. We then go back to step 3 and repeat for the next

pair of sequences.

This algorithm results in a haplotype network, implying that loops may appear. The key

assumption of our approach is that the true haplotype tree is assumed to be a subtree of the

haplotype network obtained through the algorithm. The subtrees can be achieved by breaking

the loops. Clearly, increasing ds will generally result to disconnected groups of nodes being

connected in more paths when homoplasy is present. This implies that we can allow more

and more possible haplotype trees. However, that does not imply that letting ds → ∞ will

ensure that the network formed will include any possible mutational path. In fact, after a

value dmax
s is reached, increasing ds has no effect on the set Ω.

The drawback of fixing the set Ω before the MCMC algorithm is that Ω may not include

the true tree. Although it is generally true that evolution frequently follows the minimal path

(see Sankoff, 1975), this is not always the case, especially when a multiple homoplasies are

present. The parsimony assumption can alternatively be avoided by definining the clustering

algorithms directly on coalescent trees, but this approach proves computationally intractable;

see Appendix C.
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Example: simulated dataset
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Figure 3.7: The figure above shows the three iterations for finding the two missing nodes,
using the tree in Figure 2.4 from the examples in Chapter 2. The letters on some of the edges
represent the nucleotide position of each mutation. Here there is a back-mutation either at
position a or position b.

We use the haplotype tree from the previous chapter, removing haplotype 13, and follow

the steps described above in Algorithm 3.6.1 in order to complete the missing nodes. We

describe the algorithm for three cases: ds = 0, ds = 1 and ds > 1.

A. Set ds = 0. There are two disconnected groups of haplotypes: (1, 2, 3, 4, 5, 6), and (7,

8, 9, 10, 11, 12), with closest distance between nodes 1 and 8 which are two mutations

apart (Step 1). Since there is only one pair of groups, immediately we obtain dmin = 2

(Step 2).

There are no other pairs of nodes from the two groups which are dmin + ds = dmin

nucleotides apart (Step 3), so we only need to connect the two nodes 1 and 8. Since

these are only two groups available, they are the only ones involving the two missing

mutations (Step 4), so we insert the missing node 13 (referring to the original tree) and

terminate (Step 5). This yields the true tree (of this Example). This single addition is

shown in the left-hand panel of Figure 3.7.

B. Set ds = 1. There are two disconnected groups of haplotypes: (1, 2, 3, 4, 5, 6), and (7,

8, 9, 10, 11, 12), with closest distance between nodes 1 and 8 which are two mutations
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apart (Step 1). Since there is only one pair of groups, immediately we obtain dmin = 2

(Step 2).

In this case there, (1, 8) is the closest pair, but (2, 8) and (6, 8) are two nucleotides

apart, which is indeed less than ≤ dmin + ds apart (Step 3). Node 2 is adjacent to

1, which is closer to 8, so considering (2, 8) is implicit in the pair (1, 8), and hence

redundant (Step 4). On the other hand, no such adjacent nodes exist for the pair (6,

8), which has to be taken into account (Step 4). For both pairs (1, 8) and (6, 8),

there are only two groups involving the nucleotide changes (Step 5), so both pairs are

connected through their quickest route (Step 5). In the case of (1, 8) this yields the

same connection as before (left-hand panel of Figure 3.7), but an extra branch is added

on the right through two missing nodes, as shown in the middle and right-hand panel

of Figure 3.7.

C. Set ds > 1. In this case the exact network is obtained as in the case ds = 1. This is

because any extra pairs of sequences (i, j) which are obtained in Step 3 actually have

an adjacent node k which is closer to j, thus making the pair (i, j) redundant. The only

pairs of sequences that reach Step 5 are, as before, (1, 8) and (6, 8).

Lemma 3.6.2. When no homoplasy is present, the above Algorithm 3.6 results in a unique

haplotype tree (the true tree) up to rearrangement of strands of missing intermediate sequences

(explained below, see Figure 3.8) for any value of ds.

Proof. See Appendix B.

Even though the tree topology is uniquely determined when no homoplasy is present, it

is often only possible to determine the order of mutations up to permutation. Specifically,

consider the following example in Figure 3.8.

TAC

TGG

TAC

TGG

TAC

TGG

TAG TGC

Figure 3.8: The figure above shows an example of a missing intermediate node of degree
two. In this case, it is not possible to determine which of the two possibilities on the right
actually occurred.



3.7 Updating the state of missing intermediate sequences 101

In the next section we assume that the tree topology is known, and describe how strands

of missing intermediate sequences may be dealt with.

3.7 Updating the state of missing intermediate sequences

In order to calculate the likelihood of a haplotype tree, the series of mutation and split events

has to be fixed. As described in the previous section and illustrated in Figure 3.8, when

strands of missing nodes are present, it is not possible to uniquely determine the exact state

of each of the missing sequences, and equally the exact mutations. Although this does not

affect the tree topology (and hence the phenotypic or phylogeographic clustering), it affects

the calculation of the likelihood of the tree. The state of missing sequences either has to be

updated as an auxiliary parameter of our MCMC, or the likelihood would contain the sum

over all the possibilities. For computational efficiency, we take the former approach.

For each strand of missing sequences of length ls, there are ls! possibilities for the order

in which the mutations occurred. The order of mutations is updated as follows.

E5a Uniformly pick one of the strands of missing nodes of length ls and propose an order

of mutations from the ls! possibilities, defining a new set of intermediate sequences, so

that T ′ = (T, τ ′).

E5b Propose H
′ = {H′

1, . . . ,H
′
J} according to q(H |T , r).

E5c Accept the proposed move with probability min(1, A), where

A =
P̂H′(τ ′ | S, T, r,φ,π,v)

P̂H(τ | S, T, r,φ,π,v)

=
P̂H′(τ ′, T | r,φ,π,v)

P̂H′(T | r,φ,π,v)

P̂H(T | r,φ,π,v)

P̂H(τ, T | r,φ,π,v)

=
P̂H′(T ′ | r,φ,π,v)

P̂H(T | r,φ,π,v)

using Equation (3.9).

If we accept, set (T (t+1),H) = (T ′,H′), otherwise we set (T (t+1),H) = (T (t),H).

In practice, changing the state of intermediate sequences has an insignificant effect on the

estimates of the mutation process parameters and the root, but it adds to the computational

cost. Specifically, the probability the mutation events along a branch of known intermediate
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sequences Xj , j = 1, . . . , ls is equal to

ls
∏

j=1

P(lth site of haplotype hXj mutates) =
|hXj |

Nt

φlqXj
l

(

(Nt − 1)/2 + 1
Nt

∑Nt
i=1

∑L
l=1 φlqXi

l

) ,

using Equation (3.4). Allowing permutations of the mutations leaves the numerators of the

sum unchanged, and only changes one of the terms of the sum over l in the denominator. In

most datasets, the sequences are reasonably long, so that the sum consists of many terms,

and the effect of changing one of them becomes insignificant. For this reason, it is often

be preferable to fix an arbitrary choice of intermediate sequences throughout the MCMC

iterations.

3.8 Representing the tree

In order to update the tree topology when homoplasy is present, consistent tree representa-

tions have to be defined. In this section we describe how subtrees of the haplotype network

obtained by Algorithm 3.7 can be represented concisely based on the breaking of loops. We

show that, based on an arbitrary set of loops, all possible trees can be obtained by breaking up

each one of these loops consecutively, and that there is a one-to-one correspondence between

tree topologies and loop breaks. This enables us to use a hashing algorithm to label and store

trees (see Appendix D), and allows efficient local moves on the tree space. This approach

proves to be much more efficient than generating tree topologies afresh and searching for loops

at each iteration.

The first task here is to construct an algorithm that identifies loops in the haplotype

network. Any tree of Nh nodes (including all internal nodes and leaves) has Nh − 1 edges.

Therefore, a network of Nh nodes with Nh + j − 1 edges has j redundant edges, all of which

are part of at least one loop. Our aim is to identify j loops, so that by removing one edge

from each (i.e. breaking each loop), it is possible to obtain every single subtree of the original

network. We show that this is always possible based on a set of j loops (which may not be

unique). The algorithm we propose here for identifying loops is shown below.

Algorithm 3.8.1.

1. Set i = 1.

2. Starting with node i, check whether there is a path starting at i and returning to i so

that no edge is covered more than once. If there is no such path, start again with node

i + 1, else find the minimum of all such paths and go to Step 2.
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3. Store this loop and break it by removing one of its edges. Return to Step 1.

Lemma 3.8.2. The above Algorithm 3.8 identifies exactly j distinct loops. Furthemore, by

removing one of the edges of each loop, we can obtain all subtrees of the original network.

Proof. See Appendix B.

In fact, we can prove that there is a unique representation of deleted edges to loops to

which they belong. In other words, there is a unique correspondence between the set of

deleted edges and a respective set of loops which were broken by each edge. In order to prove

this, we first prove the following result.

Theorem 3.8.3. In order to obtain a tree topology by removing edges which belong to loops,

at least one edge which only belongs to one loop has to be deleted.

Proof. See Appendix B.

We can now prove the uniqueness of edge-loop correspondence.

Lemma 3.8.4. For each tree topology, there is a one-to-one representation of edges deleted

to loops to which they belong.

Proof. See Appendix B.

Lemma 3.8.4 implies that all tree topologies can be represented uniquely by a vector of

j integers, meaning the edges removed from each of the j loops. This allows us to define an

efficient local update on the tree space and to use a hashing algorithm to keep track of the

tree topologies. Note that, although all tree topologies can be represented by loop breaks,

not all loop breaks define a tree topology, but some may result in two or more disconnected

networks.

3.9 Updating the tree topology

We may update the tree topology locally, by picking one of the loops at random, and removing

one of its edges at random. Removing an edge at random does not necessarily result in a tree,

but may yield two disconnected networks. To avoid having to calculate the normalization

constant associated with the number of possible tree topologies that can be obtained at

each iteration, we allow all moves, and treat the resulting disconnected networks as having

likelihood zero.

We now present the MCMC update for the tree topology.

E6a Propose a new tree topology T ′ by choosing one of the loops at random and proposing

to change its deleted edge. The new haplotype tree becomes T ′ = (T ′, τ).
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E6b Propose H
′ = {H′

1, . . . ,H
′
J} according to q(H |T , r).

E6c Accept the proposed move with probability min(AT , 1), where

AT =
P̂H′(r, T ′,φ,π,v |X)

P̂H(r, T,φ,π,v |X)
.

If we accept, set (T (t+1),H) = (T ′,H′), otherwise we set (T (t+1),H) = (T (t),H).

Updating the tree topology by changing the breaking of one loop does not trivially guar-

antee irreducibility.

Lemma 3.9.1. The local proposal described above is irreducible.

Proof. See Appendix B.

We remark here that the tree topology can have a strong dependence on the mutation rates

φ. Specifically, if all the φs are assumed to be equal, the algorithm will tend to yield a tree of

minimum length. This is because, if the φs are equal, all mutations have approximately equal

probabilities (depending, of course, on individual nucleotide sites). As a result, effectively all

edges on the haplotype tree will have approximately similar weight on the total probability

of the tree, and hence the minimum number of mutations will yield the highest posterior

estimate.

Example

The complete algorithm to draw inferences about the haplotype tree, root haplotype and

mutation parameters then follows steps E1-E6. We generated 25 datasets and applied the

algorithm described, showing that in all cases, the posterior probabilities of all possible trees

of the same size are approximately equal, and only one of the 25 yielding a Bayes factor

> 2. We will see in the next section that the probabilities of trees are strongly dominated

by corresponding phenotypic or geographical information. As a result, in those cases it

is beneficial to assume a uniform distribution on trees irrespective of size, and allow the

phenotypic/geographical measurements to determine the posterior probabilities of trees.

3.10 The complete clustering algorithm

We have now proposed updates for all parameters of the clustering and haplotype tree infer-

ence. The hierarchical structure of the parameters is summarized in the DAG of Figure 3.9.

In order to infer the joint distribution of the clustering and the rooted haplotype tree, we

construct a MCMC sampler with target distribution
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π(K,e,z, γ,Σ,µ,T , r,φ,π,v | Y)

in the phenotypic case, and

π(K, s, c, γ,Σ,µ,T , r,φ,π,v | Y)

in the phylogeographic case.

Almost all parameters can be updated independently as described in previous sections,

with only exception the tree topology. Clusterings are only defined within a tree topology

and a certain clustering can be impossible under a different tree topology. There are a few

options when updating the tree topology and clustering. The tree topology can either be

updated locally or globally, as can the clustering. We describe a few different approaches.

• Loops and clustering are updated globally and simultaneously. This ensures no normal-

ization constant, but leads to an inefficient chain.

• Loops are updated locally and the clustering globally, simultaneously. This implies that

any tree topology is permissible, and the number of possible clusterings conditional on

the tree remains constant (allowing empty clusters as described previously).

• Loops and clusterings are updated locally, simultaneously. In this case a normalization

constant appears. The new tree has to contain all the edges which are assumed to be

significant, otherwise one of the mutations assumed to be significant is invalid.

• Loops and significant edges are updated separately, either locally or globally. The

disadvantage of this approach is that, for the same set of significant edges, alterations

to the tree leads to a different clustering. This implies that, in effect, although the

same mutations are assumed to be significant, the clustering is forced to be updated

simultaneously.

Here we update tree topology together together with the edge set e or migrating haplotype

construction (s, c). In other words, the clustering and tree topology updates are merged into

one update in the total algorithm.

T1a Propose a new tree topology T ′ using the local proposal kernel described in Section 3.9.

T1b Propose a new clustering as well as cluster means and covariance matrices, following

Steps B1-B5 or C1-C3 accordingly.
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Figure 3.9: The DAG showing the combined parameters of the phenotypic/phylogeographic
clustering and the haplotype tree inference.

T1c Accept the proposed move with probability α = min(1, A), where

A = AT × AB ,

for phenotypic clustering, and

A = AT × AC ,

for phylogeographic clustering.

T2 Update each the parameters apart from the tree topology independently.

A full run through all the steps described is called a sweep. Using the same arguments

as in the individual updates, it can be checked that despite the fact that in this case the

acceptance probability is often equal to zero, the chain remains irreducible (and aperiodic).

The complete algorithm, both for phenotypic and phylogeographic clustering is imple-

mented through an R package presented in Appendix E.

Phenotypic example

Using the simulated dataset S5, we generate a phenotypic effect with two significant mu-

tations. The algorithm correctly identifies the number of significant mutations K and the

MAP clustering. In addition, a significant improvement is achieved on tree topology infer-

ence. We discussed in an earlier example that the haplotype tree inference was frequently

unable to identify the correct tree topology, because probabilities on trees all have very similar

sizes. However, combining the tree inference with the phenotypic data, the accuracy of the
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prediction was improved. Specifically, when the true tree was uniquely consistent with the

phenotypic clustering, it was correctly identified. In cases where more than one tree were

consistent with the phenotype, they all yielded a uniform posterior probability on trees, as

expected.

3.11 Ancestral locations in phylogeographic analysis

One of the objectives of phylogeographic analysis is to identify the location where a population

originated from. Although the analysis presented here does not assume a geographical model

for the spread of populations in time, we are still able to calculate probabilities of root

haplotypes belonging to specific locations. In addition, even if the root haplotype is extinct

or has not been sampled, it is still possible to infer the oldest haplotypes within in our sample.

This may be better understood through Figure 3.10.

1 2 3 4 5 1 2 3 4 5

Figure 3.10: Two possible genealogy scenarios, where coloured points represent observed
haplotypes (with the colour representing the location), whereas small black circles are unsam-
pled. In the figure on the left, the oldest haplotype is the pink one at the top. In the figure on
the right, the oldest haplotype is missing, and the next possible descendants are the three pink
haplotypes.

Although the root haplotype may be missing like the right-hand panel of Figure 3.10, we

know that the location where it originally belonged will, on average, contain haplotypes from

all possible descendant branches. As a result, if a location contains all three pink haplotypes,

it is more likely to be the ancestral than a location which only contains haplotype from one of
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Root haplotype 1 2 3 4 5 6 7 8 9 10 11
Frequency 5 2 5 3 2 1 0 1 0 1 0

Ancestral location 1 2 3 4 5 6 7 8 9 10 11
Frequency 14 2 2 1 0 0 0 1 0 0 0

Table 3.2: The results of the MCMC algorithm on the 20 simulated datasets S6. The
haplotypes are labelled according to their temporal order (with haplotype 1 being the ancestral
haplotype).

the branches. This approach is consistent with many descriptive characteristics of an ancestral

area, for example as presented by Emerson and Hewitt (2005).

Hence, at each iteration, we calculate a measure of the probability of each location being

the ancestral location by finding the oldest haplotypes along each descendant branch of the

root (if the root haplotype is observed in our sample, then we simply have the root only),

and then for each location we add the contribution of each of those haplotypes, scaled by the

number of times each haplotype is observed and by the number of total haplotypes found.

Example

Using the same simulated dataset S5, we generate locations for each sequence. We fix two

population clusters, with means and covariances

µ1 =









−2

0

0









, Σ1 =

(

1 0

0 10

)

,

µ2 =









2

0

0









, Σ2 =

(

1 0

0 10

)

.

For each split and mutation, the new sequence stays in the same location as its ances-

tor with probability 0.80, and creates a new location (with the same mean and covariance

matrix, representing a local migration) with probability 0.20. We randomly pick one of the

local migration events to define a migration which founds the second population cluster, and

continue in the same manner.

The analysis identifies the ancestral location(s) in 15 out of 20 datasets. Indeed, this

shows a significant improvement of the accuracy to the inference of the root haplotype of the

same datasets.
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3.12 Combining phenotypic and phylogeographic data

In some cases, both the geographical location as well as the phenotypic measurement of

each individual are available. Although the geographical and phenotypic clustering may be

different, since e.g. a colonisation event would be irrelevant to a mutation occurring, both can

provide useful information about which mutation history is most likely.

In order to analyse such data, we combine the methods described above: we consider

two separate clusterings, one corresponding to the geographical data, and one corresponding

to the phenotypic data, both of which are consistent with a single mutation history at each

iteration. The joint posterior distribution then provides us with the MAP estimate of the

mutation history given both types of data.

This may be easily extended so that a separate clustering may be considered for, say, each

dimension of multi-dimensional data. If a priori there is reason to believe that two dimensions

would be uncorrelated in terms of which mutations would cause a significant effect, then two

different clusterings can be inferred throughout the analysis.



Chapter 4

Data Analysis

We now implement the phenotypic and phylogeographic clustering methods on three datasets,

and compare the results to existing analyses. In Section 4.1 we analyze a phylogeographic

dataset of mitochondrial DNA taken from beetles on the island of La Palma in the Canaries.

We first briefly present the results of standard NCPA as described by Emerson and Oromi

(2005), and then apply the Bayesian approach developed in this thesis, comparing the out-

comes. In Section 4.2, we repeat the above procedure for a weevil dataset taken from the

Iberian peninsula. Finally, in Section 4.3 we use a phenotypic salmon sperm dataset where

mitochondrial DNA is investigated for associations with several quantitative traits associated

with sperm motility and longevity. We present the results of our clustering algorithm for

multi-dimensional data, and discuss the challenges.

4.1 The beetle dataset

We use data from the geologically young and well-characterised island of La Palma from

within the Canary Islands archipelago to generate phylogeographic predictions for Brachy-

deres rugatus rugatus, a flightless curculionid beetle species occurring throughout the island

in the forests of Pinus canariensis. We have a sample of 135 beetles from 18 localities across

the distribution of B. R. Rugatus for 570 base pairs (bp) of sequence data for the mtDNA

cytochrome oxidase II (COII) gene. The data are summarised in Figure 4.1 which superim-

poses the sampling locations on a map of La Palma together with forest density. At each

location the number of distinct haplotypes observed is recorded, with 69 distinct haplotypes

observed in all. See Emerson et al. (2000,2006).

Geological studies of the island provide us with a fairly complete understanding of the

island’s geological history. The northern part of the island is mainly older volcanic terrain

with the southern part comprising a ridge of more recent volcanic origin. It is a reasonable
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Figure 4.1: Map of the sampling locations on the island of La Palma, taken from Emerson
and Oromi (2005)

assumption that the Brachyderes beetle population, with their limited mobility, would have

been strongly influenced by La Palma’s volcanic and erosional history and there is also strong

evidence that the population was seeded by immigration from the nearby island of Tenerife

to the east. Thus we might expect the oldest haplotypes to be concentrated in the northern

part of the island and to observe evidence of a more recent range expansion to the southern

tip. If we were to cluster the haplotypes geographically we should therefore find that those

to the north should be more central to the haplotype network, and those to the south should

be placed towards the tips of the network.

4.1.1 Nested Clade Phylogeographic Analysis

We present the results of the analysis using NCPA, as described by Emerson and Oromi

(2005). Emerson and Oromi used TCS to infer the haplotype tree. Eight loops were formed,

almost all of which were resolved by the criteria of Templeton et al. (1992) and Crandall and
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Templeton (1993), resulting in three possible trees (see Figure 4.2) with equal probability

based on the sequence data alone. Taking into account the geographical information as well,

Emerson and Oromi (2005) point out that it is more feasible that the population around area

2 colonized into 1 and 3 respectively (corresponding to tree A in Figure 4.2), rather than that

3 colonized into 1 and 2 separately as in tree B of Figure 4.2 (and similarly for 1 colonizing

into 2 and 3 in tree C). This is because, for example, tree B would imply that phylogroup 3

colonized into 1 through, but not including, the already inhabited area of 2. Combining all

the criteria and information described, tree A of Figure 4.2 is chosen as the one which, based

on the methods of Templeton et. al., explains the most phylogeographic information included

in the data.

The chosen tree was then nested using the methods described by Templeton et al. (1987)

and Templeton and Sing (1993), with the resulting nesting design shown in Figure 4.3.

Figure 4.2: The three possible haplotype trees for the beetle data, taken from Emerson and
Oromi (2005), related to the map.

The nested clades were then tested for significance using Nested Analysis of Variance

(NANOVA). The results of the analysis are shown in Table 4.1.
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Figure 4.3: The inferred haplotype tree of the beetle data using TCS together with the criteria
described by Templeton (1998), taken from Emerson and Oromi (2005). It corresponds to tree
A of Figure 4.2, and was nested using the algorithm and criteria described by Templeton et al.
(1987) and Templeton and Sing (1993).

Ancestral areas

In order to identify the root of the tree, Emerson and Oromi (2005) first investigated the

existence of haplotypes which satisfy the empirical predictions of Crandall and Templeton

(1993) and Posada and Crandall (2001) based on coalescent theory. Crandall and Templeton

(1993) observed that root haplotypes on average appear at high frequency, occur in the

greatest number of populations, have multiple connections with singletons (i.e., haplotypes

which were observed only once), and are located at the interior of a network. However, none

of the haplotypes in the inferred tree satisfied all of those criteria. Instead, a hypothesis

involving regional population extinction and recolonization was considered. Although NCPA

does not directly test this scenario, individual events which were deduced, together with

a large percentage of missing intermediates around the centre of the tree, point towards

the extinction of the root haplotype. This was further suggested by the fact that haplotypes

occurring around the area Olen, which is predicted to be the ancestral area before the analysis,

shows several haplotypes all around the central interior area of the tree. In fact, the three

locations Montana Tagoja, Fuente Olen and above Fuente Olen collectively contain almost
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Figure 4.4: The proposed colonization scenario obtained by interpreting the output of NCPA;
the Figure is taken from Emerson and Oromi (2005). The island was colonized from the East.
The North of the island was colonized in a clockwise fashion, and two independent migrations
occurred to the South.

all set of connections around clade 3.3 (shown in grey in Figure 4.3). As a result, the eastern

flank of the north shield is suggested to be the ancestral area of the island.

4.1.2 Bayesian haplotype tree approach

We implemented the phylogeographic methods described in Chapters 2 and 3 for the beetle

dataset. Specifically, we first ran the analysis for an unknown number of clusters in order to

infer the MAP estimate for K, the number of migrating haplotypes. We then fixed the num-

ber of clusters and repeated the simulations, discussing the output in detail, both in terms of

their statistical significance, as well as in relation to the results following the NCPA analysis

presented in the previous subsection. For computational efficiency, we assume a uniform dis-

tribution on the haplotype tree temporal orderings Hj. The MAP estimate of the haplotype

tree, posterior cluster distributions and ancestral areas are discussed carefully. Finally, the
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Clade p-value Chain of inference Conclusion

1.1 0.0042* 1-2-11-12 No contiguous range expansion
2.1 0.0532** 1-2-11-17 No inconclusive outcome
2.3 0.0473* 1-2 inconclusive outcome
2.14 0.0219* 1-19-20-2 inconclusive outcome
3.2 0.0527** 1-2-11-12 No contiguous range expansion
3.6 0.0010* 1-19 No allopatric fragmentation
3.7 0.0000* 1-2-3-4 No restricted gene flow with isolation by distance
4.1 0.0000* 1-2-11-12-13 Yes past fragmentation followed by range expansion
4.2 0.0000* 1-2-11-12 No contiguous range expansion
4.3 0.0000* 1-2-3-5-6-13 Yes past fragmentation followed by range expansion

Total tree 0.0000* 1-2-11-12 No contiguous range expansion

Table 4.1: Results from NCPA NANOVA, taken from Emerson and Oromi (2005).

# of clusters 1 2 3 4 5 6
post. model prob. 0.00 0.00 0.00 0.00 1.00 0.00

Table 4.2: The posterior masses for the number of clusters. The existence of six clusters
is suggested, showing the highest posterior mass of 1.00. Due to the different clustering
construction used in order to describe phylogeographic predictions, these probabilities differ
from the corresponding ones inferred by Brooks et al. (2007).

convergence of the chains is assessed. A simplified version of the Bayesian approach described

here is presented in Brooks et al. (2007), using phenotypic rather than phylogeographic clus-

tering.

We ran the analysis on the phylogeographic data for an unknown number of clusters,

taking ds = 2; this resulted in nine loops. The posterior masses for the number of clusters

are shown below in Table 4.2.

For the six-cluster model, the posterior mode for the tree is shown in Figure 4.5, with

the posterior mean cluster of each haplotype superimposed as the colour. Figure 4.6 shows a

geographical contour plot of the inferred posterior distributions of the clusters. Comparing

the MAP estimate for the tree with the results of the analysis following TCS, we see that

almost all connections are identical, with the exceptions of the branch 53-29-48 and branch

51-55-68. The former is placed around the same area within the tree as before, whereas the

latter is moved from the interior of the tree to being a leaf. It is worth pointing out here that

the tree deduced from TCS is indeed one of the trees in the set Ω fixed by the data using the

Bayesian approach.

The ancestral locations predicted by Emerson and Oromi (2005) agree with the results of

our analysis, shown in Table 4.3. Specifically, the most likely ancestral areas, all belonging to
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Figure 4.5: The MAP estimate of the haplotype tree for the beetle dataset, where colour
corresponds to cluster and size to the number of individuals sampled with each sequence. We
notice that all migrating haplotypes appear to be extinct or unsampled.

the green cluster, indeed agree with the prediction of La Palma having been colonized from

the east. The fourth most likely location, with probability around 0.10, is located in the

midwest of the island, representing the secondary colonization which occurred in the south

of the island shown in Figure 4.4.

Convergence diagnostics

In this case, the clustering almost never changes after burn-in. As a result, both the number

of clusters K and the clustering c show minimal mixing after convergence is reached. This is

because, in phylogeographic clustering, local moves are not always possible. The “most local”

move is usually one where only one of the datapoints of a migrating haplotype is moved to

another cluster. In this case, we notice that almost all the migrating haplotypes are, in fact,

inferred to be extinct. This implies that no datapoints can be moved, and the clustering is
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Figure 4.6: Correponding bivariate normal contour plots for the beetle dataset evaluated
at the posterior means. The haplotype numbers correspond to the previous Figure 4.3 ob-
tained using NCA. The circles indicate sampling locations, with the larger circle indicating
the location most likely to include the root node.

not altered by such a local move. In order to assess the output of the MCMC algorithm, we

start the chain from 10 different and over-dispersed clusterings, and confirm that the same

unique clustering c is reached.

We show trace and density plots of a few representative clustering parameters (see Figure

4.7), suggesting convergence of the parameters.

Finally we investigate the convergence of the tree topology by comparing the posterior
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location posterior mass

Above Fuente de Olen 0.30
Montaña Tagoja 0.13
Fuente de Olen 0.13

Montaña de la Venta 0.11

Table 4.3: Posterior ancestral probabilities of the top four sampling locations of the beetle
data.

probabilities of tree topologies for two different chains with different starting points, which all

yield trivial rearrangements of the same tree. Although the MAP estimate of the clustering

is unique (subject to trivial rearrangements), the MAP estimate for the tree topology is

different depending on the starting point of the chain, implying that the tree topology has

not converged. Instead, any of the topologies which allow the MAP estimate of the clustering

to be achieved appear with a high probability. Since, however, both the clustering and the

root estimates appear robust under all such topologies, it is sufficient to assume that they are

all equiprobable a posteriori.
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Figure 4.7: Trace and density plots for µ and Σ for the beetle dataset, showing very good
mixing and matching posterior densities. Here the parameters correspond to the same clus-
tering throughout, since the clustering stays constant.
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4.2 The weevil dataset

Rhinusa vestita is a seed parasite weevil feeding and reproducing on snapdragons. It is

believed to have been present in Portugal, Spain, France and Italy (see Legarreta et al.,

2008). 1 The complete nucleotide sequence for the mitochondrial COII gene (722 bp) was

obtained for 275 Rhinusa vestita individuals. Below is a map of the localities (see Figure 4.8).

Figure 4.8: Map of the sampling locations of the R. vestita dataset.

Previous studies investigating the host association of weevils with three host plant species,

combined with knowledge about the glaciation history of the iberian peninsula (see Hewitt,

2000), led to the biological prediction that the species originated from the Rhône valley to

the east and west (see Legarreta et al., 2008).

4.2.1 Nested Clade Phylogeographic Analysis

A total of 74 haplotypes were revealed with 75 variable sites (10%), 46 of which were parsimony

informative (61%). A combination of phylogeographic and population genetic analyses were

used to understand the population history of R. vestita. The haplotype tree shown in Figure

4.9 was formed using TCS and the criteria of Crandall and Templeton (1993) to resolve

1This is a paper in preparation. The NCPA analysis and biological predictions were carried out by my
collaborators, Dr L. Legarreta and Dr B. C. Emerson, whereas the MCMC approach was implemented by me.
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loops. The NCPA results for the nesting clades where significant geographical association of

haplotypes was found are shown in Table 4.4.

Figure 4.9: The inferred haplotype network for the R. vestita data using TCS. Here the
colours of haplotypes correpond to the locations shown in the map.

The highly divergent sequences of related Rhinusa species meant that the tree could

not be rooted using an outgroup. As with the beetle dataset, the empirical predictions

of Crandall and Templeton (1993); Posada and Crandall (2001) from the coalescent were

applied to infer the root haplotype. In this case, haplotype 2 satisfied the usual criteria

of being the most frequent, broadly distributed geographically and with many mutational

connections. However, as pointed out by Emerson and Oromi (2005), under a model of

extinction and re-colonization this prediction may be false, but genealogical and geographical

unity of haplotypes can be used to identify ancestral haplotypes and the likely ancestral area.

In this case, the Rhône Valley area is consistent with a number of range expansions to the

Alps, the Pyrenees and Iberia, placing the ancestral haplotypes as extinct and located around

the center of the haplotype tree.

Specifically, haplotypes from the Rhône Valley form an almost continuous connection, and

span the length of the network occurring in the two major clades, supporting the inference of
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Figure 4.10: The colonization scenario inferred using GeoDis and biological predictions.
Two main ancestral locations were identified, one around the Rhône Valley in France to the
East and West, and one around the South of Spain towards the North-West and back into the
East.

the Rhône Valley as an ancestral area.

Regardless of the lack of samples in this area, the star-like pattern derived from haplotype

1 is indicative of a population expansion. Moreover, all of the haplotypes sampled from the

vast geographical area to the south and west of the Pyrenees are derived from, and closely

related to, haplotype 1 (Figure 4.9), suggesting that mitotypes in the rest of Iberia are perhaps

also closely related irrespective of geographical distance.

A refuge area is usually characterized by the fact that the genetic diversity is higher

than in areas that were colonised by the refuge (see Avise, 2000), and the Rhône Valley

area shows the highest nucleotide diversity (see Legarreta et al., 2008). Additionally, there

is a low proportion of haplotypes around the Rhône descended from haplotypes outside the

area. Finally, if Rhône were not the primary ancestral area, two long distance colonization

events would need to be evoked in order to explain the current distribution, which is a less

parsimonious scenario.

When considering the Rhône as the origin of a series of range expansions east and west to

colonize the Alps, Pyrenees and Iberia, the distribution of haplotypes in the area of study is

clearly understood. Therefore, based on both geographic and genetic arguments, the Rhône

Valley is consistent with being a glacial refugial area for Rhinusa vestita with subsequent
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Clade Inference

1-1 Unable to discriminate between range expansion,
long distance colonisation and past fragmentation

1-8 Restricted gene flow with isolation by distance
2-1 Unable to discriminate between range expansion,

long distance colonisation and past fragmentation
2-7 Past fragmentation followed by range expansion
3-1 Unable to discriminate between isolation by distance

(short distance movements) and long distance dispersal
3-2 Inconclusive outcome

Table 4.4: The significant clades of the NANOVA for the weevil dataset.

# of clusters 1 2 3 4 5 6
post. model prob. 0.00 0.00 0.00 1.00 0.00 0.00

Table 4.5: The posterior masses for the number of clusters for the weevil dataset. The
existence of five clusters is suggested, showing the highest posterior mass of 1.00.

range expansions as the ice sheet retreated. Estimation of the timings of range expansions

provides further support for this.

The two clades for which past processes could be inferred without uncertainty by following

the inference key are marked with an arrow in Figure 4.9. Clade 1-8 was inferred to have

restricted gene flow with isolation by distance, and Clade 2-7 showed past fragmentation

followed by range expansion (Table 4.4).

In terms of individual migration events, haplotypes 20 and 11 are inferred to have migrated

into the Alps, explained by past fragmentation and range expansion. In the Iberian peninsula,

haplotypes 51, 1 and 2 migrated, with 2 having colonized in different routes to the SW and

NW.

4.2.2 Bayesian haplotype tree approach

As with the beetle dataset, we implement our method on the weevil dataset, taking the

maximum parsimony level at ds = 0, yielding nine loops. As with the beetle dataset, here we

assume a uniform distribution on the temporal orderings Hj for computational efficiency. In

this case convergence proves to be harder to achieve, because of the structure of the data.

We ran the analysis on the phylogeographic data for an unknown number of clusters. The

posterior masses for the number of clusters are shown below in Table 4.5.

The results of our method are shown below through a MAP estimate of the haplotype tree

(see Figure 4.11) and a geographical contour plot (see Figure 4.12). A first implementation
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of the MCMC approach described in this thesis is presented by Manolopoulou et al. (2008).
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Figure 4.11: The MAP estimate of the rooted haplotype tree using our approach, where
colour corresponds to cluster and size to the number of individuals sampled with each sequence.
Here the haplotype numbers correspond to those of figure 4.9. We notice that haplotype 2 is
abundant, existing in almost all of the population clusters.

In this case, the hyperparameter γ became important. Taking different values for Ψ

yielded quite difference clusterings for a fixed γ, especially in regard to the NW locations.

Allowing γ to vary ensured robustness of the method, increasing the posterior mean for larger
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Figure 4.12: Correponding bivariate normal contour plots evaluated at the posterior means
for the weevil dataset. The circles indicate sampling locations, with the larger circle indicating
the location most likely to include the root node. The colours correspond to the clusters shown
in Figure 4.11.

values of Ψ.

Two main ancestral locations were identified, as shown by the probabilities in Table 4.6.

The first is in the south-west location of Torres, with probability 0.24, whereas the second,

third and fourth around the Rhône valley, in Petit Luberon, Brissac and Menton. Taking a

closer look at the tree, we observe that the Rhone area locations contain haplotypes from all

descendant branches of the inferred root, whereas the south-east location of Torres contains

only haplotypes from one of the branches. This indicates that the Rhône valley is the originial

ancestral area, whereas Torres corresponds to a secondary ancestral area. It is interesting

to see that the results of our analysis match the biological predictions very well. Indeed,

the Rhone valley appears to be the original ancestral location, and Torres to be a secondary

location of origin. Observing the tree, we confirm that there is evidence of some re-colonization

from the French Alps back into the Iberian Peninsula, as demonstrated by haplotypes 1, 7,

23, 24, 25, 29, 44.
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location posterior mass

Torres 0.24
Petit Luberon 0.19

Brissac 0.12
Menton 0.11

Table 4.6: Posterior ancestral probabilities of the top four sampling locations of the R.
vestita data.

Convergence assessment

As before, we present trace plots and convergence diagnostics for the various parameters.

In this case the mixing of the clusterings is better: the migrating haplotypes are ones with

several datapoints. This implies that it is possible to move between two different clusterings

simply by moving one of the datapoints of a migrating haplotype from one cluster to another.

Such a move is local enough to be accepted.

As with the beetle dataset, we investigate convergence of the means and covariances by

observing the trace plots shown in Figure 4.13, which indicate good mixing. Although the

MCMC sampler essentially stops moving once the maximum a posteriori clustering is reached,

the same state is achieved from any starting point, indicating that the algorithm has indeed

converged.

Finally we investigate the convergence of the tree topology by comparing the posterior

probabilities of tree topologies for several different starting points, all yielding tree topologies

which allow the MAP clustering shown above.
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Figure 4.13: Trace and density plots for µ and Σ of the clusters for the weevil dataset.
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4.3 The salmon dataset

We use a mitochondrial dataset of length 6397 from the NADH genes of 62 New Zealand

chinook salmon (Oncorhynchus tshawytscha) individuals collected by Gemmell et al. (2006)

in the period 2003-2004 in order to investigate associations between mtDNA SNPs and male

fecundity. There has been substantial evidence that mtDNA plays a significant role in male

fertility; (in humans, see Montiel-Sosa et al., 2002). Here we use a number of measurements

associated with sperm longevity, velocity and other sperm characteristics to identify potential

associations with nucleotide mutations. For each individual, 16 phenotypic measurements are

available 2.

Previous analysis of the data by Gemmell et al. (2006) showed that there exist significant

associations between haplotype groups and sperm velocity, and that sperm longevity does not

appear to be correlated with mtDNA mutations.

We implemented our method in order to demonstrate the applicability of the algorithm.

However, we illustrate a couple of limitations which deem our analysis insufficient, and de-

scribe how the algorithm may be extended to account for these shortcomings.

4.3.1 Bayesian haplotype tree approach

We apply the phenotypic clustering approach described in Section 2.2, aiming to identify if

any of the measurements show a significant change with a SNP.

After implementing Algorithm 3.7 we immediately observe that there is a large number

of back-mutations. In a total of 14 observed haplotypes, using a parsimonious level ds = 0,

9 loops are formed, implying that phylogeny-based inference will inherently be unreliable.

For this reason, we consider all possible trees purely on the basis of the clustering fitness,

and ignoring the evolutionary model. In other words, we consider the haplotype tree to be a

similarity-type tree, without any assumptions about the process generating it.

Referring back to the Model 2.6 for phenotypic data described in Section 2.2, remember

that one of the properties of the Inverse Wishart distribution of the covariances is that the

larger the degrees of freedom, the smaller the variance of their distribution. In this case, taking

all 16 dimensions into account implies that the degrees of freedom are forced to be at least 18.

However, such a precise prior is non-sensical: there is no prior information suggesting such

strong support for a specific hypothesis for the covariance matrices. As a result, a different

prior is required, and here we use the simplified model that the dimensions are independent

2The phenotypic measurements available are not described in detail here because the data are yet to be
published.
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of each other, with prior for the variances

σ2
i ∼ IG(a, b),

where a = b = 10−4. In addition, we let the maximum number of significant mutations be

Kmax = 5, and we fix the variance for µ to be 1000.
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Figure 4.14: The MAP estimate of the haplotype tree, where colour corresponds to cluster
and size to the number of individuals sampled with each sequence

We first allow the phenotypic measurements which are included in the clustering analysis

to vary through z simultaneously with K. Implementing the Reversible-Jump algorithm for

variable dimensions of Section 2.2 in combination with the RJMCMC for an unknown number

of clusters described in Section 2.4, we obtain that there are only two measurements which
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0 1 2 3 4 5
0.00 0.41 0.32 0.18 0.07 0.02

Table 4.7: The posterior probabilities for the number of significant mutations K. Both the
two and the three-cluster model show high posterior mass. Note tht they do not sum to one
due to rounding.

shows the most significant change with a mutation, namely GSI, the gonadosomatic index,

and SLOW-PCT, the Slow Post-Coital test, with posterior mass > 0.90. The posterior model

probabilities for the number of clusters are shown in Table 4.7.

We we-run the analysis, using only GSI and SLOW-PCT and fixing K = 2 so that three

clusters are formed. The results are shown in the clustered haplotype tree and density plots

below. We see that the three clusters are separated mainly because of a difference in the

variance of the measurements within each cluster rather than the mean.
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Figure 4.15: Correponding estimates of the distribution of the significant measurements for
each cluster, where colour corresponds to cluster.

It is interesting to see that the clusters are separated due to the difference in the variance

of the measurements within each cluster. This leads to the significance of sperm longevity

characteristic, whereas previous analyses indicated sperm velocity. This discrepancy is prob-

ably because traditional tests assume a common underlying variance, and do not test for a
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difference in the variance. It would be worthwhile to conduct a further analysis where the

within-cluster variances are assumed equal, and investigate differences in the means.

We point out here that there are two serious drawbacks with our approach. Firstly, there

were several unknown nucleotides in the dataset. Our analysis, however, assumed fixed DNA

sequences. As a result, polymorphic sites with unknown nucleotide were ignored, collapsing

the number of haplotypes to 14. In order to take unknown nucleotides into account, these

may be added into the MCMC parameter set as a parameter which is updated at each

iteration. A single change in a nucleotide position may have a serious impact on the topology

of the haplotype tree, and hence this extension may greatly increase the complexity of the

algorithms.

Secondly, we described in an earlier Section 2.2 how both the Inverse Wishart prior and the

independent Gamma prior suffer from limitations in the model. This was directly observed

in the analysis here: the posterior estimates were highly dependant upon the IW prior, and

hence the Gamma prior was used, which assumed the unrealistic premise of independence

of the phenotypes. The model should be extended to use the Generalised Inverse Wishart

distribution in order to draw reliable conclusions.

Convergence assessment

As before, we present some representative trace plots (see Figure 4.16) and Gelman-Rubin

plots (see Figure 4.17), showing that all clustering parameters indeed seem to have converged.

In this case, we do not draw inferences about the tree based on an evolutionary model. As

a result, the variability of the MAP estimate of the tree is great. However, for all different

MAP trees, the MAP clustering is consistently the same with the same probability, indicating

that although the marginal of the tree has not converged, the clustering distribution is not

affected.
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Figure 4.16: Trace and density plots for cluster parameters of the salmon dataset, showing
good mixing of the parameters and matching posterior densities from two different starting
points.
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dataset, suggesting that the tree parameters have indeed converged.



Chapter 5

Conclusion

The objective of this thesis was to construct phenotypic and phylogeographic clustering meth-

ods based on DNA sequence data. We began by presenting existing approaches of inferring

phylogenies and analyzing phenotypic and phylogeographic data in Chapter 1. The main

methods used at the moment, Nested Clade Analysis (NCA) and Nested Clade Phylogeo-

graphic Analysis (NCPA) described in Subsections 1.2.6, 1.3.1 and 1.4.4, proceed by first

deciding on a unique (or nearly unique) haplotype tree. The phenotypic/phylogeographic

data in then analyzed based on consecutive analyses of variance (for phenotypic data) or

permutation tests and application of a descriptive inference key (for phylogeographic data).

The results are highly dependent on the initial tree inferred and the criteria proposed used

are not always well-defined, and can be subjective. As a result, NCA and NCPA have been

frequently criticized; see Subsection 1.4.4.

We then presented a coherent model-based Bayesian alternative to NCA and NCPA which

shows significant improvement to phenotypic and phylogeographic clustering problems. We

devised two clustering constructions based on a haplotype tree for NCA and NCPA respec-

tively, so that the results of the analysis are consistent with phenotypic and phylogeographic

effects. The haplotype tree was simultaneously inferred by assuming the coalescent model of

evolution and using a general mutation model for the sequences, at the same time yielding

results along Templeton’s lines, allowing for direct biological interpretation.

Both inference about the clustering and about the haplotype tree involved a number of

challenges. In clustering inference, designing sound clustering constructions based on the hap-

lotype tree was crucial for our analysis, and the phenotypic and phylogeographic clusterings

were devised based on the biological processes involved in the phenotypic and geographical

distributions (see Sections 2.1-2.3). These allowed for a more natural interpretation of the

output of the analysis which reduced the subjectivity of the results.

In phenotypic clustering, we presented an algorithm which allowed us to identify specific
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phenotypic measurements which shows a significant change with mutations (see Section 2.2),

allowing for large datasets to be easily narrowed down to characteristic traits which are

“interesting” in terms of the significant mutations.

The parameter space of phylogeographic clusterings is vast and its construction highly

complex. As a result, it was essential to employ adaptive techniques in order to explore the

space of clustering possibilities efficiently. We described a number of tricks which improved

the convergence and efficiency of the MCMC sampler.

In order to draw inferences about the haplotype tree, we developed an explicit probability

model based on the coalescent and the GTR mutation model. This model provided a solid

statistical framework which confirmed the empirical predictions of Crandall and Templeton

(1993), Posada and Crandall (2001) and Emerson and Hewitt (2005) and allowed for backward

inference. In other words, we were able to assess the probability of various ancestral scenarios

based on the posterior probability rather than using forward simulations.

The haplotype tree model presented several issues. Intractable likelihoods and normal-

ization constants were addressed by using Approximate Bayesian Computation techniques

(see Subsection 3.1.3). The vast discrete parameter space of trees required the construction

of efficient adaptive proposal distributions in order to achieve convergence. We described

an efficient way of exploring the space of trees, by associating trees with deletions of edges,

vastly reducing computational complexity (see Section 3.8). Although this approach was used

here for haplotype trees, it can be applied to a number of tree inference problems (such as

graphical network inference).

Finally, it was important to ensure that our algorithm was automated, so that the output

was comprehensive and concise, allowing it to be used by non-statisticians. We created a

software package described in Appendix E which yields biologically interpretable as well as

statistically meaningful results.

One of the main advantages of our approach is that it allows for uncertainty to be prop-

agated throughout the analysis, since the geographical distribution of a population often is a

valuable source of information for drawing conclusions about a species’ phylogeny. Although

NCA and NCPA sometimes enable the intuitive inclusion of geographical information dur-

ing the cladogram forming stage, their criteria are descriptive, here we give a more rigorous

statistical basis to the connection between geography and phylogeny.

The coalescent model is a well-established tool in population genetics. As well as being a

more accurate representation of the evolutionary process, it allowed us to implicitly incorpo-

rate many of the phylogeographic predictions, it affords direct inference of ancestral locations

in phylogeographic data (see Section 3.11).

Taking a model-based approach to the phenotypic and phylogeographic clustering prob-
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lems offers itself to modifications and additions. In all simulations as well as real datasets,

we assumed that our data are Normaly distributed. However, any distribution may be used,

with all relevant formulae replaced by the appropriate distribution functions. Similarly, a

number of mutation and evolutionary models may be considered instead of the ones assumed

in this study.

Perhaps the most important advantage of our method is that it provides quantitative

measures of the statistics of interest. For example, we were able to associate probabilities with

any one location as being the source population for later spread to all the areas sampled. The

results of our analysis were confirmed both by simulations, as well as predictions of biologists

regarding the beetle and weevil data.

In Chapter 4 we implemented our method on two phylogeographic datasets and a phe-

notypic dataset. In both geographical datasets, our results agreed with the NCPA, and

confirmed many of the biologically intuitive predictions about ancestral locations population

dispersal patterns. In the phenotypic dataset, we were able to identify characteristic traits

which showed a significant change with mutations, and separated the data into phenotypically

different haplotype clusters.

5.1 Future work

There are several ways in which this work can be further improved and extended, many of

which have been mentioned in earlier chapters. We divide them into two categories, depending

on whether they are related to the clustering algorithm or to the tree.

5.1.1 Improvements on clustering inference

Although adaptive techniques were employed in this study, the construction of more efficient

proposals for the clustering is still a challenging and important issue which greatly affects the

runtime of the algorithm. One of the ways in which this can be achieved is by using Population

MCMC techniques, which essentially allow for multiple chains to be run simultaneously and

the main chain to move around the possible available chains (see Laskey and Myers, 2003;

Doucet et al., 2006)

In phenotypic clustering we described how the Inverse Wishart prior distribution imposes

a number of constraints on prior belief which are often unrealistic (see Section 2.2). Using the

Generalized Inverse Wishart offers a number of advantages which will allow for more reliable

phenotypic clustering inference.

Within phylogeographic clustering (see Section 2.3) we discussed how the migrating hap-

lotype clustering construction we implemented does not explicitly allow for fragmentation
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events. The phylogeographic clustering can easily be extended to allow for a more general

shared haplotype setting to account for a wider variety of phylogeographic events. Further-

more, specific models of phylogeographic hypotheses such as range expansion, restricted gene

flow and fragmentation can be employed in order to asses particular scenarios. Dispersal

patterns, however, are often too complex to model accurately, and hence such an extension

is challenging.

In Subsection 2.3.2 we described how using both the migrating haplotype and the pheno-

typic clustering within a phenotypic clustering problem can allow us to investigate whether

the significant mutation is unsampled, by comparing which of the two clusterings shows a

better fit with the data. Of course, the migrating haplotype clusterings are more general

than the significant mutation clusterings, which implies that they will always show a better

fit in terms of the likelihood. However, they naturally have a much broader prior, implying

that they will not always yield a higher posterior mass.

Finally, in Section 3.12 we explained how the two clustering constructions for phenotypic

and phylogeographic data may be combined in order to analyze data which include both

phenotypic measurements and geographical locations. Taking into account both sources of

information can have a valuable effect on the inference about the haplotype tree, at very little

computational cost. In the case of the beetle dataset, Emerson et al. (2006) hypothesised

that the observed range expansions followed similar expansions in the host species Pinus

canariensis and it would be interesting to conduct a complementary phylogeographic study

to determine the extent of any such association.

5.1.2 Improvements on inference about the tree

The main drawback of our method is the inefficiency of tree inference. We discussed how

inference about the tree is unreliable based only sequence data (see Section 3.9), at the same

time heavily adding to computational complexity. The complexity can be hugely improved by

increasing the number of importance samples taken to approximate the likelihood of haplotype

trees, all of which may be calculated in parallel. In addition, better adaptive proposals may

be devised in order to allow full exploration of the tree space.

Another important disadvantage of the tree algorithm described in this thesis is that it

is inherently based on parsimony, which is known to often lead to false conclusions. As a

result, many of the potential improvements to the methods aim to address the accuracy of

the assumptions.

In Section 3.6 we described how allowing the parsimony level ds is computationally very

expensive. However, it is essential that we set it to be reasonably large in order to ensure

that the true haplotype tree is indeed contained in the set Ω. More efficient tree moves should
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be devised to improve the efficiency of the MCMC sampler so that ds can be set arbitrarily

large.

We discussed how extensive homoplasy can imply that sequences cannot be collapsed

onto haplotypes in Subsection 3.1.2. In those cases, even when ds is assumed as large as

desired, the set Ω will never contain the true tree. This could be addressed by introducing

a parsimonious index for each nucleotide site, indicating whether that site is assume to be

parsimonious or not. Such an approach is similar to testing the parsimony assumption for

each site, as described by Templeton et al. (1987). In our analysis, generally a site l will

analogously breach the parsimony assumption if it has a very large mutation rate φl.

One of the assumptions of the haplotype tree model was a uniform prior on the size of

the trees (see Subsection 3.1.2). This has an immediate consequence: it implies that, in

effect, any non-minimal tree has a significantly smaller probability, because the probability of

a mutation is very small. Although the MAP estimate of the tree may still be non-minimal

because of, for example, geographical information which dominates the probability of the tree,

it is important to investigate alternative prior distributions for the size of the haplotype tree.

Both limitations above could be overcome by constructing an efficient MCMC sampler

which will implement the clustering algorithm on coalescent rather than haplotype trees, as

described in the Appendix C. Although such an adaptation is potentially valuable, it is a

challenging problem.

In this thesis we used the simplest form of the coalescent model (see Section 3.1), assuming

a constant population size. This could be extended by allowing population growth (see

Slatkin, 2001), and also allowing the population size of each population cluster to vary.

Finally, the methods described here do not allow for unknown nucleotides. In real datasets,

such as the salmon dataset used in Section 4.3, there are often unknown nucleotides. These

may be completely unknown, or there may be uncertainty between, say A or G. In our

analysis, the different possibilities may yield very different trees, adding to the complexity of

the analysis. The state of each nucleotide in the data (represented by different nodes in the

haplotype tree) would be considered a parameter within the model which would be updated

in a separate MCMC update together with the tree.
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The label-switching problem

As is common with mixture modelling, our model suffers from the so-called label-switching

problem caused by symmetry in the joint probability distribution of the data given the model

parameters. This has the practical consequence that the collection of nodes labelled in one

iteration of the MCMC algorithm as group k (with associated mean and covariance µk and

Σk) may be labelled as group j 6= k in the next iteration. The standard approach to over-

coming such difficulties is to introduce an essentially arbitrary identifiability constraint such

as ordering the components in terms of the associated component parameters e.g., the mean.

This sort of approach was unsatisfactory in the range of examples we considered due, mainly,

to the multidimensional nature of the mixture distributions and the tendency for there to be

considerable overlap between the marginal distributions associated with the bivariate normal

components. Ordering based upon distance of the mean vector from a fixed point as well as

ordering based upon the properties of the tree (e.g., start at the left of the tree and label the

components as you visit them) all failed to produce sensible results (see Brooks et al., 2007).

We present two approaches below which proved reliable at addressing label-switching

issues. The first one, by Stephens (2000), described a method where the labels are chosen

post-simulation based on the clusterings of each iteration. The second approach by Scott

and Wang (2006) assigns labels at each iteration during the MCMC algorithm, and is more

efficient when computational memory storage is limited.

A Method described by Stephens (2000)

We adapt the algorithm described in Stephens (2000) in order to draw inferences about

component parameters of the phenotypic/phylogeographic clustering problems described in

this thesis. The method is based upon choosing the labels ν(t) post-simulation. Suppose

we have a sample of T MCMC sample observations. For any observation t we require a
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permutation νt of the the associated component labels that provides us with a consistent

labelling for all t = 1, . . . , T . Stephens suggests the following iterative algorithm.

Starting with some initial values for the permutations ν1, . . . , νN of the first N steps

(setting them all to the identity permutation for example), iterate the following steps until a

fixed point is reached:

Step 1: Choose â to minimise
∑N

t=1 L0

(

â; ν(t)
(

θ(t)
))

.

Step 2: For t = 1, . . . , N choose νt to minimise
∑N

t=1 L0

(

â; ν(t)
(

θ(t)
))

.

Stephens (2000) suggest the loss function

L0(Q; θ) =

k
∑

z1=1

· · ·
k
∑

zn=1

p1z1(θ) . . . pnzn(θ) log
p1z1(θ) . . . pnzn(θ)

q1z1 . . . qnzn

=

n
∑

i=1

k
∑

j=1

pij(θ) log
pij(θ)

qij
.

It is easy to check that in step 1 the q̂ij which minimizes L is given by

q̂ij =
1

N

N
∑

t=1

pij

(

νt

(

θ(t)
))

.

Using the loss function suggested in Stephens (2000), starting with the identity permuta-

tion, the algorithm becomes a single step:

Pick a labelling to maximise

∑

j,l

log
1

t

(

t
∑

i=1

I
c
(i)
jl =c

(t)
jl

)

where cjl denotes the cluster of the lth observation of haplotype j. In other words, this

algorithm picks labels for each group so that “as many datapoints as possible belong to their

favourite cluster”.

The disadvantage of the above algorithm is that the labelling has to be done post-

simulation, so all the values of the cluster parameters of interest have to be stored, which

often proves computationally inefficient. An alternative approach which overcomes memory

storage issues is described below.

B Method described by Scott and Wang (2006)

Scott and Wang (2006) suggest an inference-based method of choosing the clustering labels

at each iteration. It is based upon finding the parameters which maximize the likelihood
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during burn-in, and then choosing all subsequent labels by relating the parameters to the

maximizing ones. This method works well with our model, and requires little computational

memory. Specifically, the algorithm works in the following way.

During burn-in

1. Calculate ℓ(g) = p(y | θ(g))p(θ(g)).

2. Let z∗ be the z(g) with the largest ℓ(g).

Thereafter

1. At each iteration draw ν(g) | y, θ(g), z∗.

The disadvantage of the algorithm is that if the chain has not converged by the time burn-in

finishes, the value of the maximizing parameters will not ensure that the labelling is assigned

efficiently, and it is sometimes difficult to distinghuish between poor convergence and poor

labelling.
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Proofs

Lemma 3.1.1 Using the specified priors (3.8)-(3.11), the joint posterior of the mutation

parameters given the rooted haplotype tree is given by

P(φ,π,v | S,T , r) ∝ P(T | r,φ,π,v) × p(r) × p(π | r) × p(φ) × p(v)

Proof.

P (φ,π,v | S,T , r) = P (φ,π,v,T , r | S) × P (T , r | S)

= P (T | S, r,φ,π,v) × P (r,φ,π,v | S) × P (r,φ,π,v | S) × P (T , r | S)

=
P (T | r,φ,π,v)

∑

Ti∈Ω P (Ti | r,φ,π,v)
× P (r,φ,π,v | ∪ Ti ∈ Ω) × P (T , r | S)

=
P (T | r,φ,π,v)

∑

Ti∈Ω P (Ti | r,φ,π,v)

∑

Ti∈Ω P (Ti | r,φ,π,v) × P (r,φ,π,v)

P (∪Ti ∈ Ω)
× P (T , r | S)

= P (T | r,φ,π,v) ×
P (r,φ,π,v)

P (∪Ti ∈ Ω)
× P (T | S, r) × P (r | S)

= P (T | r,φ,π,v) ×
P (π | r) × p(v) × p(φ)

P (∪Ti ∈ Ω)
× P (T | S, r) × P (r | S)

∝ P(T | r,φ,π,v) × p(r) × p(π | r) × p(φ) × p(v)

Lemma 3.1.2 Similarly, using (3.11)-(3.12) we can calculate the posterior distribution for

the root

P(r | S,T ,φ,π,v) ∝ P(T | r,φ,π,v) × p(r |π)
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Proof.

P(r | S,T ,φ,π,v) =
P (T |S, r,φ,π,v) × P (r|S,φ,π,v)

P (T |S,φ,π,v)

=
P (T | r,φ,π,v)

∑

Ti∈Ω P (Ti | r,φ,π,v)

P (r| ∪ Ti ∈ Ω,φ,π,v)

P (T |S,φ,π,v)

=
P (T | r,φ,π,v)

∑

Ti∈Ω P (Ti | r,φ,π,v)

P (∪Ti ∈ Ω|r,φ,π,v) × P (r|φ,π,v)

P (∪Ti ∈ Ω|φ,π,v) × P (T |S,φ,π,v)

∝ P(T | r,φ,π,v) × p(r |π)

Lemma 3.6.2 When no homoplasy is present, algorithm 3.6 results in a unique tree.

Proof. In the absence of homoplasy, it is easy to check the following facts:

• The effective representatives of two groups are unique. This is true because in the

absence of homoplasy, the mutational distance on the tree is always equal to the distance

of the two sequences in terms of SNP mutations. If this were not the case, i.e., there

exist two haplotypes which are closer in terms of their SNP distance than their tree

distance, then at least one mutation would have had to be reversed, which contradicts

the assumption of no homoplasy. This implies that there is only 1 pair of haplotypes

which satisfies the condition in Step 4 of the algorithm.

• Each SNP mutation uniquely dichotomises the sequences even in the absence of the

tree. This means that it is not possible for two different pairs of groups which have the

same minimum distance to involve the same mutation.

• If two pairs of groups with different minimum distances involve a common mutation,

then the inferred mutations of both will coincide on the shorter branch.

Now assume that the inferred tree is not unique. This is possible in two ways: either two

groups yield two effective pairs of representatives, or two different pairs of groups which

involve a common mutation yield different intermediate sequences. Clearly, none of these is

possible, using the facts above.

Lemma 3.8.2 Algorithm 3.8 identifies exactly j distinct loops. Furthemore, by removing

one of the edges of each loop, we can obtain all subtrees of the original network.

Proof. (a) First we show that it is not possible for the above algorithm to identify less than

j loops. If less than j edges have been removed, there exists at least one loop in the
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graph. Since we repeat the steps in the algorithm until each node does not belong to a

loop, that’s not possible, since that loop would have been broken.

(b) It is not possible for the above algorithm to identify more than j loops. This is not

possible, since after removing the jth loop, no more loops are present, so the algorithm

terminates.

(c) We now assume that there exists a subtree of the original network which cannot be

obtained by deleting one of the edges of each loop. However, it is clearly necessary

that each loop has at least 1 deleted edge, otherwise that loop would remain unbroken.

Hence, by the pigeonhole principle, it is always possible to find a correspondence of

deleted edges and loops so as to obtain every possible subtree.

Theorem 3.8.3 In order to obtain a tree topology by removing edges which belong to loops,

at least one edge which only belongs to one loop has to be deleted.

Proof. First consider two loops named 1 and 2 sharing one or more edges. If they only share

one edge, and since we know that exactly two edges have to be deleted, at least one of the

two will not be shared and the lemma trivially holds. If there is more than one shared edge,

there are two cases, shown in Figure B.1. Either they are all adjacent (an example is shown

in the left hand panel of Figure B.1), or they are not (shown in the right hand panel of Figure

B.1).

11 22 3

Figure B.1: Two possibilities for two loops sharing edges. In the left hand figure, there
are two loops present, 1 and 2. They share three edges, all of which are adjacent. Clearly,
removing any two of the shared edges will not break up the outer loop of 1 and 2. In the
right-hand figure, there are three loops present, but we focus on only two of them, namely
loops 1 and 2. The shared edges are not adjacent in this case, but two are at the top and one
at the bottom. Clearly, even if we remove all of the shared edges, the outer loop will remain.

From the figure it is easy to see that, between two loops, it is necessary to remove at least

one edge in order to break up both loops.
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Now consider the case of a third loop named 3, sharing edges with one or both of 1 and 2

considered above. There are three cases: either loops only share an edge with only one of the

other two loop, or there exists an edge shared between all three loops, or loops share edges

with both other loops pairwse. These three cases are shown in the Figure B.2 below.

1 112 22 33 3

Figure B.2: The three representative possibilities for three loops sharing edges. In the left-
hand figure, loops only share an edge with one other loop. Clearly, the outer loop cannot be
broken unless one non-shared edge is removed. In the middle figure, there exists an edge which
is shared between all three loops, shown by the arrow. As before, clearly the outer loop cannot
be broken unless a non-shared edge is broken. Lastly, in the figure on the right, loops pairwise
share an edge, but again, the outer loop cannot be broken.

Note here that the third case can also be achieved with a similar cyclic structure as the

right-hand panel of Figure B.1. However, the same argument as before applies.

Inductively, we see that it is indeed not possible to break up all the loops unless at least

one non-shared edge is deleted. Aside from examples, the intuitive reason why this theorem

is true is that when removing an edge which is shared between two loops, there are always

two paths to get from one endpoint of that edge to the other, moving along the first or second

loop, respectively.

d

c

b

a

Figure B.3: Two loops, sharing the three edges in the middle. Clearly, the middle one (or
any of the other two) implies that there are two paths between points a and b. Although these
two paths do not necessarily form a loop, it will always be possible to find points c and d such
that a loop is forms, otherwise the two original loops would be identical.
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Lemma 3.8.4 For each tree topology, there is a one-to-one representation of edges deleted

to loops to which they belong.

Proof. Using Theorem 3.8.3, for every tree topology, at least one deleted edge must belong to

precisely one loop. Hence, the correspondence for that edge is unique to that loop. Returning

to the original graph, and removing that edge, at least one of the remaining loop edges must

belong to exactly one loop. As before, the correspondence is unique, we remove that edge

and continue.

Clearly, the above process leads to a one-to-one representation.

Lemma 3.9.1 A local update of the tree topology which changes the edges removed from a

single loop preserves irreducibility.

Proof. As we proved previously, in every group of connected loops, there is at least one edge

which only belongs to one loop. This means that there exists always a local move which will

remove that specific edge. In addition, removing that edge is guaranteed to break that loop,

so if the previous topology T was a tree, so will T ′. Subsequently, considering all but this

last loop, we may repeat the process inductively, and will always be able to reach a specific

tree topology which is obtained by removing a specific set of edges belonging to only one loop

at a time. This tree topology can clearly be reached from any state of T after at most the

number of steps as loops existing, and hence a local proposal preserves irreducibility.
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Clustering on the coalescent

Haplotype trees are inherently based on parsimony and thus impose assumptions on the

coalescent model as described in Chapter 3. As a result, coalescent trees are considered to

provide a more reliable basis for inference in population genetics. Here we implement our

method on coalescent rather than haplotype trees, and describe why a direct adaptation of

our method becomes computationally infeasible.

Remember that in order to draw inferences about the haplotype tree, we essentially cal-

culated probabilities on coalescent trees with mutations which were collapsed onto haplotype

trees. Our method is easily modified so that the clustering is applied directly on the coales-

cent.

A Phenotypic clustering

In order to apply our phenotypic clustering method on a coalescent tree, it is required that

individual mutations can be identified on the tree. Standard coalescent trees do not specify

mutations; the usual peeling algorithm essentially integrates over all possible mutational

paths that may have led to the observed sample. Instead, we can use coalescent trees with

mutations to specify the nucleotide state of the ancestral sequences at each coalescence event.

In other words, rather than summing over all possibilities using the peeling algorithm, we

insert the mutations as a parameter within the MCMC algorithm and update it at each

iteration, similarly to Li et al. (2000). This allows for all mutations to be identified and thus

the phenotypic clustering algorithm to be applied.

In order to distinguish between edges of the coalescent tree which represent mutations and

edges which represent only coalescence events, we apply the clustering algorithm so that only

edges which connect two different sequences may be associated with a significant phenotypic

effect. This can be understood through the top panel of Figure C.1.
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Implementing this approach proves computationally infeasible. The space of coalescent

trees with specified mutations is vast and requires extremely long run times in order to con-

verge. Usual population genetics datasets contain at least 100 datapoints, but the algorithm

here doesn’t converge within a realistic time-frame for datasets containing over 30 different

haplotypes.
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Figure C.1: Examples of phenotypic (top) and phylogeographic (bottom) clusterings on the
same haplotype tree. On the left are shown the clusterings as described in Chapter 2, and on
the right are the equivalent clusterings defined on the corresponding coalescent tree. In the
phenotypic case, it is necessary that the cluster-defining edge of the coalescent tree involves a
mutation i.e., the two sequences at each end are different. In the phylogeographic case, this is
not essential, as shown in the example.

B Phylogeographic clustering

The phylogeographic clustering algorithm we described may be directly adapted to coalescent

trees without requiring the nucleotide state of intermediate sequences to be determined. In

the case of phylogeographic clustering, mutations are not important. As a result, standard

coalescent trees may be used to apply a simple clustering construction. The clustering is

equivalent to the approach used by De Iorio and Griffiths (2004b) described in Section 1.4.3.

Through the bottom panel of Figure C.1 we see that the clustering construction we defined

in Section 2.3 is equivalent to choosing any of the edges of the coalescent tree to separate the

datapoints of the sample.

Implementing our approach proves, again, computationally infeasible. Within the coa-
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lescent, any re-arrangement of identical sequences will have exactly the same probability.

However, the geographical data often provides a useful source of information about the order

in which identical sequences coalesce. In the haplotype tree approach, we used this informa-

tion to construct efficient proposals about the clustering. These proposals cannot be easily

adapted for the coalescent. For a haplotype with 50 datapoints, there are 50! rearrange-

ments of the order in which they may have coalesced (if they are identical by descent), and

the algorithm requires infeasibly long run times to explore the space. The method becomes

inapplicable for datasets over 20-30 haplotypes.
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The hashing algorithm for labelling

trees

We have already described how tree topologies in our analysis can be represented by a finite-

dimensional integer vector (corresponding to the deleted edges of the original network). In

order to draw inferences about the tree topology, a way of efficiently keeping track of this

vector is required. Storing multi-dimensional vectors directly becomes computationally in-

feasible when they consist of more than a few components (representing the number of loops

in the graph). For example, having 20 or more loops would require storing a 20-dimensional

array for each iteration.

Hashing algorithms provide an algorithm by which data can be represented by an integer.

For example, they can be used to create an efficient phonebook, by turning names into

integers which are then inserted into (and may subsequently be retrieved from) a table. This

is analogous to what we require here: we want our integer vectors to be stored into a table so

that it is possible to keep track of how many times each tree topology is visited during the

MCMC algorithm.

First of all, it is straight-forward to construct a one-to-one representation of tree topologies

with an integer. For example, if there are 100 edges and 3 loops in total, and edges 34, 67

and 88 have been removed, then

M = 34 × 1012 + 67 × 1011 + 88 × 1010

gives us a unique integer which is not possible to obtain in any other combination of edges,

since none of the coefficients will ever be larger than 101. This implies that each tree topology

can be denoted by a unique integer.

Although this approach solves the problem of representations, manipulating these repre-
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sentations is still complex. Having a large set of such numbers, many of which can be of

the order 1020 or higher for large datasets, makes it computationally challenging to identify

the most frequently occurring number. It is essential to construct a method by which these

numbers are stored efficiently, allowing us to access quickly.

Hash functions create a short (as short as possible) address book where each of these

numbers is stored in a specific page, in such a way that it can easily be retrieved (see Knuth,

1998). As numbers M appear in our MCMC simulations, we use a hash function which takes

M along with the number of times M has appeared so far to a page of the address book.

If that page already contains M in it, we simply update vM , the number of times it has

appeared, to be vM + 1. If that page contains some other number, we re-apply the function

and move to a different page, until an empty one is found. A good hash function is one which

minimises clashes, i.e., having to re-apply the address function, at the same time keeping the

total number of pages required as low as possible.

At the end, the address book practically has the following form shown in Table D.1, where

the first columns corresponds to the numbers M , and the second represents the number of

times each of these Ms occurred.

M vM

247659 385
N/A N/A

285372 294
824832 103
N/A N/A

Table D.1: An example of a hashing table. The left-hand column shows the number M ,
and the right-hand column shows vM , the number of times the topology represented by M
has appeared. The row number corresponds to the address obtained by the hashing algorithm.
Here some of the rows have not been filled, shown by N/A.

Here we let the number of rows of the hash matrix be N use the following hash algorithm:

Algorithm

1. Calculate P0 = M mod N and go that row. If M is already in the first column, add

1 to the second column of that row. If that page is empty, insert M and 1 in the two

columns. If the page is already taken by another number, go to step 2.

2. Calculate (N − 2) − (M mod (N − 2)) and go to row Pi+1 = (Pi + (N − 2) − (M

mod (N − 2))) mod N . If M is already in that page, add 1 to the second column and
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stop. If that page is empty, insert M and 1 in the two columns and then stop. If the

page is already taken by another number, repeat this step.

It is easy to check that if N is prime, step 2 will eventually have to go through all possible

addresses if no empty one is found. At the end of the MCMC simulation, a simple scan

through the hash matrix can find the entry with the highest number of occurrences, in order

to find the MAP M , which can be easily reduced to the vector of removed edges.



Appendix E

R Package

Many of the methods described have been implemented through an R package. The package

allows for phenotypic and phylogeographic datasets to be analyzed, and the output presented

in several ways.

In the case of phenotypic datasets, the output is presented graphically through the MAP

haplotype tree estimate with clusters shown on each node by a different colour. Using the

same colours, the posterior mean estimates for the distribution of each cluster are shown

through density plots. An example is shown below in Figure E.1. In addition, a number of

output files are created which may be analyzed in directly. An mcmc object is created which

may be directly imported into CODA in order to assess the convergence of the parameters.

Finally, the set of inferred intermediate sequences is stored in a .nex file so that it can be

imported into tree-drawing software.

For phylogeographic clustering, instead of the density plots the clustering is presented

graphically through a contour plot as in Figure E.2, also showing the most likely ancestral

locations. Output files similar to the phenotypic ones as well as CODA objects are created.
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Figure E.1: (a) The MAP estimate of the haplotype tree, where colour corresponds to cluster
and size to the number of individuals sampled with each sequence; (b) Corresponding density
plots for the posterior distribution of each phenotypic component.
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Figure E.2: (a) The MAP estimate of the haplotype tree, where colour corresponds to cluster
and size to the number of individuals sampled with each sequence; (b) Correponding bivariate
normal contour plots and evaluated at the posterior means. The circles indicate sampling
locations, with the larger circle indicating the location most likely to include the root node.
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