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Summary

In cases where genetic sequence data are collected together with associated
physical traits it is natural to want to link patterns observed in the trait val-
ues to the underlying genealogy of the individuals. If the traits correspond to
specific phenotypes, we may wish to associate specific mutations with changes
observed in phenotype distributions, whereas if the traits concern spatial in-
formation, we may use the genealogy to look at population movement over
time.

In this paper we discuss the standard approach to analyses of this sort and
propose a new framework which overcomes a number of shortcomings in the
standard approach. In particular, we allow for uncertainty associated with
the underlying genealogy to fully propagate through the model to directly
interact with the inferences of primary interest, namely the effects of genetic
mutations on phenotype and/or the dispersal patterns of populations over
time.
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1. INTRODUCTION

This paper is motivated by the increasing interest in phenotypic and phylogeographic
analyses arising from recent developments in genetic research. These methods at-
tempt to explain phenotypic or geographic variations in terms of the underlying
genealogy in order to, for example, identify mutations associated with characteris-
tic traits (phenotypic analysis) or infer population movement over time (phylogeo-
graphic analysis).

These methods are important for many reasons. Phenotypic analyses can be
used to prevent or predict unwanted genetic traits which predispose the associated
individual to disease, encourage the development of desired traits and even con-
trol specific genes to influence the associated phenotype. Phylogeographic analyses
are used to help understand the long-term evolutionary history and behaviour of
species such as colonisation and range expansion, as well as investigating the effect
of geological events such as glaciation or seismic activity, for example.

Both forms of analysis require similar data and proceed in similar ways. We
begin with data from a series of individuals comprising for each individual i a DNA
sequence Si together with an associated (perhaps vector) variable Ti recording the
characteristic traits of interest. The latter might be indicators for the presence of
disease or the geographic location of the associated individual, for example. The
task then is to determine patterns in the traits observed across individuals that can
be explained by the underlying genealogy e.g., do all those with a particular trait
have commonalities between their corresponding sequences?

In answering such questions our first task is to determine the underlying ge-
nealogy, that is to construct a network (or so-called cladogram) of nodes which
correspond to specific sequences and edges which correspond to specific genetic mu-
tations (Cassens et al. 2005, and Posada and Crandall, 2001) . Once we have this
network which shows how each individual is related to the rest through a sequence
of one or more genetic mutations, we can look to see whether deleting any edge (or
collection of edges) creates clusters of sequences whose associated traits are similar
within a cluster but distinct between clusters. An alternative motivation for the
analysis is to view it as a simple clustering problem in which we wish to allocate
individuals to two or more groups in terms of the observed traits but in a way that
is consistent with the underlying genealogy,

This approach is probably best explained via a simple example. Suppose we
have data from 6 individuals with sequences

ATCGA, ATCGA, ATCGA, ATTGA, ACCGA and TTCGA

and corresponding trait values 1.9, 3.5, 3.1, 4.4, 1.2 and 2.0, say. We see that the
first 3 individuals have the same sequence and so in our cladogram, they will all
correspond to the same node. We thus have four distinct nodes and we connect any
two nodes by an edge if those two nodes differ in value at only one point in the
sequence. The corresponding cladogram is given in Figure 1.

Our aim is to draw some conclusion of the type “a mutation at the ith nucleotide
position is associated with a significant change in the values of the observed trait”.
In order to do this, we first need to assign a distribution to the trait values (in
order to determine “significance”) and then consider each partition in turn that
can be obtained by deleting a single edge from the associated cladogram. Here, we
have only three edges and so only three potential arrangements of the observations
into two clusters. We can thus cluster the traits as ({4.1}, {1.9, 3.5, 2.1, 1.2, 2.0})
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ATCGATTCGA ACCGA

ATTGA

Figure 1: Basic Cladogram showing the sequences observed and the mu-
tations linking them.

({1.2}, {1.9, 3.5, 2.1, 4.1, 2.0}) or ({2.0}, {1.9, 3.5, 2.1, 4.1, 1.2}) by deleting the edge
corresponding to a mutation at the 3rd, 2nd and 1st nucleotide position respectively.
An ad-hoc interpretation might suggest that a mutation at the third nucleotide
position causes a change in the associated trait and we will discuss and develop
more formal methods for testing this in due course. However, we note here that
without the sequence data, if we were to cluster the trait values directly, we might
well wish to group 4.1 and 3.5 together, a combination that is not permitted by the
underlying genealogy. Thus, by using the sequence data, we reduce the number of
possible clusters to those which have a direct interpretation in terms of the mutations
required to obtain the sequences observed in the data.

Of course, this is a very simple example. In practice the cladogram is not so
easily determined. Problems associated with missing values, homoplasy (multiple
mutations at the same nucleotide position) and recombinations (mutations not at
a single nucleotide position but obtained by swapping a partial sequence from one
node with that from another) mean that the cladogram is non-unique and so the
clustering procedure should take account of the associated uncertainty in the un-
derlying genealogy though, in practice, this uncertainty is often ignored.

Current best statistical practice relies on a series of analytic steps in which
each stage is conditioned on the outcome of the previous one. In particular, the
“best” network is usually determined using a combination of statistical and ad-hoc
procedures and then a form of iterative ANOVA is used to determine the mutations
linking significantly distinct clusters. This modular approach is not able to fully
propagate uncertainty at each stage into the final analysis and so inferences tend to
overestimate the support for any one hypothesis over another and may, potentially,
result in substantial inferential bias.

In this paper we describe a Bayesian approach in which different networks are
assigned appropriate weights and then network-averaged mixture models are used to
determine appropriate clusters. It is worth noting here, the existence of the already
large but growing literature on inferring network structures given sequence data. By
far the largest literature is concerned with the derivation of phylogenetic trees which
incorporate both network and temporal structure by allowing edge lengths to denote
times between observed mutations. See, for example, Mau et al. (1999), Newton et
al. (1999), Larget and Simon (1999), Huelsenbeck et al. (2002), Altekar et al. (2004)
and Stamatakis et al. (2005). Similarly a large number of software packages have
been developed which create the phylogenetic tree from sequence data e.g., MrBayes,
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BAMBE and RAxML. However, here we do not require temporal information but
do wish instead to infer the state of missing nodes in the tree. Though there is a
direct link between the cladogram and the phylogenetic tree, here we work directly
with the network structure (or cladogram).

We begin, in Section 2 with a review of the traditional method of undertaking
such analyses based upon an analysis of variance built around the so-called nested
cladogram. Then, in Section 3, we introduce a Bayesian alternative based around the
idea of bivariate normal mixture models to help determine appropriate geographic
clusters using the underlying haplotype network to determine cluster membership.
In Section 4 we extend the basic analysis to deal with problems associated with
missing values and homoplasy both of which occur frequently in data of this sort.
We conclude with the results of our analysis in Section 5 and finally a discussion in
Section 6 which highlights a variety of potential future research areas.

2. NESTED CLADE ANALYSIS

The main method used for associating physical traits with underlying genetic muta-
tions is the so-called nested clade analysis. The standard nested clade analysis pro-
ceeds in three steps: first, the cladogram is constructed; second, a nested cladogram
is formed; and, finally, we test for associations between clades and the corresponding
traits.

2.1. The Cladogram

As we discussed in the previous section, the cladogram is a graph comprising nodes
which correspond to specific sequences and edges which correspond to mutations at
specific nucleotide positions. For the basic cladogram, we join all nodes which differ
at just one nucleotide position by an edge and, if the resulting graph is incomplete we
introduce additional nodes which correspond to sequences that are believed either
to be extant but were missed in the sampling, or to be extinct. In adding missing
nodes we typically appeal to a parsimony argument and assume that cladogram with
the smallest number of missing nodes is the correct one in that it most accurately
reflects the evolutionary history of the species under study.

In the absence of homoplasy (and, indeed recombination, which we do not deal
with here as we focus only on mitochondrial DNA) the cladogram is structurally
unique in terms of the observed sequences. Thus, we know exactly which sequences
are connected to which and, where there are missing values, we know the number
of missing values between any two observed nodes and the locations at which the
mutations for those missing sequences occur (though we may not know their order).
For example, the cladogram corresponding to the sequences

ATCGA, ACCGA, TTCGA, ATTGA, ATTGC

is unique and has no missing values (see Figure 2). However, if the sequence ATCGA
were not observed then we know, in the absence of homoplasy, exactly what the
missing sequence is and where it lies because of its two neighbours. If ATTGA were
missing, we would know it, but we not know what the missing sequence actually was
(it could be ATTGA or ATCGG). Note, however, that if TTCGA were missing, we
would not know it and this will be true for any leaf node.

The presence of homoplasy may create cycles or loops in the cladogram which
means that one or more sequences can join the graph in two or more distinct ways.
The presence of homoplasy can also lead to non-uniqueness of missing sequences
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ATCGATTCGA ACCGA

ATTGA

ATTGC

Figure 2: A simple illustration of a cladogram with 5 nodes.

and, indeed, can lead to uncertainty as to the number of missing sequences required
to complete the graph.

ATCGATTCGA ACCGA

ATTGA

ATTGCATCGC

ATCGATTCGA ACCGA

ATTGA

ATTGCATCGC

ATCGATTCGA ACCGA

ATTGA

ATTGCATCGC

ATCGATTCGA ACCGA

ATTGA

ATTGCATCGC

ATCGATTCGA ACCGA

ATTGA

ATTGCATCGC

(a)

(b) (c) (d) (e)

Figure 3: (a) A 6-node cladogram with homoplasy. Figures (b)-(e) provide
the corresponding cladograms with the homoplasy removed.

For example, suppose we observe a 6th sequence: ATCGC. This sequence is
just one nucleotide position apart from the sequences ATCGA and ATTGC and
so could be joined to either one or both of these nodes (see Figure 3a). Again, the
principle of parsimony is used to justify the assumption that any sequence will not
occur via mutation from any other sequence in more than one way. This means that
the true cladogram will be a sub-graph of the cyclical graph in Figure 3a formed
by deleting one or more edges so that the graph is both complete and contains no
loops. In this case, there are four possible graphs, see Figure 3b-e. Note that if the
sequence ATTGA were not observed (as above) then no cycle would exist, there
would be no observed homoplasy and the cladogram would be unique.

Again, it is common to use the parsimony principle to assume that both homo-
plasy and missing values should only be considered if they are required to complete
the graph. Templeton et al. (1992) develops a sequential method for determining
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the number of missing values and for minimising homoplasy (and, indeed, recom-
bination events). See also Lloyd and Calder (1991), Clement et al. (2000,2002),
Crandall and Templeton (1993), Templeton et al. (1988) and Felsenstein (1992).
We shall see in the following section how similar methods may be incorporated into
the Bayesian analysis to account for the uncertainty associated with the underlying
cladogram.

2.2. The Nested Cladogram

Once we have the cladogram, we next form the so-called nested cladogram. This is
done following the guidelines set out in Templeton et al. (1987) as follows.

We start with our 0-step clades, which are just the sequences represented as
leaves in our cladogram. Given the n-step clades, the n + 1-step clades are formed
by taking the union of all n-step clades which can be joined up by moving one
mutational step back from the terminal node of each n-step clade. We continue the
process recursively until all the nodes in our cladogram have been nested. As before,
the nesting process is probably best explained via an example.

1.1 1.2

2.1

1.3

1

76 8

5

2 3 4

2.2

Figure 4: A simple illustration of a nested cladogram comprising 3 1-step
clades and 2 2-step clades.

Figure 4 provides a simple illustration of a cladogram with 8 nodes. Following
Templeton’s algorithm, we first join the leaves to their neighbours to form the 1-
step clades. In the case where two leaves are joined to the same neighbour, as for
example occurs with nodes 6, 7 and 8, the corresponding clades are joined together.
Thus, we obtain 1-2, 3-4 and 6-7-8 as our 1-step clades which we arbitrarily label
as clades 1.1, 1.2 and 1.3 respectively. At the next stage these three groups are
essentially treated as a single node and form the two step clades by combining 1-2
with 3-4 and 6-7-8 with 4. We label the corresponding 2-step clades 2.1 and 2.2.
At the third stage we would combine the two 2-step clades to form a single group
containing all nodes in the cladogram.

We can see here the link between the clusters obtained following Templeton’s
algorithm and those obtained by deleting edges in the graph as discussed in the pre-
vious section. However, not all edge-based clusters are obtained using Templeton’s
method and there are many cases where Templeton’s approach leads to ambiguities
or inappropriate clusters. Templeton’s method might be compared with that of
stepwise regression in which we attempt to identify the best model by successively
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adding and deleting parameters from an initial starting model. It is well recognised
that this process does not necessarily lead to the best model and there are many
examples where more exhaustive comparison have identified significantly better so-
lutions than these sequential methods. Ad-hoc comparisons are used within Tem-
pleton’s algorithm (based upon merging pairs of neighbouring clusters with smallest
sample size, for example - Templeton and Sing, 1993) which introduces a somewhat
arbitrary element to the clustering process in the final stage of the analysis. We will
show how the Bayesian approach based upon creating clusters by deleting sets of
edges from the graph can be used to more efficiently and reliably identify potentially
significant clusters of sequences as well as allowing for the uncertainty associated
with different clustering combinations to be properly propagated to the final stage
of the analysis.

2.3. Nested Clade Analysis

The final stage of the standard phenotypic and phylogeographic analysis concerns
the identification of significant clades i.e., those clusters of nodes that appear to well
explain the variation in the observed traits. We distinguish here between the two
forms of analysis as slightly different procedures are used for each.

The Phenotypic Analysis

The phenotypic analysis is based upon a standard (nested) analysis of variance
(Templeton et al., 1987). Suppose we have a cladogram with 0-step, 1-step, up to
k-step clades (where the (k + 1)-step clade contains all nodes in the graph) then we
perform a (k + 1)-way (M)ANOVA using the trait values to determine which clade
levels exhibit significant deviation from the null hypothesis of equality of means.
Sums of squares that are deemed significant are further decomposed to gain finer
resolution on the mutations associated with differences in the means. For example,
if the 1-step clades are deemed significant, then the associated sum of squares is
sub-divided into independent sums of squares formed within each 2-step clade. For
example, with our nested cladogram in Figure 4, we would decompose the Sum of
Squares for the 1-step clades into two: the sum within clade 2.1 and that within 2.2.
If the former were found to be significant, this suggests that the mutation between
nodes 2 and 3 is associated with a significant change in the mean trait level.

This approach suffers from a number drawbacks associated with the risk of the
effect of significant mutations carrying through to different clades masking the true
patterns in the data. In practice, multiple comparison statistics are used together
with Bonferoni-type corrections to ensure the correct overall significant level. We
shall see in the next section, how the traditional ANOVA can be replaced by Bayesian
mixture modelling which, once again, provides a more comprehensive and robust
procedure for identifying mutations associated with changes in phenotype values.

The Phylogeographic Analysis

Phylogeographic analyses are treated slightly differently since the aims of the anal-
ysis are typically somewhat different from those of phenotypic analysis. Here we
are interested in determining associations between observed genetic mutations and
spatial patterns observed in the data. See Ibrahim et al. 1996, Templeton 1995,
Gomez-Zurita et al. 2000, and Emerson and Hewitt 2005, for example. There
are 3 major biological factors that can cause a significant spatial association with
haplotype variation: i) restricted gene flow; ii) past fragmentation; and iii) range
expansion (including colonisation). The standard phylogeographic analysis proceeds
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in two steps: a permutational contingency test is carried out to determine whether
or not haplotypes are distributed randomly at all clade levels; then, if the hypoth-
esis of randomness is rejected then further tests under assumptions of the three
different scenarios above are conducted and the results interpreted via an inference
key provided originally by Templeton (1998) and based upon a series of simulation
studies.

The so-called nested clade phylogeographic analysis (NCPA) works by estimating
two distinct geographic measures in the context of the hierarchical design inherent
in the nested cladogram: the clade distance Dc(X) for clade X, which represents
the geographical range of that clade; and Dn (X), which measures how that par-
ticular clade is geographically distributed relative to its closest evolutionary clades
(i.e. clades in the same higher-level nesting category as X). Specifically, Dc(X) is
the mean distance of clades within clade X from the geographical centre of that
clade and Dn(X) is the mean distance of the clades within clade X to the geo-
graphical centre of all same-level clades that lie within the higher-level clade that
contains X. See Templeton et al. (1995), for example. The distribution of these
distance measures under the null hypothesis of no geographical association within
clade X is obtained by using a Monte Carlo approach, resampling the measures
under permutations of the low-level nesting clades. See Templeton and Sing (1993)
and Templeton et al. (1995), for example.

If the null hypothesis of no association is rejected then the permutation test is
repeated under different assumptions as to the underlying nature of the geographic
association. In practice, however, the Dc and Dn values are calculated and a pre-
scriptive key provided by Templeton (1998) is followed to determine whether any
of the three factors described above can be identified as adequately describing the
spatial patterns of observed haplotypes.

In essence, the first stage of the NCPA is equivalent to an ANOVA based upon
distance and suffers from similar problems associated with multiple testing and poor
resolution in terms of identifying the level of clade at which significant mutations
occur. As we shall see in the next section, this inferential process can be easily
incorporated into the Bayesian framework that we develop here.

The three-stage approach described here, which represents current best practice
for problems of this sort, suffers from problems at each stage that can be resolved
by using a Bayesian approach. A further advantage of the Bayesian approach is
that all three stages can be combined into a single analysis so that it is no longer
necessary to conduct any stage conditioning on the results from the previous stage.
In this way, we fully propagate all sources of uncertainty into our final inference and
avoid the need to conduct conditional analyses based upon what are often ad-hoc
procedures for picking between different solutions at each stage.

3. THE BAYESIAN ALTERNATIVE

The problem with Nested Clade Analyses is that by conditioning on the best option
at every stage of the process, we lose the information concerning the associated
uncertainties. In this section we describe a Bayesian approach which combines all
three stages into one so that uncertainty in the underlying tree structure is fully
propagated throughout the model and is properly accounted for when assigning
individuals to clusters.

We will focus on the phylogeographic analysis here though essentially identical
methods may be applied to the phenotypic analysis. In line with the classical NCA
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we will use Euclidean distance between individuals as basis for clustering which is
essentially equivalent to adopting a bivariate normal distribution to describe the
spatial distribution of individuals within a cluster. Thus we will use a bivariate
normal mixture model in which the clustering of individuals arises from the separa-
tion of the underlying tree into disjoint parts. For phenotypic analyses alternative
distributions to the normal may be more appropriate.

For the moment, we will assume the simplest case in which the data contains
no missing values and there is no homoplasy. In this case the underlying tree is
unique and can be determined analytically. The only uncertainty, then, arises from
the parameters of the bivariate normal parameters and the partition of the tree into
disjoint sets to determine component membership. We will assume here that we do
not know how many clusters exist in the data and so use a combination of standard
and reversible jump MCMC methods to undertake the analysis. We begin with a
brief description of the mixture modelling framework.

3.1. The Mixture Model

Suppose we observe n individuals so that our data D comprises the set {(Si, Ti) : i =
1, ..., n} = {S, T }, say, of sequences and associated traits (in this case geographic
locations so that Ti = (xi, yi), say). Suppose also that within D we observe m ≤ n
distinct haplotypes so that our associated cladogram comprises m nodes v1, ..., vm

and m − 1 edges e1, ..., em−1. Under the assumption of no homoplasy or missing
values, the cladogram is a complete connected graph with no loops. Thus, any
individual i will be associated with exactly one node vr(i), say, which corresponds to
the associated sequence Si for individual i. Clearly, any node vj may be associated
with more than one individual if and only if m < n.

To model the locations, we adopt a mixture of k bivariate normals for the vari-
ables Ti in which allowable groupings of the n individuals correspond only to par-
titions of the graph obtained by deleting k − 1 edges. That is, deleting any set of
k − 1 edges creates a partition of the graph into k disjoint sub-graphs. If we label
the subgraphs j = 1, ..., k then the individuals associated with component j of the
mixture are those individuals associated with nodes within subgraph j. We index
the partitions by e(k) which denotes a set of k edges chosen from the complete set
E = {e1, ..., em−1} for deletion. Under partition e(k), we allocate individual i to
component zi(e(k)) for all i = 1, ..., n. Note that any two individuals with the same
haplotype will therefore be assigned to the same component. Finally, for any indi-
vidual i in component j we assume that Ti ∼ N2(µj , Σj) with associated density
f(Ti|µj , Σj), say.

Thus, we obtain a joint probability distribution for the data given the number
of components k, the partition e(k) and the set Mk of component means Vk of
component covariance matrices:

f(T |k, e(k),Mk,Vk) =

nY
i=1

f(Ti|µzi(e(k), Σzi(e(k)).

Note that since at this stage we are modelling only the geographic locations, we
have here only a probability distribution for the traits T . We shall derive a similar
distribution for the sequences S in the next section.

We shall assume, for the moment, that the value of k is fixed and adopt a
uniform prior over all valid partitions, together with independent bivariate normal
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and inverse Wishart priors for the component mean vectors and covariance matrices
respectively. Thus

π(e(k),Mk,Vk|T , k) ∝ f(T |k, e(k),Mk,Vk)p(e(k))

kY
i=1

p(µi, Σi). (1)

3.2. The MCMC Algorithm

In order to explore the posterior distribution given in Equation (1) above we use a
standard MCMC algorithm comprising a series of Gibbs and Metropolis Hastings
updates for the different parameters. Here, we take the following priors for the µi

and Σi:

Σj ∼ InvWishart(t, Ψ); and

µj |Σ ∼ N2

„
0,

1

τ
Σj

«
Thus, we obtain the following posterior conditional distributions for j = 1, ..., k:

µj |Σj , e(k), T , k ∼ N2

„
njT j

nj + τ
,

1

nj + τ
Σj

«
; and

Σj |µj , e(k), T , k ∼ InvWishart
“
n + t, Ψ +

X
i:zi(e(k))=j

TiT
′
i

−
`
njT jT

′
j +

njτ

nj + τ
(T j − µj)(T j − µ′

j

´”
,

where nj denotes the number of individuals assigned to component k (dropping the

dependence on e(k) for notational convenience) and T j denotes the vector of all T
vectors associated with individuals in cluster j i.e.,

T j =
1

nj

X
i:zi(e(k))=j

Ti.

Thus, the MCMC algorithm for drawing from the posterior distribution given in
Equation (1) proceeds by updating the component means and variances using Gibbs
updates, in which new values are drawn from the posterior conditional distributions
given above, followed by a move which updates the edge set e(k). Obviously, e(k)
is a discrete random variable and so can be updated directly using a Gibbs update.
However, for datasets with large numbers of distinct sequences (i.e., large m), a
Gibbs update for the edge set can prove extremely computationally expensive due
to the fact that the posterior probabilities associated with each of the “m−1 choose
k” potential edge sets must be calculated. A far more efficient update is obtained
by using a Metropolis Hastings procedure in which only the posterior probabilities
associated with the existing and proposed new edge set need be calculated.

In practice we found that updating only the edge set led to extremely poor
mixing because of the strong posterior association between the edge set and the
corresponding component means and covariance. Thus, we propose updating the
edge set as follows. Select an edge within the edge set with equal probability and
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propose to replace it uniformly at random with any other edge within the graph that
is not already in the edge set i.e., from the set E \e(k). We then propose new values
for all means in Mk and covariance matrices in Vk from the corresponding posterior
conditionals under the proposed new edge set. This new edge set, the associated
cluster means and covariances are then accepted with the usual Metropolis Hastings
acceptance ratio.

This, then, completes the updates required to generate a series of realisations
from the posterior distribution given in Equation (1) from which we can obtain
empirical estimates for any posterior statistics of interest.

3.3. Label Switching

As is common with mixture modelling, our model suffers from the so-called label-
switching problem caused by symmetry in the joint probability distribution of the
data given the model parameters. This has the practical consequence that the
collection of nodes labelled in one iteration of the MCMC algorithm as group j
(with associated mean and covariance µj and Σj) may may be labelled as group
l 6= j in the next iteration.

The standard approach to overcoming such difficulties is to introduce an essen-
tially arbitrary identifiability constraint such as ordering the components in terms
of the associated component parameters e.g., the mean. This sort of approach was
unsatisfactory in the range of examples we considered due, mainly, to the multi-
dimensional nature of the mixture distributions and the tendency for there to be
considerable overlap between the marginal distributions associated with the bivari-
ate normal components. Ordering based upon distance of the mean vector from a
fixed point as well as ordering based upon the properties of the tree (e.g., start at
the left of the tree and label the components as you visit them) all failed to produce
sensible results.

Thus, we adopt the relabelling algorithm of Stephens (2000) to draw infer-
ence about component parameters from the sample of observations obtained via
the MCMC algorithm described earlier. Suppose we have a sample of T obser-
vations. For any observation t we require a permutation νt of the the associated
component labels that provides us with a consistent labelling for all t = 1, ..., T .
Stephens suggests the following iterative algorithm. Given suitable permutations
for iterations 1, ..., t choose a permutation νt+1 for iteration t + 1 that maximises

nX
i=1

log
1

t

 
tX

j=1

I
c
(j)
i =c

(t)
i

!
.

This, then, provides a series of permutations that assign labels to the different
components that leads to “as many nodes as possible belonging to their favourite
group so far”.

From a practical perspective, this approach proved extremely reliable with only
minimal additional computational complexity. Indeed the labelling process can even
be introduced as an additional (deterministic) step within the MCMC algorithm
itself.

3.4. How Many Clusters?

Finally, we consider the case where the number of clusters in the data is unknown a
priori. In this case, we must first extend the posterior distribution in Equation (1)
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to allow for uncertainty in the value of k, which is easily achieved by specifying an
appropriate prior p(k) so that

π(e(k),Mk,Vk, k|T ) ∝ π(e(k),Mk,Vk, k|T , k)p(k). (2)

Here, we assume k follows a uniform distribution on the discrete values 0, ..., kmax

though other priors may be also be appropriate. For example, we may wish to
specify a prior which weights each value of k by the reciprocal of the number of
possible edge sets available when k edges can be deleted. In any case, appropriate
re-weighting of the posterior model probabilities under the uniform prior for k can
provide the required the probabilities associated with any other and so we stick with
the uniform here. Note here that the priors for e(k), Mk and Vk must be normalised
since they will be functions of k. For the fixed-k case this was not necessary. The
normalisation constants are all easily obtained.

As we have extended our posterior distribution, we must now extend our MCMC
algorithm to allow for the additional move required to update the parameter k. As
this necessitates changing the number of parameters in the model (i.e., adding or
deleting component means and covariances) this requires a reversible jump MCMC
(Richardson and Green, 1997) update.

We might begin each model move by first deciding to increase k by splitting an
existing cluster or to decrease k by merging two adjacent clusters (where adjacency
is determined in terms of the tree). In practice this means that we add or delete an
edge to the edge set with probabilities Padd and Pdelete respectively. If we propose
to move beyond the [0, kmax] range we automatically reject the proposal. A simpler
way is to simply select an edge and if it is already in the current edge set we propose
to delete it and if it is not, then we propose to add it. This simplifies the acceptance
ratio, but leads to fairly high probabilities for a split move. In practice, we found
that this caused us no computational difficulties, but for other problems it may
be better to specify fixed split/merge probabilities to gain better control over the
algorithm’s performance.

Suppose we propose to add a new edge to the edge set, moving from k to k + 1,
then this automatically splits an existing cluster. We therefore need to propose
values for the normal parameters associated with the two new clusters obtained by
splitting the original. We do this by drawing values from the associated posterior
conditionals, conditioning on the proposed new edge set and associated assignments
of nodes (individuals) to each cluster. Similarly, when merging two clusters, we
draw new normal parameter values from the posterior conditional with individuals
from the two original clusters are assigned to the proposed new one. In this way, the
Jacobian term required for the reversible jump acceptance ratio reduces to 1. In fact,
the entire acceptance ratio therefore reduces to a ratio of appropriate normalisation
constants and is easily derived.

Combining this step with the Gibbs and Metropolis Hastings steps described
in Section 3.2 we obtain an MCMC algorithm capable of obtaining draws from the
posterior distribution described in Equation (2).

Recall that at the beginning of this Section we made the assumption that there
was (i) no missing values and (ii) no homoplasy. In practice these two assumptions
will rarely be valid. Thus, in practice we will require a number of extensions to our
method in order to deal with these two common situations.
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4. EXTENDING THE BASIC FRAMEWORK

Here we extend our analysis to allow both for missing values and homoplasy and
therefore need to deal with uncertainties in the underlying tree. Note the distinc-
tion here with the previous section which essentially assumes that the underlying
tree is fixed and focuses only on modelling the traits. In order to assess tree prob-
abilities, we must derive a form of model for the observed sequences S from which
the associated model parameters can be inferred. This requires estimation of the
mutation probabilities from the mutations observed to occur in the data which, in
turn requires the derivation of a root node which determines the direction of the
mutations in the tree.

4.1. Finding the Root

Here, we discuss methods for determining the root of the tree, that is the “oldest”
haplotype from which the other observed haplotypes can be assumed to have been
derived. We can make various assumptions about the properties of the root. For
example, we would normally expect the root to be towards the “centre” of the
cladogram and that it might often be surrounded by missing nodes representing
haplotypes that might now be extinct. It might also be assumed that the root node
would tend to be of higher degree than other nodes, though this can be masked by
population dynamics such as changing productivity rates. Such information can be
used to determine an appropriate prior for the root node. In the absence of suitable
data on what constitutes a “central” node, we will assume a flat prior for the root
over all nodes (both observed and missing) in the graph.

4.2. Estimating Mutation Rates

Having determined the root, the graph now becomes directed and it is possible to
estimate the mutation rates. We begin by parameterising the mutation probabilities
as follows.

We assume that the nucleotide frequencies are at equilibrium and that the mu-
tation process is time-reversible. We use a Generalised Time-Homogeneous Time-
Reversible Markov Process model (Tavaré, 1986) for the mutation rates (which are
assumed to be independent and identical across all sites) generated by a Q-matrix:

Q =

0B@ · απG βπC γπT

απA · δπC επT

βπA δπG · ζπT

γπA επG ζπC ·

1CA
where the πi’s (i = A, G, C, T ) represent the equilibrium probabilities of the
nucleotides (we assume that the gene frequencies are stationary), and α, . . . , ζ the
relative transition and transversion probabilities, so that we have 9 degrees of free-
dom. For simplicity we refer to (πA, πG, πC , πT ) as (π1, π2, π3, π4) respectively.
This chain is time-reversible since πiqij = πjqji, i, j = 1, . . . , 4. Here we assume
that the generator matrix is identical and independent across all sites, though it
would be possible to extend the methods discussed her to relax this assumption.

The Q-matrix above is normalised to obtain the following matrix of mutation
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probabilities:

P =

0B@ 0 c1απ2 c1βπ3 c1γπ4

c2απ1 0 c2δπ3 c2επ4

c3βπ1 c3δπ2 0 c3ζπ4

c4γπ1 c4επ2 c4ζπ3 0

1CA
where the ci are simple normalisation constants chosen so that the entries in each
row sum to 1.

Since the πi sum to 1, we adopt a Dirichlet prior for the vector of nucleotide
frequencies, π. Here, we assume that π ∼ Dir(B1, B2, B3, B4) where the Bi ∼
N (1, σ2

B). Alternatively, we might adopt the Jeffreys prior in which the Bi are fixed
to be equal for i = 1, ..., 4. Again, we observed no clear sensitivity to the choice of
prior in the primary posterior summary statistics of interest. Under the hierarchical
Dirichlet prior, it is simple to show that the posterior conditional for π given the
other parameters is itself a Dirichlet with parameters Bi + bi, where bi denotes the
number of observed genes of type i within the observed sequences.

For the transition/transversion rates, we assume independent normal priors cho-
sen on the basis of expert information as to the relative probabilities of transitions
and transversions so that

α, ζ ∼ N (µs, σ
2
s) and β, γ, δ, ε ∼ N (cµs, σ

2
s)

for some appropriate values of c, µs and σ2
s . Note also, that the value of c might

itself have a prior distribution if the likely transition/transversion ratio is unknown.
For the moment, we assume that the prior parameters are fixed and, if θ denotes
the set of transition/transversion rates, we have prior p(θ|c, µs, σ

2
s).

4.3. Assessing Tree Probabilities

Now that we have the mutation probabilities, we can assess the probabilities asso-
ciated with any given tree. In particular, we can use these to determine the state of
missing nodes and, more importantly, break loops by deleting appropriate edges.

The basic tree probability is simply the product over all edges of the mutation
probability associated with that edge. These probabilities are normalised by the
sum over all trees consistent with the data and here we will make the simplifying
assumption that the minimum number of missing nodes will be added to ensure
completeness of the tree. Suppose that our tree contains η edges, E = {e1, ..., eη}
with probability of mutation p(ej) for edge ej derived from the mutation probability
matrix given in Section 4.2 and the directions indicated by the root node identified
in Section 4.1. Then the probability of the tree with edges E is given by

p(E|r, φ, θ, η) ∝
ηY

i=1

p(ei).

Often the state of any missing node (i.e., the sequence with which it is associated)
will be uniquely determined but in the presence of homoplasy or where strings of
more than one missing nodes occur in the cladogram, the true state of the missing
node will be unknown a priori and can be estimated. Of course, once the set of edges
E is known, the states of the missing nodes are uniquely determined and so they are
automatically estimated as a by-product of the estimation of the non-deterministic
edges that we discuss below.
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Homoplasy has the effect in our network of creating two or more different edges
representing a mutation on the same restriction site. In some cases, loops may be
formed and these need to be eradicated in order to form a permissible cladogram.
In practice, loops are removed by deleting one or more edges (as few as possible)
in much the same way as edges are removed in order to form clusters for the trait
variables. The mutation probabilities can be used to weight edges according to the
their relative probabilities and so the clustering algorithm described in the previous
section can be averaged over the trees obtained by breaking loops in the full tree
using the associated probabilities to weight the inference.

An additional complication is that when we wish to undertake a phenotypic
analysis, if any edge in the edge set corresponds to a mutation which happens
elsewhere in the graph (this is only possible if homoplasy occurs) then all edges
corresponding to that mutation must be added to the edge set. Since we are not
attempting to make causal associations in the same way for the phylogeographic
analyses, this problem can be ignored in this case.

4.4. The MCMC Algorithm

The posterior distribution from the previous section is amended so that the distribu-
tion of the edge set depends upon the set of edges E within the tree. We decompose
this set of edges into two: the set ES of edges in the full graph that can be derived
with certainty from the observed sequence data S i.e., edges only between observed
nodes that are not part of a loop within the cladogram; and E0 which denotes the
set of uncertain edges i.e., edges connected to missing nodes and subsets of the edges
in the original tree that form loops. Thus, E0 ∪ ES forms a connected tree without
loops. Then we amend our posterior in Equation (2) to obtain

π(e(k),Mk,Vk, E0, θ, π, B, r, k|D, ES)

∝ f(T |k, e(k),Mk,Vk)p(e(k)|E)p(E|r, φ, θ)

× p(θ)p(π|B)p(B)p(r)
Yk

i=1
p(µi, Σi)p(k) (3)

The associated MCMC algorithm therefore involves updating the original param-
eters in much the same way as described in Section 3.2. The additional parameters
introduced in this section are updated as follows:

Updating r: Here, we propose a new root randomly from the observed nodes
in the graph and accept the move with the standard Metropolis Hastings
acceptance probability. An alternative is to propose only neighbouring nodes
to the current root. The latter tends to perform better in general but it is
possible to get stuck in local modes of the distribution from which it is hard
for the chain to escape.

Updating θ: The transition/transversion probabilities are updated using a ran-
dom walk Metropolis Hastings update.

Updating π: The nucleotide frequencies are updated via a Gibbs step, since their
posterior conditional is Dirichlet.

Updating B: The hyperprior parameters for the Dirichlet prior on the nucleotide
frequencies are updated using a random walk Metropolis Hastings proposal
on the log scale.
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Updating G0: Here, we retain a list of edges involved in loops within the graph
and at each iteration we draw uniformly at random a collection of edges that
both removes all loops within the graph and which provides a complete tree.
These edges are then accepted using the usual Metropolis Hastings acceptance
ratio. If we wish to update the state of the missing nodes and, indeed, their
associated trait value, these can be sampled directly from their corresponding
posterior conditionals.

Now that we have the MCMC methodology required to sample from the posterior
of interest, we may begin to analyse data and interpret the results.

5. EXAMPLE: A PHYLOGEOGRAPHIC ANALYSIS

Here, we consider a specific data set and conduct a phylogeographic analysis using
the methodology described above. We begin with a description of the data before
providing the results and associated interpretation and discussion.

5.1. The Data

Here, we focus on data from the geologically young and well-characterised island of
La Palma from within the Canary Islands archipelago to generate phylogeographic
predictions for Brachyderes rugatus rugatus, a flightless curculionid beetle species
occurring throughout the island in the forests of Pinus canariensis.

The data comprises a sample of 135 beetles from 18 locations across the island
and for each we record 570 base pairs of sequence data for the mitochondrial DNA
cytochrome oxidae II gene. The data are summarised in Figure 5 which superim-
poses the sampling locations on a map of La Palma together with forest density.
At each location the number of distinct haplotypes observed is recorded, with 69
distinct haplotypes observed in all. See Emerson et al. (2000,2006), for example.

Geological studies of the island provide us with a fairly complete understanding
of the island’s geological history. The northern part of the island is mainly older
volcanic terrain with the southern part comprising a ridge of more recent volcanic
origin. It is a reasonable assumption that the Brachyderes beetle population, with
their limited mobility, would have been strongly influenced by La Palma’s volcanic
and erosional history and there is also strong evidence that the population was
seeded by immigration from the nearby island of Tenerife to the East. Thus we
might expect the oldest haplotypes to be concentrated in the northern part of the
island and to observe evidence of a more recent range expansion to the southern tip.
If we were to cluster the haplotypes geographically we should therefore find that
those to the North should be more central to the haplotype network, and those to
the south should be placed towards the tips of the network.

5.2. The Analysis

Here, we apply the methodology described in the previous sections to the beetle
data.

Table 1: Posterior probabilities for different numbers of clusters

No. Clusters 2 3 4 5 6
Post. Model Prob. 0.02 0.13 0.24 0.36 0.25
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Figure 5: Map of La Palma with sampling locations and tree density super-imposed.

Table 1 provides the posterior model probabilities associated with models con-
taining between 2 and 6 clusters. Clearly, the 5-cluster model is a posteriori most
probable, but there is little to choose between many of the models under consider-
ation.

Figure 6 provides the maximum a posteriori (MAP) estimate of the underlying
cladogram, together with an indication of the clusters to which each node belongs.
We can see that the assignment of nodes to specific clusters is certain a posteriori
for many nodes, except a few towards the top of the cladogram which are most
likely associated with the green cluster but also have non-zero probability of being
allocated to the red one. Perhaps most intriguingly there are no nodes that are
assigned to the yellow cluster with absolute certainty with most nodes being assigned
with considerable probability to the blue cluster if they have any probability of being
assigned to the yellow. At first sight, this may seem strange especially when you
consider that in general we would expect posterior certainty for the yellow cluster to
increase as we move closer to the leaf node towards the bottom left-hand corner of
the cladogram. The reason for this is that there is considerable uncertainty as the
underlying cladogram structure in this region with relatively substantial probability
that the dotted edge given in Figure 6 might replace one of the two dashed lines in
the graph. The uncertainty here arises from two distinct ways to delete a loop in the
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original graph and this clearly highlights the value of incorporating the uncertainty
of the underlying graph into the analysis rather than simply conditioning on the
most likely graph determined from a separate analysis.

The a posteriori most probable root node under the flat prior is the single red
node of degree 5, though there is considerable uncertainty as to the exact location
with the second most likely root node attracting 80% of the posterior probability
associated with the first. The red cluster is the a posteriori most probable to contain
the root node.

Figure 6: The MAP estimate of the underlying cladogram. Each node
is represented by a pie chart indicating the proportion of times it is assigned
to each of the 5 clusters in the MAP model. The dotted line indicates the
next most probable edge that could be added and the two dashed lines indi-
cate the two edges either of which would be deleted in order to remove the
corresponding loop in the original graph.

To get a feel for the spatial structure of the haplotype dispersal, Figure 7 pro-
vides a plot of the contours of the bivariate normal distributions (evaluated at the
posterior means of the mean and covariance parameters) associated with each com-
ponent of the mixture. Here, we use the same colour scheme as for the cladogram in
Figure 7, for comparison. It is clear the the identification of the three clusters at the
North of the island could not have been possible without the additional information
provided by the underlying cladogram. The individual locations are marked on the
figure as black circles, with the largest circle corresponding to the location most
likely a posteriori to contain the root node under a flat prior. This is located to the
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East of the island in the so-called northern shield at Mna Tagoja, though the neigh-
bouring locations around Fuente Olen also have substantial posterior probability of
containing the root node.

We can see a clear distinction between clusters in terms of the locations, spread
and associated covariance structures. With some clusters, such as the red cluster,
being roughly circular and with only local spread, whereas others, such as the grey
cluster, has much greater spread in one direction (North-South) than the other.
These latter shapes are a result of clusters containing haplotypes spread over a wide
area and typically in a specific direction. This type of pattern is consistent with
range expansion in the population, whereas the more symmetric and focused clusters
would be more indicative of a geographically stable population.

−4 −2 0 2 4
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Figure 7: Bivariate normal contour plots for the five components under
the MAP model and evaluated at the posterior means. Each component is
assigned the same colour as in Figure 6. The circles indicate sampling loca-
tions, with the larger circle indicating the location most likely to include the
root node in the cladogram under a flat prior.

6. DISCUSSION

The results provided in the previous section consistently point to the red cluster
as being the population source as it both most likely to contain the root node
and exhibits a suitably stable spatial structure. The MAP cladogram suggests a
comparatively recent range expansion South East to the Cumbre Nueva terrain
running vertically down the southern half of the island from the centre. We infer
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the recency of the expansion from the lack of missing nodes (indicating both missed
samples and haplotype extinctions) between the two clusters in the cladogram. The
largest green node is clearly a source for local expansion due to its high degree.

Less recently, the red cluster appears to have been the source for two major
expansions one much further to the South resulting in the grey cluster and one to
the North West resulting in first the blue and then yellow clusters. This, again, is
inferred from the structure of the cladogram in Figure 6 and the spatial structure
apparent in Figure 7.

These conclusions are consistent with complementary evidence and previous
analyses of similar data. For example, La Palma is at the western end of the Ca-
nary Islands and so any colonisation of the island is most likely to have occurred
along the Eastern coast. Previous studies of these data by Emerson et al. (2006)
drew very similar conclusions in that the island was colonised in the mid-east and
saw three range expansions, two to the South and one to the West. Indeed the MAP
cladogram in Figure 6 is fairly similar to their cladogram C, though quite distinct
structurally from the other two potential cladograms that they discuss. Emerson et
al. (2006) hypothesised that the observed range expansions followed similar expan-
sions in the host species Pinus canariensis and it would be interesting to conduct a
complementary phylogeographic study to determine the extent of any such associ-
ation. The only major discrepancy between our results and those of Emerson et al
(2006) concern the colonisation of the Northern Shield. Our analysis suggests that
the Northern part of the island was colonised first by a movement to the North West
and then South West down the coast, essentially moving in an anti-clockwise direc-
tion. Emerson et al. (2006) on the other hand suggest that the colonisation occurred
first to the West and then to the North East, moving in a clockwise direction.

Our analysis has several advantages over the classical nested clade analysis.
Perhaps the most important is that when it comes to making inference about the
underlying dynamics of the population over time, our approach is able to provide
quantitative measures of statistics of interest. For example, we are able to associate
probabilities with any one location as being the source population for later coloni-
sation of the island. The second advantage is that by combining all three stages
of the analysis we are able to make sure that, for example, information from the
geographical location of the individuals is allowed to feedback and inform the asso-
ciated genealogy represented by the cladogram. It is clear that certain cladograms
may lead only to nonsensical clusterings, but these can be avoided in the integrated
analysis. This did not cause any problems for these particular data but, for others,
the ability to incorporate all information into any one component of the analysis is
bound to be a distinct advantage.

It is worth pointing out here that there are several ways in which this work can
and should be further extended. In constructing our original graph we allowed only
the minimum number of missing nodes necessary to complete the graph. It would
be interesting to relax this assumption so that an even greater range of cladograms
is permissible. In addition, it would be useful to allow for recombinations with the
population. These won’t have occurred in these particular data, because we are
using mitochondrial DNA but other datasets may well exhibit both recombinations
and homoplasy. Adding the possibility of recombinations significantly adds to the
complexity of the graph construction, and various assumptions (based primarily on
parsimony) will be required to make the problem tractable. Finally, it would be very
useful to determine a quantitative measure along the lines of Templeton’s inference
key so that we could actually associate (posterior) probabilities with different clus-
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ters being associated with different forms of dispersal over evolutionary timescales.
Each of these tasks are the focus of current work by the authors.
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DISCUSSION

BANI K. MALLICK (Texas A&M University, USA)

I congratulate the authors on their very fine paper. It contains novel method-
ology emerged from a very interesting application. Process of grouping a collection
of objects into subsets or clusters such that elements within each cluster are more
closely related to one another than objects assigned to different clusters. This clus-
tering has been done using some type of similarity measure (usually measuring the
Euclidean distance between the data). In this particular problem there are addi-
tional information like DNA sequence data which makes it a constrained clustering
problem. Cladograms are trees or graphs that are helpful in relating individuals
from a population(s) given their sequence data. Partitioning such trees may allow
us to associate specific genetic mutations with differences within the studied popu-
lation. The authors have proposed novel Bayesian framework for creating disjoint
partitions of cladograms.

There are two components of the data: S: Sequences, T : Traits. A Bayesian
model will specify a joint distribution for p(S, T ) It has been done conveniently by
individually modeling p(T |S) and P (S). Mixture model has been used for p(T |S) as
well as extra uncertainties have been added by modeling S. I have some comments
about the general methodology.

Hierarchical Clustering?: Hierarchical clustering develops a tree (dendro-
gram) whose leaves are the data points and whose internal nodes represent nested
clusters of various sizes. The nested cladogram method by Templeton et al. (1987)
looks like very similar to hierarchical clustering method. Due to a nice structure in
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the data through the cladogram is hierarchal clustering is more scientifically inter-
pretable than the random clustering method proposed here?

Bayesian hierarchical clustering is of recent interest (Heard et al., 2006; Heller
and Ghahramani). In this problemt to calculate the normalizing constant a deter-
minant of the matrix

φ−1 + Sj +
τ.nj

(τ + nj)
T̄j T̄j

′

has to be calculated where Sj is the sample variance-covariance matrix of the jth
cluster. This could be time consuming specially when the dimension of the trait
is very high. In a hierarchal clustering framework it is simple to find an iterative

relationship between S (or T̄ T̄
′
) and their children so you do not need to recalculate

these quantities at each iteration. This way it could lead to considerable savings in
computation time specially when the dimension is high.

Specification of Prior distributions: As it is an applied problem, I was
expecting more subjective priors in this analysis. Also prior sensitivity needs to be
verified. How would the clustering structures change if you change the prior for k
from uniform to other distributions which will penalize too many clusters? If there
are no strong subjective priors available then you can exploit model-based clustering
methods using maximum likelihood estimation via EM algorithm (McLachlan and
Peel, 2000). That way you can avoid the problem of specifying hyper priors and
related prior sensitivities.

Mixture model vs DPP based clustering: An alternative way to produce
clusters consist of using Dirichlet process prior (DPP) based models. An advantage
of this method is the number of clusters has been determined automatically. Is it
possible to use DPP based method in this setup?

Clustering of graphs: Graph cutting, partitioning or clustering as it is vari-
ously known is the decomposition of a graph into roughly equal sized pieces while
minimizing the number of edges between those pieces (Chung, 1997). Looks like
the method developed in this paper is closely related to clustering of graphs. The
main difference is in this problem the cladogram (the dependence structure) has
been provided or when there is some uncertainty in the tree structure still biolog-
ically interpretable mutation models are helpful to rebuild the structure. In graph
clustering problem the dependence structure is completely unknown, so is it pos-
sible to model the dependence structure as well as the clustering simultaneously?
This will be very useful to develop gene regulatory networks. To understand the
nature of the cellular function, it is necessary to study the behavior of the genes in a
holistic rather than individual way. Gene networks can be developed based on gene
expression data where the dependence structure among the genes are completely un-
known. With very large number of genes, it is believed that the whole gene network
can be partitioned into small sub-networks. This is same as clustering the network
model in small pieces. Graph cutting is a popular tool (Chung, 1997) where you
adaptively create the graph as well as cluster it in sub-graphs. Recently it has been
shown that the graph cutting algorithm is equivalent to kernel k-means clustering
algorithm (Dhillon et al., 2003). Existing Graph cutting techniques fail to provide
uncertainty measures. In a recent paper Ray, Mallick, Dougherty (2006) developed
a Bayesian graphical model with DPP priors to obtain the posterior distribution of
clusters. The method developed by Brooks et al. is a novel way to produce clusters
using the the set of edges and it will be interesting to see how this can be extended
in the complex situations to identify the clusters within an adaptive graph model.



24 Brooks, Manolopoulou and Emerson

PAUL FEARNHEAD (Lancaster University, UK )

I would like to congratulate the authors for demonstrating how Bayesian meth-
ods can be used to coherently address challenging problems in statistical genetics;
and the advantages they have over more classical approaches which split the analysis
into a number of stages and that essentially assume that the inferences within each
preceeding stage are exact.

The work implicitly assumes no recombination - so that there is a unique ge-
nealogical tree that describes the historical relationship of the sample; and this
is appropriate for the phylogeographic analysis considered as mitochondrial DNA
does not recombine. However, I wonder if you have considered how to extend your
method to situations where there is recombination? As most DNA data comes from
recombining regions of the genome, extending the method to this case is of par-
ticular importance, especially for possible applications relating to mapping disease
genes.

In these cases there is no single genealogical tree, but (potentially) different
genealogical trees for each site in the DNA sequence - this information can be de-
scribed by something called the Ancestral Recombination Graph (ARG). Applying
phylogenetic methods to this case is inappropriate - while a tree could be inferred,
it no longer has the natural interpretation that there is in the no recombination
case, and ignoring recombination has shown to lead to biases in various situations
(Sheirup and Hein 2000). In theory the Bayesian approach can be adapted to this
case, by replacing mixing over possible trees with mixing over ARGs, but in practice
this is likely to be computationally infeasible due to the dimension of the space of
ARGs.

On a related point, there is a substantial literature within the field of population
genetics that is relevant to this work. In particular there is a natural population
genetic model for the underlying tree (or ARG) for the data based around a stochas-
tic process called the coalescent (Kingman 1982). There are numerous methods for
inference under coalescent models (see for example Stephens and Donnelly 2000,
Drummond et al. 2002 and references therein), some of which can include geo-
graphic information (Griffiths and Bahlo 1998, Beerli and Felsenstein 1999). While
these are primarily only for non-recombining DNA, there are a few methods for
the recombining case (e.g. Fearnhead and Donnelly 2001). There are a number of
advantages that these coalescent-based methods have over the more phylogenetic
approach described in the paper; for example they would enable trees to be inferred
without assuming parsimony, better estimates of the root of the tree, and inferences
about times on the tree (for example to date possible migration events). Though
these are likely to come at a higher computational cost.

Also of relevance are various accurate approximate methods that have been de-
vised in population genetics. The most generic of which is the Product of Approx-
imate Conditional Likelihood method of Li and Stephens (2003) - see also Wilson
and McVean (2006) for an application. This framework may give computationally
feasible way of extending the work in this paper to the recombining DNA case.
There is also related work by Zöllner and Pritchard (2005) on methods for mapping
disease genes; and by Pritchard et al. (2000) and Falush et al. (2003) on detecting
population structure from genetic data.

REPLY TO THE DISCUSSION

We are very grateful to Bani Mallick for his thoughtful discussion of our paper.
He makes a number of interesting observations to which we respond below.
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Hierarchical Clustering. Calculation of the normalisation constant with our
bivariate normal clusters is a trivial exercise in the context of phylogeographic anal-
yses. However, for phenotypic analyses higher dimensional distributions may well
be appropriate in which case techniques such as those described may well be very
useful. That being said, it is not clear that the normal assumption will necessarily
be valid. In many cases, phenotypic traits may well be binary, noting the pres-
ence/absence of disease for example, and so entirely different distributions would
need to be used.

Priors. We use vague priors in this analysis to demonstrate the ability of the
method to extract information from the data that is consistent with what is already
known. This paper represents a very early foray into this area and we are keen to
demonstrate the utility of our method at this early stage. To a large degree, the
results of our analysis are consistent with expert opinion. As a demonstration of
the method’s value the message would be less clear if we adopted more informative
priors only to gain a posterior which then agreed with them. A more statistically
rigorous defense of our choice of vague priors is based on the observation that the
knowledge we already have about the model parameters (and, indeed, model prob-
abilities) is predominantly based on previous analyses of these same data and so
would be inappropriate for use as a prior. Of course, there is some independent
information from studies on related species or on nearby islands, but it’s very diffi-
cult to disentangle these from knowledge based upon earlier analyses of these data.
Current research undertaking analyses of new data adopts a more rigorous approach
to this issue using reference priors on occasion and carefully sourcing information
for more informative priors where both possible and appropriate.

We were intrigued by the suggestion that in the absence of informative prior
information, we should resort to a classical analysis as a means to “avoid the problem
of specifying hyper-priors and related prior sensitivities”. Ignoring any philosophical
objections, it is worth noting that the EM algorithm would necessarily have to ignore
the uncertainty in the underlying tree, converging to that with the highest likelihood.
Therefore, such an algorithm would offer little advance over traditional methods.
The Bayesian method, on the other hand, can incorporate this uncertainty and allow
it to propogate through to the clustering component of the analysis.

Mixtures vs DPP. It may well be possible to produce an alternative scheme
based upon DPP models. This is not something that we have explored but may well
be worth investigating in due course. Our proposed method determines the number
of clusters automatically too, so it is unclear to us the extent to which DPP-based
models would provide an improvement as opposed to a simple alternative at this
stage. It may, nonetheless, be worth exploring in more detail.

Clustering Graphs. We had not thought to link our work with the literature
on partitioning graphs. The similarity measures in the latter case are functions of
the graph structure itself, whereas in our case, they are functions of trait values as-
sociated with the relevant nodes. It is certainly possible that some cross-fertilisation
of ideas might benefit one or other of the two areas and we will explore this as we
continue our research.

Paul Fearnhead also kindly contributes to the discussion by providing a tutorial
overview of a few related ideas together with additional references that augment our
own. In particular, he discusses the problem in which recombinations may occur.
This is not appropriate for the data we discuss here but may be appropriate for
other datasets and readers may well find these additional references useful.
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