Gaussian and not-so-Gaussian clustering
with robustness against outliers
and a stab at the number of clusters

Christian Hennig and Pietro Coretto
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

1.1 Introduction - Challenges to Gaussian clustering
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

Standard Gaussian model-based clustering
G
f(x) =D miva,s,(x)
j=1

Compute #;,4;,% by ML/EM-algorithm,
classify points by

. Tk, 5, (X))
A(i) = arg max fk’z" S
ko 2l Fea s, (X)

(Bayes rule, used for all mixture-based methods.)
R-mclust package, Fraley and Raftery
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

Estimating G by BIC (mclust) gives G = 6 and this. . .

sim28dataset(,2]
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sim2s$dataset],1]

... which is actually fine.
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

With only one outlier, get G = 5
and a different cov-matrix model.

SunSpot.G5.P2.N1000
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

In reality, we apply Gaussian clusters

to non-Gaussian data.

Want methods that give us something useful
even if clusters are not exactly Gaussian.

Robust (not so) Gaussian clustering, number of clusters
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

sim$dataset,2]

simsdataset],1]

mclust approximates some t-distributions by two Gaussians,
a bit messy.
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

776 folk songs from Luxemburg and Warmia, 18 features

BIC: G =2, but ARI = 0.
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

572 olive oils from 9 ltalian regions, 8 features

linoleic

Note discreteness of some variables!
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods
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mclust gives main bulk and various outlier classes.
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

This is what OTRIMLE gives:

unemployment B ;

birth death

moves.in.out

soc.ins.emp

o 2 w0

(Black observations are classified as “noise/outliers”.)

ristian Hennig and Pietro Coretto Robust t so) Gaussian clustering, number of cluste!



Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

1.2 Gaussian mixtures, non-Gaussian data

Why fit Gaussian mixtures?

We don'’t believe that clusters are really Gaussian,

but we look for clusters

for which the Gaussian shape is a suitable “prototype”.
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

We look for clusters
for which the Gaussian shape is a suitable “prototype”.

What does this mean?

That’s not so clear.

Tolerate skewness, nonlinearity, heavy tails?
Certainly not all of these!
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

We look for clusters
for which the Gaussian shape is a suitable “prototype”.

What does this mean?

That’s not so clear.

Tolerate skewness, nonlinearity, heavy tails?
Certainly not all of these!

Methods that classify observations as “noise/outlier”
can cut out “near-Gaussian cores”.
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

Could use other “cluster prototypes”,
mixtures of skew and heavy-tailed distributions,
density mode/level set based clustering.
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

Could use other “cluster prototypes”,
mixtures of skew and heavy-tailed distributions,
density mode/level set based clustering.

These come with their own problems
(high-d density estimation is hard;

is it really appropriate to integrate
outliers into heavy tailed “cluster’?)
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

Could use other “cluster prototypes”,
mixtures of skew and heavy-tailed distributions,
density mode/level set based clustering.

These come with their own problems
(high-d density estimation is hard;

is it really appropriate to integrate
outliers into heavy tailed “cluster’?)

Ultimately the user needs to decide
what “clustering” means in an application.
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

Guiding idea:

Impose Gaussian clusters on non-Gaussian data
for which Gaussian clusters are still “adequate”.
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

Guiding idea:

Impose Gaussian clusters on non-Gaussian data
for which Gaussian clusters are still “adequate”.

The “number of clusters”problem is central here;
Every continuous distribution can be approximated
by enough Gaussian mixture components,

but these won’t always make reasonable “clusters”.
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

Guiding idea:

Impose Gaussian clusters on non-Gaussian data
for which Gaussian clusters are still “adequate”.

The “number of clusters”problem is central here;
Every continuous distribution can be approximated
by enough Gaussian mixture components,

but these won’t always make reasonable “clusters”.

In cluster analysis, we want a sufficiently small
number of well distinguished clusters.
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

1.3 The robust Gaussian clustering problem
... oversimplified: fit

G
f(X) =Y mjwa,x,(X)
j=1

and assign points to mixture components in a “robust” way,
not too affected by points not fitted by model,
or by slight deviation of components from ¢.
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Introduction Challenges to Gaussian clustering
Gaussian mixtures, non-Gaussian data

The robust Gaussian clustering problem
Existing methods

1.4 Existing methods
» Plain Gaussian mixture
» Mixture of f-distributions (McLachlan & Peel 2000)

» Trimmed clustering (Garcia-Escudero et al. 2008,
Gallegos & Ritter 2005)

» Gaussian mixture with “noise component” (Banfield &
Raftery 1993)

» Trimmed likelihood (Neykov et al. 2007)
» More elaborate mixtures (skew-t etc.)
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Robust improper ML (RIMLE)
The constrained parameter space
Tuning

Further issues

OTRIMLE vs. tclust

Optimally tuned robust improper ML

2 Optimally tuned robust improper ML (OTRIMLE)
(Coretto and Hennig, JASA 2016)

2.1 Robust improper ML (RIMLE)

Use improper fixed density for “noise”

(inspired by Banfield & Raftery’s “noise component”).
Fit “pseudo-density” by “pseudo-ML/EM”

G

be(x,0) = f(X) =moC+ > mpa5,(X),
=

with tuning constant c.
(c is not a model parameter;
¢ — oo = likelihood — oc.)
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Robust improper ML (RIMLE)
The constrained parameter space
Tuning

Further issues

OTRIMLE vs. tclust

Optimally tuned robust improper ML

Pseudo posterior probabilities:

ﬁ'oCA f | —
(X, 0) = 2 Vo(x.0) =0
j(Xi, % ifj=1,2,...,G

Cluster assignment by maximum posterior.
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Robust improper ML (RIMLE)
The constrained parameter space
Tuning

Further issues

OTRIMLE vs. tclust

Robustness in 1-d (Hennig 2004)

Optimally tuned robust improper ML
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Robust improper ML (RIMLE)
The constrained parameter space
Tuning

Further issues

OTRIMLE vs. tclust

Optimally tuned robust improper ML
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This happens when density \, 0
(Gaussian, t-mixture, Banfield & Raftery’s “noise component”)
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Robust improper ML (RIMLE)
The constrained parameter space
Tuning

Further issues

OTRIMLE vs. tclust

Optimally tuned robust improper ML
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Robust improper ML (RIMLE)

The constrained parameter space
Tuning

Further issues

OTRIMLE vs. tclust

Optimally tuned robust improper ML

2.2 The constrained parameter space

Likelihood degenerates if A\p,in — 0

(problem for all methods).

Hathaway (1985), Garcia-Escudero et al. (2008):
Amax () /Amin(6) < v < +o00

Too much noise causes trouble for parameters:

1
n Z 10(X;, 0) < Tmax,
=

Pseudo-ML in constrained parameter space Og.
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Robust improper ML (RIMLE)
The constrained parameter space
Tuning

Further issues

OTRIMLE vs. tclust

Optimally tuned robust improper ML

2.3 Tuning of c:
Optimal tuning for RIMLE (OTRIMLE):
Minimising, for ¢ € [0, C],
G
Kna(c) := max #iIM;(x;: n(€)) — X5(x);

i=1,2,...
/ 1= an j:1

where, with S,-j(c) Mahalanobis-distance of x; to comp. J,

Idea: try to find ¢ so that the non-outliers
look like Gaussian mixture.
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Robust improper ML (RIMLE)
The constrained parameter space
Tuning

Further issues

OTRIMLE vs. tclust

Optimally tuned robust improper ML

Version (OTRIMLE.P):
Minimise, for ¢ € [0, C], with fixed g > 0,

Kn(C) + Bﬁ-Ov

to allow some non-normality if this helps to integrate
more points into clusters.
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Robust improper ML (RIMLE)

The constrained parameter space
Tuning

Further issues

OTRIMLE vs. tclust

Optimally tuned robust improper ML
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Robust improper ML (RIMLE)
The constrained parameter space
Tuning

Further issues

OTRIMLE vs. tclust

Optimally tuned robust improper ML

2.4 Further issues
(Coretto & Hennig 2015, 2016, arxiv)

» Existence and consistency theory
» Breakdown theory
» Pseudo-EM algorithm, convergence, initialisation
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Robust improper ML (RIMLE)
The constrained parameter space
Tuning

Further issues

OTRIMLE vs. tclust

Optimally tuned robust improper ML

2.5 OTRIMLE vs. tclust

tclust (Garcia-Escudero et al., 2008) fits:
f(X1 Yoy Xn) = H SOaW(,-),ZW(,-) (Xf) H gi(Xi)7
icR i¢R
IRl ~ (1 —a)n.

Tuning: trimming rate «.

tclust is similar to OTRIMLE;
similar benefits and issues;
trimming rate vs. noise pseudo-density level.
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Robust improper ML (RIMLE)
The constrained parameter space
Tuning

Further issues

OTRIMLE vs. tclust

Optimally tuned robust improper ML

tclust advantages:

» Trimming rate easier to interpret
(and probably to initialise) than noise level.

» Discrete algorithm is faster.

» Impressive new tclust additions
(could be done for OTRIMLE approach).
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Robust improper ML (RIMLE)
The constrained parameter space
Tuning

Further issues

OTRIMLE vs. tclust

Optimally tuned robust improper ML

tclust advantages:

» Trimming rate easier to interpret
(and probably to initialise) than noise level.

» Discrete algorithm is faster.

» Impressive new tclust additions
(could be done for OTRIMLE approach).

OTRIMLE advantages:

» Smooth mixture classification

should often be better and more stable.
» Automatic tuning of noise level

(could be applied to trimming rate).
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Measuring clustering quality
Examples

The number of clusters

3 The number of clusters G

...is hardly known in any real application.
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Introduction

Simplicity and adequacy
OTRIMLE's fitted model
Measuring clustering quality
Examples

The number of clusters

Estimating G (robustly) comes with problems.

1. Estimating number of Gaussian mixture components
is ill-posed problem.
In reality nothing is exactly Gaussian,
and with large n everything can be fitted
better with more components.

2. Are “clusters of outliers” clusters or outliers?
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Introduction
Simplicity and adequacy

OTRIMLE's fitted model
The number of clusters . . .
Measuring clustering quality
Examples

Ultimately, estimation of the number of clusters
needs user tuning:
» When should something fitted by
k mixture components be considered one cluster?

» How big and clear a group of outliers
is to be considered a cluster?

Christian Hennig and Pietro Coretto
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Simplicity and adequacy
OTRIMLE's fitted model

The number of clusters . . .
Measuring clustering quality

Examples
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Introduction

Simplicity and adequacy
OTRIMLE's fitted model
Measuring clustering quality
Examples

The number of clusters

Tuning-free methods such as BIC and K, g

rely strongly on model assumptions

and will with larger n

deliver ever larger G to fit non-Gaussian data better.
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Simplicity and adequacy
OTRIMLE's fitted model
Measuring clustering quality
Examples

The number of clusters

Tuning-free methods such as BIC and K, g

rely strongly on model assumptions

and will with larger n

deliver ever larger G to fit non-Gaussian data better.

For OTRIMLE, BIC, likelihood and K, g depend on c,
¢ depends on G,
criteria with different ¢ hard to compare.
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Simplicity and adequacy
OTRIMLE's fitted model
Measuring clustering quality
Examples

The number of clusters

3.2 Simplicity and adequacy

Idea: (Davies 1995, Davies and Kovac 2004)
Find simplest model (smallest G?)
that fits data adequately.

Adequacy: A model fit is “adequate” if its
quality on given data

cannot be told apart from fit quality

to typical data generated from the model.
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Simplicity and adequacy
OTRIMLE's fitted model
Measuring clustering quality
Examples

The number of clusters

Approach:

1. Generate B datasets Dg ;, from fitted models
with range of G (parametric bootstrap).

2. Compute statistic S measuring quality of clustering.

3. G adequate if S(x) not clearly worse
than expected S(Dg p)-

4. Choose smallest/simplest/best adequate G.
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Introduction

Simplicity and adequacy
OTRIMLE's fitted model
Measuring clustering quality
Examples

The number of clusters

Requirements:
1. OTRIMLE fits “pseudo-model”, so what’s the model?
2. How to choose S?
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Simplicity and adequacy
OTRIMLE'’s fitted model
Measuring clustering quality
Examples

The number of clusters

3.3 OTRIMLE'’s fitted model

OTRIMLE fits pseudo-density

G
Ye(X,0) = f(x) = mC+ Y _ mjipa,x,(X).
j=1

Can generate data from cdf

G
We(x,0) = RoF(x) + ) 795 5 (x).
j=1

F weighted empirical noise distribution with weights wf(ri?@)'

No assumption on distribution of noise/outliers;
this is reproduced from data.
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OTRIMLE's fitted model
Measuring clustering quality
Examples

The number of clusters

3.4 Measuring clustering quality

Don’t want to rely on Gaussian assumption,
but want clusters for which Gaussian fit makes sense.
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Simplicity and adequacy
OTRIMLE's fitted model
Measuring clustering quality
Examples

The number of clusters

3.4 Measuring clustering quality

Don’t want to rely on Gaussian assumption,
but want clusters for which Gaussian fit makes sense.

What characterises a non-Gaussian cluster
that is well modelled by a Gaussian component?

Look for approximately elliptical clusters
with density decreasing from mean in all directions.

Measure deviation from such a shape.

Christian Hennig and Pietro Coretto Robust (not so) Gaussian clustering, number of clusters



Introduction

Simplicity and adequacy
OTRIMLE's fitted model
Measuring clustering quality
Examples

The number of clusters

1-d measure of symmetric density decrease from mean
...1o be applied to single cluster.

(a) Compute kernel density estimator at g points
symmetric around mean f(y1), ..., f(¥q)-

(b) Sort these: (1) > ... > (@),

(c) Compute * > ... > @2
by averaging pairs of f(yy),...,f(yq)-
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OTRIMLE's fitted model
Measuring clustering quality
Examples

The number of clusters

(d) Compare with kernel density from mean:

az .
si=> (F(yqror1-i) — )2,
e
a2 =
s =Y (fWgperi) — )2,
i—1

,
T(Y1,---.Yq) = a(sl+sr)-

Perfect symmetric decrease from mean: T = 0.
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The number of clusters

Application to p-dimensional clusters
(a) Compute weighted PCA of cluster C;
characterised by ((x1,...,Xn)-(Fj(X1), ..., %(Xn))).
(b) T;, i=1,...,p: D-measure for weighted ith PC scores.
() Tr = =%

\/Var(T;)’

ET; and Var(T;) assuming Gaussianity.
(d) 77 =5 304 (TH1(T; > 0).
(T7)21(T > 0) is dominated by worst dimension,
T < 0 for some i will not mask bad value elsewhere.
Should be sensitive to issue in any dimension.
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Measuring clustering quality

Examples

Aggregate over clusters:

S(x,C) =

Square again to make it sensitive
to biggest issue in any cluster.

Compare with bootstrap under fitted model:

S(x,C) — S(Dgp)

S*(x,C) = sd(S(Dgp))

G is adequate if S*(x,C) < 2, say.
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The number of clusters

All from G = 3 upwards are OK.
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OTRIMLE's fitted model
Measuring clustering quality
Examples

The number of clusters

G = 3 and G = 4 have substantial noise proportion;
achieve good clustering
by “outnoising” good observations.

800 1000
L L

Density criterion
600
Noise proportion

400

200
L
o
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OTRIMLE's fitted model
Measuring clustering quality
Examples

The number of clusters

Issue raised earlier:
How big and clear a group of outliers
is to be considered a cluster?

More generally: most desirable model
is not only parsimonious (low G)
but also expains many points (low 7).
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OTRIMLE's fitted model
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The number of clusters

Choose critical noise proportion pg
to trade against one cluster more.

Choose G so that model is adequate and
G+ % is minimum.

For example dataset and py = 0.05 this yields G =5:
G \ 1 2 3 4 5 6
G+ % 1.1 26 104 6.0 51 6.1
S* 905.0 6529 -06 -02 -04 -04
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3.5 Examples
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The number of clusters

Order of penased nmbersofcsters: 2167543981011
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The number of clusters

Comparing with “true” region:

method G ARl remark
OTRIMLE/S 7 0.76 sensitive to v
mclust 9 0.65

mclust/noise 9 0.61
tclust/ctlcurves 7 0.68

t-mixture (teigen) 5 0.77

skew-t-mixture (smsnmix) 9 0.77

Caution: there can be reasonable clusters other than the
regions.
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The number of clusters

Comparing with “true” region:

method G ARl remark

OTRIMLE/S 2 0.15

mclust 2 -0.05

mclust/noise 3 -0.01

tclust/ctlcurves 2 016 G ambiguous; sens. to
t-mixture (teigen) 5 0.03

skew-t-mixture (smsnmix) 2 -0.06

Caution: there can be reasonable clusters other than the
regions.
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Conclusion

4 Conclusion
» Find adequate fit with smallest G + %.
» Measure adequacy by comparing within-cluster density
to “ideal shape” along all PCs.
» Number of clusters problem is ill-posed and
needs user decisions.

» |dea can be applied to other statistics
and other clustering methods.
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Solutions may be sensitive to constraint ~,
algorithm initialisation etc.

(there are stability issues and artifacts
with all clustering methods) =

Don’t trust any automatic method
and do cluster validation!
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Conclusion

The Gaussian clusters assumption
...is used:

in the pseudo-likelihood,

in Kj, g for tuning the noise level

(noise penalty can be added),

for dimension/clusterwise standardisation of S

(need to make clusters and losses comparable),

for parametric bootstrap overall standardisation of S
(only being significantly worse than Gaussian is rejected)

v

v

v

v
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Conclusion

» May want to tolerate clusters slightly
worse than Gaussian (or slightly skew).
May simulate Dg  from model with weaker density decay;
need not enforce symmetry of comparison density.

» PCA may miss critical direction;
may use Tyler et al. ICS instead of PCA.
(Experience: this hasn’t been a problem yet.)

» Could use S instead of Kj, g for tuning.
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P. Coretto and C. Hennig: Robust improper maximum
likelihood: tuning, computation, and a comparison with other
methods for robust Gaussian clustering

arXiv:1406.0808

To appear in JASA (2016).

P. Coretto and C. Hennig: A consistent and breakdown robust
model-based clustering method

arXiv:1309.6895

Submitted.

This work is supported by EPSRC Grant EP/K033972/1.
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.and...

Chapman & Hall/CRC
Handbooks of Modern
Statistical Methods

Handbook of
Cluster Analysis

Christian Hennig
Marina Meila

Fionn Murtagh
Roberto Rocci
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IFCS-2017

CI:IALLENGE OF DATA SCLENC:E"
LN RA OF

ConrerEnte Madtall
OF THE INTERNATIONAL FEDERATION
OF CLASSIFICATION SOCIETIES

AUGUST
Tokyo, JAPAN

http://ifcs.boku.ac.at/ifcs2017/

'CONFERENCE VENUE
Takanawa Campus of Tokal University

IMPORTANT DATES

Aprl 15,2017:  Deadine abstract submission
s Aprl 15,2017:  Deadine early bird registration
May 15,2017 Notification of acceptance for abstract submission
May31,2017:  Deadine standard registration

June 30,2017:  Deadine late registration
August 7. 2017:  Pre-conference workshops

Z TOKNUNIERSITY 5 guct5'10, 2017: IFCS 2017 conference.
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