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1 The challenge
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Standard Gaussian model-based clustering

f (x) =
s∑

j=1

πjϕaj ,Σj (x)

Compute π̂j , âj , Σ̂ by ML/EM-algorithm,
classify points by

γ̂(i) = argmax

k

π̂kϕâk ,Σ̂k
(xi)∑s

j=1 π̂jϕâj ,Σ̂j
(x)

.

(Bayes rule, used for all mixture-based methods.)
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Fixing k = 5 (or estimating k by BIC) gives this:
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More challenges (2-d and 20-d):
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Comparative simulation study with these setups;
k fixed, n = 1000 (p = 2), n = 2000 (p = 20).

Vary “nature” of outliers/noise, number of clusters,
cluster separation, cluster shape
(although more could be tried).

Model-based methods for elliptical clustering with outliers.
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Misclassification rate
Defining “true” clusters and outliers

4. Measurement of quality

Clustering is about classifying points,
and parameters are not the same for all methods,
so use misclassification rates.
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Misclassification rate
Defining “true” clusters and outliers

Need to define “truth”.
Naive approach:
“true clusters” (and “true outliers”)
defined by mixture component generating the points.
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Misclassification rate
Defining “true” clusters and outliers

Need to define “truth”.
Naive approach:
“true clusters” (and “true outliers”)
defined by mixture component generating the points.

Problem:
t-distributions generate outliers! (Or not?)
Uniform “noise” may be in the middle of a cluster
and in reality
“true generating mixture component” doesn’t exist.
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Misclassification rate
Defining “true” clusters and outliers

Approach to define true clusters and outliers
inspired by Davies/Gather/Becker’s (1999) outlier region.

ORα(j) := {y : (y − aj)
′Σ−1

j (y − aj) ≥ χ2
p,1−α ∀j = 1, 2, . . . , s},

k th cluster: (tuned α = 0.0001)

{y : y /∈ ORα(k) and k = arg maxj=1,...,sqj(y)},

where qj(y) true Bayes posterior probability (QDA).

For t-distribution: replace Σj

by (Gauss-adjusted) MCD-functional.
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Definition
mclust with noise
Tuning
Computation of the RIMLE

2.1 Robust Improper Maximum Likelihood (RIMLE)
(Hennig & Coretto)

Fit “pseudo-density” by “pseudo-ML/EM”

f (x) = π0c +

s∑

j=1

πjϕaj ,Σj (x),

with tuning constant c.

Tuning: choice of c, later.
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Definition
mclust with noise
Tuning
Computation of the RIMLE

Motivated by. . .
2.2 mclust with noise (Banfield & Raftery, 1993; BR)

Fit by ML/EM:

f (x) = π0
1
V

+
s∑

j=1

πjϕaj ,Σj (x),

V volume of smallest hyperrectangle covering data.
Classifies points to “noise component” 0.

Hennig (2004):
With well separated clusters and extreme outliers,
BR breaks down and RIMLE doesn’t.
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Definition
mclust with noise
Tuning
Computation of the RIMLE

2.3.1 Tuning of c:
Automatic tuning for RIMLE (ORIMLE):
Minimising, for c ∈ [0, C],

Kn(c) := max
i=1,2,...,n

s∑

j=1

π̂j |Mj(xi ; η̂n(c)) − χ2
p(xi)|,

where, with δ̂ij(c) Mahalanobis-distance of xi to comp. j ,

Mj(t ; c) =
1
W

n∑

i=1

τ̂ij(c)1(δ̂ij (c) ≤ t).

Idea: try to find c so that the non-outliers
look like Gaussian mixture.
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Definition
mclust with noise
Tuning
Computation of the RIMLE

Version (ORIMLEP):
Minimise, for c ∈ [0, C], with λ = 0, 0.5, 1,

Kn(c) + λπ̂0,

to allow some non-normality if this helps to integrate
more points into clusters.
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Tuning
Computation of the RIMLE

2.3.2 Stop the likelihood from degenerating

f (x) = π0c +

s∑

j=1

πjϕaj ,Σj (x)

Likelihood will degenerate if EV for a Σj → 0.

Use Garcia-Escudero et al., 2008 constraints: λmin(Σj )

λmax (Σk ) ≥ q.
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Definition
mclust with noise
Tuning
Computation of the RIMLE

2.3.2 Stop the likelihood from degenerating

f (x) = π0c +

s∑

j=1

πjϕaj ,Σj (x)

Likelihood will degenerate if EV for a Σj → 0.

Use Garcia-Escudero et al., 2008 constraints: λmin(Σj )

λmax (Σk ) ≥ q.

Choose q = 18 in simulation study (all methods),
but could choose differently in practice.
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Definition
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Tuning
Computation of the RIMLE

2.4 Computation of the RIMLE

2.4.1 Algorithm

Standard EM-algorithm can be used.
Need some tricky decisions about degenerating cases,
i.e., πj → 0.
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Definition
mclust with noise
Tuning
Computation of the RIMLE

2.4 Computation of the RIMLE

2.4.1 Algorithm

Standard EM-algorithm can be used.
Need some tricky decisions about degenerating cases,
i.e., πj → 0.

If EV-ratio constraint violated at end of algorithm,
discard solution for ORIMLE, unless this happens for all c.
(Enforce non-boundary solution if at all possible.)
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Definition
mclust with noise
Tuning
Computation of the RIMLE

2.4.2 Initialisation

Difficult and influential issue!

Now use mclust-inspired scheme:
◮ Find initial outliers by NNclean (Byers and Raftery 1998).
◮ Use hierarchical clustering based on

plain Gaussian mixture likelihood on “non-outliers”
(unconstrained cov-matrices)

◮ Reclassify points using “true cluster” definition.
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3. Other methods

3.1 Plain Gaussian mixture ML (GM)
3.2 mclust with noise (BR)
3.3 Mixture of t3-distributions (tmix)
(McLachlan & Peel 2000)
3.4 tclust 10%-trimmed clustering
(Garcia-Escudero et al., 2008)
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Unification/comparability issues

◮ Use EV ratio constraint q = 18 for all methods.
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Unification/comparability issues

◮ Use EV ratio constraint q = 18 for all methods.
◮ Use same initialisation for all methods except tclust

(use software default there.)
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Unification/comparability issues

◮ Use EV ratio constraint q = 18 for all methods.
◮ Use same initialisation for all methods except tclust

(use software default there.)

Tried tclust-type initialisation before
but found it slightly worse than hierarchical.

On the other hand, tclust initialisation always worked,
whereas mclust’s hc() didn’t in some situations.
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Unification/comparability issues

◮ Use EV ratio constraint q = 18 for all methods.
◮ Use same initialisation for all methods except tclust

(use software default there.)
◮ Use “true clusters” definition to reclassify outliers

and clusters for all methods.
(10% fixed trimming rate in tclust doesn’t imply
10% “classified outliers”.)
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4. The results
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The lessons to learn
◮ Results depend strongly on setup (also on p).
◮ Different results for “same” model, p = 2, 20.
◮ GM generally bad with outliers (as expected).
◮ BR and ORIMLE similar,

but BR suffers if there is much t.
◮ tmix not very competitive except t-setups.
◮ tclust has highs and lows.

May suffer from fixed trimming rate and
(to some extent) from initialisation.

◮ RIMLE automatic tuning not always optimal for same λ.
◮ GaussT.G2.P20 makes everything break down.
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6. Tuning revisited, and conclusion

6.1 Tuning revisited
Against automatic tuning:

◮ The problem definition requires user tuning,
so methods should be tuned as well.
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6. Tuning revisited, and conclusion

6.1 Tuning revisited
Against automatic tuning:

◮ The problem definition requires user tuning,
so methods should be tuned as well.

◮ Automatic tuning doesn’t always work well
and is difficult.
Garcia-Escudero et al. (2010) recommend
manual tuning with graphical diagnostics.

Forward search (Atkinson and Riani 2007)
use graphical diagnostics, too
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In favour of automatic tuning:
◮ Good for simulation; no interaction between

simulated setup and manual tuning.
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In favour of automatic tuning:
◮ Good for simulation; no interaction between

simulated setup and manual tuning.
◮ Users want automatic tuning,

and many will mess up manual tuning.
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6.2 Conclusion
◮ Comparative simulation studies in “robustness spirit”

need to measure how methods do
what they are not exactly supposed to do.
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◮ Relative results on robust clustering
depend on a plethora of factors.
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◮ Relative results on robust clustering
depend on a plethora of factors.

◮ Robust clustering problem definition requires tuning.
Shouldn’t methods be manually tuned, too?

Christian Hennig and Pietro Coretto Comparating methods for robust elliptical clustering, inc luding



The challenge
Measurement of quality

Robust improper maximum likelihood
Other methods

The results
Tuning revisited, and conclusion

Tuning revisited
Conclusion
Postscriptum on research ethic

6.2 Conclusion
◮ Comparative simulation studies in “robustness spirit”

need to measure how methods do
what they are not exactly supposed to do.

◮ Relative results on robust clustering
depend on a plethora of factors.

◮ Robust clustering problem definition requires tuning.
Shouldn’t methods be manually tuned, too?

◮ ORIMLE looks best but tried fairly hard to achieve this.
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6.3 Postscriptum on research ethic
◮ All researchers want their own method to look good.
◮ Endless possibilities to make the own method “win”.
◮ It’s legitimate to improve own method

to deal better with some models.
◮ It’s legitimate to choose models that demonstrate

specific pros and cons of methods.
But try to cause trouble for own method, too.

◮ Should try hard to tune competing methods
to high quality (using original idea
and not knowledge of simulated setups).

◮ Unfortunately, in published studies
it cannot be checked how hard the researchers tried.
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