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The problem: Data & Aims

Geographical data.

We have aligned DNA sequences from a set of individuals and their

location.

Individual DNA seq location

A ATCGA (1.3, 2.5)

B ATCGA (1.7, 3.9)

C ATTGA (2.9, 0.1)

D ACCGA (3.1, 6.1)

E TTCGA (1.3, 2.5)

We want to split our data into significant clusters in order to draw

conclusions about their geographical and genetic history.
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The mutation process

All individuals have a very long DNA sequence of A,T,C,G.

e.g. Assume initially one sequence present, ATCGA, which then

mutated to TTCGA, ATTGA and ACCGA. This process yields the

graph:

ATCGA

ATTGA ACCGATTCGA

in 2nd place
T−CC−T

in 3rd place

T−A
in 1st place

The resulting data would be (ATCGA,

ATTGA, ACCGA, TTCGA): Not clear

from data which sequence is the oldest.

ATCGA

ATTGA ACCGA

TTCGAATCGA

TTCGA ATTGA ACCGA

ATCGA

ATTGATTCGA

ACCGA

ATCGA

TTCGA ACCGA

ATTGA
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The mutation process

We have l independent and identical parallel Markov Processes (l

length of seqs), 4 states: A, G, C, T, with Q-matrix:

Q =















· πGα πCβ πT γ

πAα · πCδ πT ε

πAβ πGδ · πT ζ

πAγ πGε πCζ ·















We assume we start at stationary distribution π, so any of the l

nucleotide positions equally likely to mutate (independent of

transition matrix) . After a mutation, the process remains

stationary, and by Strong Markov property starts afresh.
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Nested Clade Analyses (NCA)

Idea: Split data into nested groups and perform ANOVA so that

significant branches are determined. Need unique tree.
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Perform ANOVA for each level

of nesting, taking branches as

groups. Testing for significant

groups of our geographical data.

Problems:

• Allows little uncertainty for parameters: Local optima are not

necessarily globally optimum.

• Nested ANOVA does not always give answer to our problem.
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Priors and Distributions

n ∼ Multinomial(N, π)

(πA, πG, πC , πT ) ∼ Dirichlet(B1, B2, B3, B4)

α, ζ ∼ N(2, σ2
m) independent

β, γ, δ, ε ∼ N(1, σ2
m) independent

D|Σ, µ, e ∼ MVN(µi, Σi) independent

Σi ∼ InvWishart(m, Ψ)

µi|Σi ∼ MVN

(

0,
1

τprior

Σi

)

ei ∼ U{1, . . . , n − 1} w/o replacement

Exact values of the parameters will depend on species and DNA

loci.
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Missing Sequences

ATG ATT

AGG GTT

ATC

ATC

ATG ATT

AGG GTT

ATC

ATG ATT

AGG GTT

ATC

ATG ATT

AGG GTT

Assume that the underlying true

tree contains the minimum number of

unobserved sequences (nodes). Adding

more nodes means adding mutations

which have very small probability,

hence a reasonable assumption.

Add nodes so that each node we add

connects (or brings closer together) the

maximum number of closest disconnected groups of nodes. This

procedure only has to be done once, outside the Monte Carlo chain.

Minimum tree assumption is useful because it means that we have

fixed size of tree and so, conditional on that, we can assume

multinomial distributions for the nucleotides and mutation

probabilities.
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Nucleotide frequencies and mutation probs

Using the observed nucleotide frequencies, we generate estimates of

the true frequencies from the exact posterior Dirichlet distribution

(this is called a Gibb’s sampler, it’s a MCMC in which the

acceptance probability simplifies to 1):

(πA, πG, πC , πT )|D, B ∼ Dir(B1 + n1, B2 + n2, B3 + n3, B4 + n4)

We then propose estimates for the mutation probabilities assuming

the present tree is true. Typically very few loops, so this

assumption does not have a crucial impact.
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Cladogram: Root and Tree

We propose a node to be the root uniformly according to nodes’

degrees. Assuming a simulated prior so that p(x) = f(degree(x)),

we calculate the acceptance probability using current nucleotide

frequencies and transition probabilities.

Once we have established a root, propose to remove loops by

deleting edges uniformly (from the loops) so that every set of

deleted edges has the same probability. We then calculate the

probability of the data assuming current nucleotide frequencies and

mutation probabilities.
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Clusters and their means and variances

For a fixed number of significant mutations K, we want to find

K + 1 means. We propose a new covariance matrix Σ using the

posterior distribution of Σ if the data only is known:

Σi|D, e ∼ InvWishart
(

n + m, Ψ +
∑

c(j)=i

xjx
T
j + nixix

T
i

)

and using that we generate new means from the posterior for µ:

µi|Σi, D ∼ MVN

(

nixi

ni + τprior

,
1

ni + τprior

Σi

)

We accept/reject this proposal and then generate new values for

the covariance and means from the posterior:
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Σi|D, e, µ ∼ InvWishart
(

n + m, Ψ +
∑

c(j)=i

xjx
T
j

−
(

nixix
T
i +

niτprior

ni + τprior

(xi − µi)(xi − µi)
T
)

)

If the number of significant mutations is not fixed, have to use

Reversible-Jump MCMC, where the size of the parameter space is

allowed to vary from iteration to iteration. Propose to increase or

decrease the number of clusters by 1, and either combine 2 adjacent

clusters or split an existing one, proposing new means as before.
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The label-switching problem

In order to draw conclusions about the means and variances of the

clusters, need to have a consistent way of labelling them. Although

the label-switching problem also exists in 1-dimensional data, it is

especially important in higher dimensions, hence indeed in

geographical data. To reduce the effect of label-switching, we use

the following algorithm:

At each iteration, pick a labelling to maximise

n
∑

j=0

log
1

t

(

t
∑

i=1

I
c
(i)
j

=c
(t)
j

)

where cj denotes the cluster of node j.

This algorithm picks labels for each cluster so that “as many nodes

as possible belong to their favourite cluster so far”.
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Example: Beetle data from La Palma

We have mitochondrial

sequence data of 138

individuals from 18 locations

of La Palma island (in the

Canary islands). The sequences

are 570 letters long, but in fact

only 66 of them are actually

variable. Of the 138 sequences,

we obtain 69 distinct ones.

The volcano present on the west

side of the island suggests that

the clusters on either side will

belong to different clusters as beetles cannot fly.
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Parameters

(πA, πG, πC , πT ) ∼ Dirichlet(1, 1, 1, 1)

n ∼ Multinomial(138 × 570, π)

α, ζ ∼ N(2, 10) independent

β, γ, δ, ε ∼ N(1, 10) independent

Σ ∼ InvWishart(40, 100 × I2)

µi|Σ ∼ MVN (0, 10 × Σ)

K ∼ U{2, . . . , 5}

psplit = 0.5
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Graph formed using the Beetle data from La Palma
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Graph showing the mode clustering in each location for 3

mutations
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Output

group of edges P(sig|D) node deg P(root|D)

22-97 0.1723 15 9 0.2909

97-99 2 8 0.3704

94-102 0.0898 9 7 0.1210

101-103 26 5 0.0442

102-104 39 5 0.0244

103-104 73 5 0.0391

14-15 0.0439 # mutns post prob

100-101 0.0409 2 0.1545

14-100 3 0.3300

9-22 0.0409 4 0.3400

15-105 0.0216 5 0.1754

105-107 acceptance ratio 0.2588

106-107 27 mins approximately

36-106

94-96 0.0218

95-96
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Future work

• Variable Q-matrix for different nucleotide posititions

• Distribution of root

• Consider non-minimal networks

• Introduce time T of mutations

• Introduce migration process
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