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Preliminaries

• This book does NOT contain a complete set of notes for this course.

• These notes will be supplemented by handouts of examples of data analysis that will be
given out and discussed in the lectures. The computer output in these examples has been
obtained using the R software.

• If you require further explanation of a method or a proof that is not given or wish to
study further examples, then do refer to a textbook on the subject. At the end, some
references to texts are provided for optional background reading.

• You are strongly advised to try the exercises set each week – that is the way to learn the
material!

Cluster analysis books and general overviews

• Aggarwal, C. C. and Reddy, C. K. (2014), Data Clustering: Algorithms and Applications,
CRC Press.

This is a cluster analysis handbook from a machine learning rather than a statistics per-
spective. It is astonishing how different this is from Hennig et al.’s Handbook of Cluster
Analysis below. It has more on dimension reduction, big data issues and specific applica-
tions, but less on the statistical background of standard techniques used in the statistics
community. Not really a good reference for the content of this course, rather an interesting
addition.

• Everitt, B. S., Landau, S., Leese, M. and Stahl, D. (2011), Cluster Analysis (5th ed.),
Wiley.

Fairly comprehensive coverage of the most important approaches and concepts in cluster
analysis. Make sure you pick the 5th edition or newer; this is much better than some
older editions of this book.

• Hennig, C., Meila, M., Murtagh, F., and Rocci, R. (2015), Handbook of Cluster Analysis,
Taylor & Francis.

Chapters on various approaches were written by many experts in the field. Due to the
large number of authors and writing styles, the book is not a systematic introduction but
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rather covers many approaches and new developments. Chapter 1 gives an overview and
Chapter 31 discusses general cluster analysis strategy.

• Jain, A. K. (2010), Data clustering: 50 years beyond K-means, Pattern Recognition
Letters 31, 651-666.

Interesting overview article by one of the most experienced researchers in the field.

• Kaufman, L. and Rousseeuw, P. (1990), Finding Groups in Data, Wiley.

Authoritative reference for the techniques implemented in R’s “cluster” package, but some-
what scarce regarding other approaches.

Further (somewhat outdated) books on cluster analysis are for example Gordon (1999); Jain
and Dubes (1988).



Chapter 1

Introduction

Informally speaking, clustering means finding groups in data. Aristotle’s classification of living
things was one of the first known clusterings, a hierarchical clustering. The knowledge of biology
has grown, yet the schematic organisation of all known species remains in the form of a (hi-
erarchical) clustering. Doctors defining categories of tumours by their properties, astronomers
grouping galaxies by their shapes, companies observing that users of their products group ac-
cording to behaviour, archaeologists defining cultural periods from features of found artifacts,
programs that label the pixels of an image by the object they belong to, other programs that
segment a video stream into scenes, recommender systems that group products into categories,
all are performing clustering. One can even say that classification and categorisation are very
basic tasks for the development of human language and conceptual thinking.

There are also quite general tasks for which clustering is applied in many subject areas:

• exploratory data analysis looking for “interesting patterns” without prescribing any spe-
cific interpretation, potentially creating new research questions and hypotheses,

• information reduction and structuring of sets of entities from any subject area for simplifi-
cation, more effective communication, or more effective access/action such as complexity
reduction for further data analysis,

• investigating the correspondence of a clustering in specific data with other groupings or
characteristics, either hypothesised or derived from other data.

Cluster analysis is a very lively research area. Cluster analysis research is done in several
subject areas, most notably in statistics, machine learning and discrete mathematics. Inspired
by specific application areas, researchers in social sciences, psychology, biology and management
science have contributed to cluster analysis research as well. This means that there is quite
a variety of approaches and methods in cluster analysis and little unification and consensus
regarding what is best to do when. Although new methods for cluster analysis are introduced
all the time, I think that research on cluster validation and comparison of different approaches
is urgently required and more useful for the end user than devising ever more new methods for
clustering.

There is no unique definition of what a cluster is. A general intuition is that clusters should
be homogeneous, i.e., objects in the same cluster should be close to each other, and should be
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separated from each other, i.e., the distance between objects from different clusters should be
large. Often different clusters are seen as corresponding to high density areas with density gaps
between different clusters.

Sometimes, though, within-cluster homogeneity and between-cluster separation are conflicting
because objects that are very far from each other may be connected by high density areas so
that putting them together in the same cluster means that the cluster is not very homogeneous.

Another possible cluster definition is that objects in the same cluster are generated by the same
homogeneous probability distribution, such as a normal distribution, and a different cluster may
be generated by, for example, a normal distribution with different parameters. There is also
work in which clusters are defined by regression or time series models, but this is beyond the
scope of this course, see, e.g., Hennig et al. (2015).

In some literature, cluster analysis is referred to as “unsupervised classification” as opposed to
“supervised classification”. In unsupervised classification, it is not known to which cluster the
observations belong and this is to be estimated, whereas techniques for supervised classification
(such as Linear Discriminant Analysis and the k-nearest neighbour classifier) are about deriving
classification rules for new observations based on a training set of observations with known
classes.

1.1 Some example datasets

1.1.1 Old Faithful Geyser

This dataset from Azzalini and Bowman (1990) consists observations from the Old Faithful
geyser in Yellowstone National Park, which is one of the best studied geysers. It is about the
connection between the duration of an eruption (in minutes) and the following waiting time for
the next eruption, also in minutes. The interest here lies in classifying the different eruptions
for understanding the geyser’s behaviour and for predicting waiting times (which nowadays
is done by classifying eruptions roughly into “short” and “long” because analysing the data
including cluster analysis reveals that discovering this class structure is pretty much the best
one can do for predicting the waiting times). Durations and waiting times are given for 299
eruptions in the dataset.

The dataset is available in the R-package MASS and can be accessed as follows:

library(MASS)

data(geyser)

# You can also load geyser.dat from Moodle and read it with

# geyser <- read.table("geyser.dat",header=TRUE)

# Here’s how it looks like:

str(geyser)

#’data.frame’: 299 obs. of 2 variables:

# $ waiting : num 80 71 57 80 75 77 60 86 77 56 ...

# $ duration: num 4.02 2.15 4 4 4 ...
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Figure 1.1: Old Faithful Geyser data

plot(geyser)

The plot is shown in Figure 1.1.

1.1.2 German Bundestag Election 2005

The Bundestag is the German parliament. The German Bundestag Election 2005 dataset is in
the R-package flexclust. By pure coincidence, this dataset also has 299 observations, namely
the German constituencies. It gives the election results (proportions between 0 and 1) in the
constituencies for the five biggest parties, namely the social democratic SPD, the conservative
Christian UNION, the green party GRUENE, the liberal party FDP and the left wing party
LINKE. The interest here is in finding clusters of constituencies with similar voting behaviour.
The dataset also contains some information about to which of the 16 German federal states the
constituencies belong. This information is not used for clustering, but is rather of interest for
interpreting clustering results. From this I produced another variable distinguishing between
the federal states that before 1989 belonged to West Germany, the communist East Germany,
or Berlin (which was divided between the two and had a special status). Here is some R-code
that loads the data:

library(flexclust)

p05 <- bundestag(2005)

# You can also load bundestag.dat from Moodle and read it with
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# bundestagdata <- read.table("bundestag.dat",header=TRUE)

# The variables in p05 are bundestag[,1:5];

# the variables state and ewb below are variables 6 and 7

# in bundestagdata.

str(p05)

# How the object looks like:

# num [1:299, 1:5] 0.391 0.362 0.363 0.376 0.415 ...

# - attr(*, "dimnames")=List of 2

# ..$ : chr [1:299] "Flensburg - Schleswig" "Nordfriesland -

# Dithmarschen Nord" "Steinburg - Dithmarschen Sued"

# "Rendsburg-Eckernfoerde" ...

# ..$ : chr [1:5] "SPD" "UNION" "GRUENE" "FDP" ...

# federal states:

state <- bundestag(2005, state=TRUE)

# ewb takes values "East", "West", "Berlin" as explained:

ewb <- rep("West",299)

ewb[state=="Berlin"] <- "Berlin"

ewb[state %in% c("Brandenburg","Mecklenburg-Vorpommern","Sachsen",

"Sachsen-Anhalt","Thueringen")] <- "East"

# Plotting

pairs(p05,xlim=c(0,0.6),ylim=c(0,0.6),cex=0.5)

# Note the xlim, ylim parameters. All values of all variables

# have the same meaning, so fixing the x and y value range for

# all variables simultaneously will show which parties are

# big and which are small.

# cex=0.5 makes plot symbols smaller.

The plot is shown in Figure 1.2.

1.1.3 Olive Oil

This data set from the pdfCluster-package of R represents eight chemical measurements on
572 different specimen of olive oil produced in various regions in Italy (northern Apulia, south-
ern Apulia, Calabria, Sicily, inland Sardinia and coast Sardinia, eastern and western Liguria,
Umbria). These regions can further be classified into three macro-areas: Centre-North, South,
Sardinia. Like for the Bundestag data, these regions are not of direct interest for clustering,
but rather for interpreting and evaluating the clustering results. The clustering aim is to give
a chemical classification of the olive oils.

The help page of oliveoil in the pdfCluster-package mentions that the data are composi-
tional and the values should ideally add up to 10000 for every olive oil. However, because of
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Figure 1.2: Bundestag data

measurement error this is not always the case. A transformation of the data is suggested there,
but this doesn’t seem to make much of a difference, so it is not applied here.

Actually, the regions and particularly the macro-areas are often used in the literature as the
“true clusters” in order to evaluate the quality of clustering algorithms. On one hand such
data with given “true clusters” are a good resource to compare different clustering algorithms.
On the other hand, it is problematic to assume that the given classes, here the regions and
macro-areas, are indeed the only “true clusters”. If there is much chemical variation between
olive oils within a region, there is nothing wrong with a clustering based on chemistry that
differs from the regional information.

library(pdfCluster)

data(oliveoil)

# You can also load oliveoil.dat from Moodle and read it with

# oliveoil <- read.table("oliveoil.dat",header=TRUE)
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# Look at object:

str(oliveoil)

# ’data.frame’: 572 obs. of 10 variables:

# $ macro.area : Factor w/ 3 levels "South","Sardinia",..: 1 1 1 1 1 1 1 1 1 1 ...

# $ region : Factor w/ 9 levels "Apulia.north",..: 1 1 1 1 1 1 1 1 1 1 ...

# $ palmitic : int 1075 1088 911 966 1051 911 922 1100 1082 1037 ...

# $ palmitoleic: int 75 73 54 57 67 49 66 61 60 55 ...

# $ stearic : int 226 224 246 240 259 268 264 235 239 213 ...

# $ oleic : int 7823 7709 8113 7952 7771 7924 7990 7728 7745 7944 ...

# $ linoleic : int 672 781 549 619 672 678 618 734 709 633 ...

# $ linolenic : int 36 31 31 50 50 51 49 39 46 26 ...

# $ arachidic : int 60 61 63 78 80 70 56 64 83 52 ...

# $ eicosenoic : int 29 29 29 35 46 44 29 35 33 30 ...

# The chemical variables:

olive <- oliveoil[,3:10]

# Plot:

pairs(olive,cex=0.3)

The plot is shown in Figure 1.3. Note that there are more sophisticated methods for visuali-
sation of multidimensional datasets such as Principal Component Analysis, but they are not
treated in this course.

1.1.4 Veronica Plant Species

This dataset is an example of a different data format that has to be plotted in different ways;
the intuition about what “clustering” means here is different. The dataset is from Martinez-
Ortega et al. (2004) and I put it on Moodle with the name veronica.dat (actually there is
a version of it in the R-package prabclus, but this is ordered according to some clustering
results, which is not how the data were collected in reality).

Veronica data has 207 objects, and these are individual Veronica plants. The aim of clustering
these is to discover and delimit different species of such plants. The plants are characterised by
583 variables. These contain genetic information, which was obtained using AFLP-technology
(“amplified fragment length polymorphism”). This detects the presence or absence of certain
characteristics of DNA fragments (you may have a look at the Wikipedia page of amplified
fragment length polymorphism for more detailed information). The variables can take the values
0 (absence) and 1 (presence) and refer to different fragments of the DNA. Species discovery
and delimitation nowadays is done based on such genetic information.

veronica <- read.table("veronica.dat")

# This assumes that the dataset in in the directory in which R is run;

# otherwise you need to add the location where you have put the dataset.

str(veronica)



CH: STATG019, 2016 9

palmitic

50 150 6500 8000 0 40 0 20 40 60

6
0

0
1

2
0

0

5
0

1
5

0

palmitoleic

stearic

1
5

0
2

5
0

3
5

0

6
5

0
0

8
0

0
0

oleic

linoleic

6
0

0
1

2
0

0

0
4

0

linolenic

arachidic

0
4

0
8

0

600 1200

0
2

0
4

0
6

0

150 250 350 600 1200 0 40 80

eicosenoic

Figure 1.3: Olive data

#’data.frame’: 207 obs. of 583 variables:

# $ V1 : int 0 0 0 1 0 0 0 0 0 1 ...

# $ V2 : int 0 0 0 0 0 1 0 0 0 0 ...

# $ V3 : int 1 1 0 1 0 0 0 0 0 0 ...

# $ V4 : int 0 0 0 0 0 0 0 0 0 0 ...

# (...)

# Some things can better be done on matrices:

veronicam <- as.matrix(veronica)

# A pairs plot isn’t suitable for 0-1 data, and also not

# for 583 variables.

# A better plot is a heatmap, that plots value 1 in black

# and zero in white.
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Figure 1.4: Veronica data. Rows are plants, columns are AFLP bands. Black is 1, white is 0.

heatmap(veronicam,Rowv=NA,Colv=NA,col=grey(seq(1,0,-0.01)))

# This is black for 1-entries

# rows are plants, columns are variables

The plot is shown in Figure 1.4.

1.1.5 Artificial Dataset 1

In order to demonstrate some issues, I also generated artificial datasets. The first dataset
should be fairly easy to cluster. It is constructed to consist of three clusters. The first one
comes from a bivariate Gaussian (normal) distribution, for the second and third I used so-called
skew normal distributions as implemented in the R-package sn. The dataset is on Moodle and
is called clusterdata1.dat.

# This is how I generated the dataset.
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Figure 1.5: Artificial dataset 1.

# You actually don’t need to do this.

library(sn)

set.seed(665544)

v1 <- c(rnorm(50,0,1), rsn(70,5,1,8), rnorm(30,6,1))

v2 <- c(rnorm(50,0,1), rsn(70,0,1,8), 8+rt(30,5))

clusterdata1 <- cbind(v1,v2)

# Here is how to load the dataset, again assuming that it is in

# R’s search path.

clusterdata1 <- as.matrix(read.table("clusterdata1.dat"))

str(clusterdata1)

# num [1:150, 1:2] -0.982 0.378 0.547 1.433 0.75 ...

# - attr(*, "dimnames")=List of 2

# ..$ : NULL

# ..$ : chr [1:2] "v1" "v2"

plot(clusterdata1)

The plot is shown in Figure 1.5.
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1.1.6 Artificial Dataset 2

The second artificial dataset illustrates a problem of some clustering methods, namely a sit-
uation in which different clusters have very different within-cluster variation. There are two
small bivariate Gaussian clusters and one widespread bivariate uniform one. The dataset is on
Moodle and is called clusterdata2.dat.

# This is how I generated the dataset.

# You actually don’t need to do this.

set.seed(77665544)

x1 <- rnorm(20)

y1 <- rnorm(20)

x2 <- rnorm(20,mean=10)

y2 <- rnorm(20)

x3 <- runif(100,-20,30)

y3 <- runif(100,20,40)

clusterdata2 <- cbind(c(x1,x2,x3),c(y1,y2,y3))

# Here is how to load the dataset, again assuming that it’s

# in R’s search path.

clusterdata2 <- as.matrix(read.table("clusterdata2.dat"))

str(clusterdata2)

# num [1:140, 1:2] -1.694 0.494 -0.753 -0.16 -0.375 ...

plot(clusterdata2)

The plot is shown in Figure 1.6.
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Figure 1.6: Artificial dataset 2.



Chapter 2

K-means, the most popular clustering
method

K-means is the most widely used method for cluster analysis and also one of the oldest ones.
It was first proposed by Steinhaus (1957). It is a method for multivariate data in IRp (p ≥ 1),
and is based on the least squares principle, just as least squares regression. The idea is that for
finding K clusters in a dataset (K needs to be pre-specified) K “centroid points” are positioned
in IRp, and every observation is assigned to the closest centroid point, in such a way that the
sum of all squared Euclidean distances of the observations to the centroids in minimised. In
order to achieve this, the centroid points have to be the (multivariate) means of the observations
assigned to them, i.e. the clusters of which they are the centroids, hence the name K-means.
The idea is that because all observations are as close as possible to their respective centroid, the
clusters are very homogeneous; all cluster members can be well represented by their centroid,
which is of use in some applications such as data compression.

2.1 Basic definitions

Let D = {x1, x2, . . . xn} contain n data points. The task of clustering is to group them into K
disjoint subsets of D, denoted by C1, C2, . . . , CK . C = {C1, C2, . . . , CK} is called a clustering.

Like many (but not all) clustering methods, K-means clustering produces a partition of D,
i.e., C1 ∪ C2 ∪ . . . ∪ CK = D and Ci ∩ Cj = ∅ for any two Ci, Cj, i 6= j (every data point is in
exactly one cluster).

For partitions, if a data point xi belongs to cluster Ck, the label of xi is k, or c(i) = k for
i ∈ INn = {1, . . . , n}. This means that a partition is defined, equivalently to the set-based
definition of a clustering above, by knowing the labels c(1), . . . , c(n) of all points.

Obviously not every such C qualifies as a “good” or “useful” clustering, and what is demanded
of a “good” C will depend on the cluster analysis approach.

For the K-means method it is assumed that xi ∈ IRp for all i ∈ INn.

Definition 2.1 For x = (x1, . . . , xp),y = (y1, . . . , yp) ∈ IRp, dL2(x,y) = ‖x−y‖ =
√∑p

i=1(xi − yi)2

is called the Euclidean distance (or L2-distance) between x and y.

14
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Definition 2.2 The K-means clustering of D is defined by choosing m̂1
Km, . . . , m̂K

Km and
cKm(1), . . . , cKm(K) in such a way that they minimise

S(C,m1, . . . ,mK) =
n∑
i=1

‖xi −mc(i)‖2.

Obviously, for given cluster centroids m1, . . . ,mK , S(C,m1, . . . ,mK) is minimised by assigning
every observation to the closest centroid:

c(i) = arg min
j∈{1,...,K}

‖xi −mj‖, i ∈ INn.

On the other hand, for given cluster labels c(1), . . . , c(n) ∈ INk, S(C,m1, . . . ,mK) is minimised
by choosing, for k ∈ INk,

m̂k =
1

nk

∑
c(i)=k

xi,

where nk = |Ck| = |{i : c(i) = k}|, i.e., the number of points in cluster k. This means that
mKm

k is the multivariate mean vector of the points in cluster k.

Here’s why:

∂

∂mk

S(C,m1, . . . ,mK) =
∂

∂mk

n∑
i=1

‖xi −mc(i)‖2

=
∂

∂mk

n∑
i=1

(
p∑
j=1

(xij −mc(i)j)
2

)

= −2
∑
c(i)=k

p∑
j=1

(xij −mkj) = −2

p∑
j=1

(
∑
c(i)=k

xij − nkmkj).

Equating this to zero, mkj = 1
nk

∑
c(i)=k xij, j ∈ INp (the second derivative is positive, so this

is a minimum).

2.2 Computation

The minimisation of S(C,m1, . . . ,mK) is a hard discrete optimisation problem. In order to
find the global minimum, in principle all possible partitions of D into K clusters would have
to be tried out, which is computationally intractable for all except very small datasets. Some
research indicates that the number of partitions to be tried can be somewhat reduced, but even
using this, a guarantee to find the global minimum can only be given for quite small datasets
so that in practice it is almost always necessary to apply algorithms that are only guaranteed
to lead to local minima (although for some strongly clustered datasets with a suitable choice
of K there is a chance to find the global optimum in this way).

A classical K-means algorithm (this was first developed by Lloyd in 1957; in some literature
the term K-means is used exclusively for this algorithm) works as follows.
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Step 0 Start with an initial set of centroids, i.e., m1, . . . ,mK . Then iterate:

Step 1 Assign every observation to the closest centroid:

c(i) = arg min
j∈{1,...,K}

‖xi −mj‖, i ∈ INn.

Step 2 For k ∈ INK , compute the means mk = 1
nk

∑
c(i)=k xi.

Stop when Step 1 and 2 do not change the clustering from the previous iteration.

This algorithm is guaranteed to converge, because every single step is guaranteed to decrease
S(C,m1, . . . ,mK); as shown above, Step 1 minimises S for fixed centroids and Step 2 minimises
S for a fixed partition. There are only finitely many partitions, and therefore the algorithm
will stop after a finite number of iterations. In practice, the algorithm usually converges very
quickly.

The main issue with this algorithm is that it depends on the initial choice of centroids. Much
software (including the kmeans-function in R) initialise the algorithm by taking K random data
points as initial clusters. Actually the algorithm can also be initialised by assigning every point
to a random cluster and find initial centroids by Step 2 before running Step 1. There is some
research on how to find partitions that lead to good local minima of S in many situations.
There are also some more sophisticated algorithms proposed in the literature, and R’s kmeans-
function by default runs an algorithm by Hartigan and Wong (1979), which also depends on
initial centroids. In order to find a good minimum of S, the algorithm should be run many
(e.g., 100) times with different random starting partitions, and finally the partition with the
smallest value of s that was found by any of these runs is given out. In many datasets this
will find the global minimum (depending on the size, dimension and strength of clustering of
the dataset, the choice of K and the number of runs), although this cannot be guaranteed. It
should be noted that, because of the random initialisation, running this procedure twice in the
same dataset may give different results, although the probability of this to happen will go down
with an increasing number of algorithm runs, i.e., different random initialisations.

2.3 Examples

In R, the kmeans-function computes K-means. As first example, consider the first artificial
dataset from Figure 1.5. In R, the kmeans-function computes K-means.

library(fpc)

# This is needed for the use of clusym in plot later

set.seed(665544)

# This is for making the result of kmeans with random initialisation

# reproducible, although for this dataset I don’t expect this to be

# unstable. I’d expect that usually you will arrive at the same solution

# with pretty much whatever random seed.
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Figure 2.1: Artificial dataset 1. Left: data with three random cluster centroids (“X”) and point
assignments from Step 1 of the K-means algorithm. Right: 3-means clustering.

c1k3 <- kmeans(clusterdata1,centers=3,nstart=100)

# 3 is K, the number of clusters. nstart is the number of algorithm

# initialisations

plot(clusterdata1,col=c1k3$cluster,pch=clusym[c1k3$cluster])

# clusym is a character vector with numbers "1", "2", etc.

# Show the cluster means:

points(c1k3$centers,pch="M",cex=2,col=4)

The result is shown on the right side of Figure 2.1. This looks as it should be. The left
side shows the initial step of the algorithm. Three data points (”X”) are randomly drawn as
centroids, and all points are assigned to the closest centroid. In the next Step 2, the mean of
cluster 3 will be larger and the mean of cluster 2 will be smaller on the y-axis than their initial
centroids, so that these will be closer to the final solution (actually, in this example, the final
solution will be reached in only two iterations).

K-means applied to Old Faithful Geyser data:

set.seed(12345)

geyserk2 <- kmeans(geyser,2,nstart=100)

# 2 is K, the number of clusters. nstart is the number of algorithm

# initialisations

plot(geyser,col=geyserk2$cluster,pch=clusym[geyserk2$cluster])
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Figure 2.2: Old Faithful Geyser data, 2-means and 3-means clustering, and data with equally
large plot ranges on x- and y-axis.

#...and for 3 clusters

geyserk3 <- kmeans(geyser,3,nstart=100)

plot(geyser,col=geyserk3$cluster,pch=clusym[geyserk3$cluster])

The results are shown in Figure 2.2. They don’t look very intuitive. The reason for this is that
the waiting variable has a much larger variation with a value range of about 60, whereas the
duration variable only has a value range of a bit more than 4. This means that the Euclidean
distance between most pairs of points and therefore the clustering, which is based on squared
Euclidean distances, will be strongly dominated by the difference in values in the variable
waiting, and the variable duration doesn’t play much of a role. Note that plot in R adapts
the value ranges on the x- and y-axis to the value ranges of the data, so that the standard
plot gives a somewhat misleading impression of the Euclidean distances. The third picture in
Figure 2.2 is the result of

plot(geyser,xlim=c(40,110),ylim=c(0,70))

with a value range of 70 on both axes, and this is how kmeans actually interprets the data.

If it is desired to give both variables the same chance to influence the clustering, it is advisable
to scale the variables first, i.e., to divide them by their standard deviation so that both have
variance 1.

sgeyser <- scale(geyser)

# This divides the two variables by their respective standard

# deviations and it also subtracts the mean, i.e., it centers them

# at zero, although this is irrelevant for clustering.

geysersk2 <- kmeans(sgeyser,2,nstart=100)
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Figure 2.3: Scaled Old Faithful Geyser data, 2-means and 3-means clustering.

plot(sgeyser,col=geysersk2$cluster,pch=clusym[geysersk2$cluster])

geysersk3 <- kmeans(sgeyser,3,nstart=100)

plot(sgeyser,col=geysersk3$cluster,pch=clusym[geysersk3$cluster])

The results are shown in Figure 2.3, and look much more intuitive, although it may be seen
as counter-intuitive that in the 2-means solution a point with a quite high duration appears in
the low duration cluster 2. Section 2.5 will deal with estimating the number of clusters.

If however all variables have the same measurement units and comparing values across variables
is meaningful, it is often better not to standardise, because in such a case a larger variance
of a variable can be due to bigger differences between clusters along this variable, which is
informative for clustering and should not be standardised “away”.

An example for this are the German Bundestag data, in which data are proportions and a
difference of 0.01 refers to the same number of voters for every party, despite the fact that the
bigger parties SPD and UNION have overall larger proportions and larger variation.

There are five parties, so it may be reasonable to think that there could be five clusters corre-
sponding to strongholds of the parties (although this is not a strong argument to rule out any
other number of clusters).

set.seed(1234567)

bundestagk5 <- kmeans(p05,5,nstart=100)

pairs(p05,xlim=c(0,0.6),ylim=c(0,0.6),cex=0.7,col=bundestagk5$cluster,pch=clusym[bundestagk5$cluster])
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See Figure 2.4 for the results. Here are a few basic steps to learn something from these results.
At first let’s have a look at the cluster centroids, which are typical objects within the clusters
and can tell us something about the characteristics of the clusters.

bundestagk5$centers

# SPD UNION GRUENE FDP LINKE

# 1 0.4755049 0.2809211 0.07737812 0.07977076 0.05684986

# 2 0.3219290 0.4031411 0.08349274 0.11502019 0.04082300

# 3 0.3076717 0.2555014 0.05407416 0.07920767 0.24680508

# 4 0.3709695 0.3258766 0.11039143 0.10678831 0.05418565

# 5 0.2382177 0.5235427 0.06558486 0.09447968 0.03217685

As expected, the first cluster looks like SPD-strongholds, the fifth cluster looks like UNION-
strongholds, and in the third cluster LINKE are for stronger than elsewhere (note that the
order/numbering of clusters is arbitrary). Also, cluster 2 has the strongest FDP results and
cluster 4 has the strongest GRUENE results, the latter two are much less pronounced than the
other three parties in clusters 1, 3, 5. Cluster 2 also has UNION characteristically stronger
than SPD, and cluster 4 the other way round. UNION/FDP are more right wing parties than
SPD/GRUENE. One could also look at the distributions of all variables within all clusters, to
get more detail on this.

Further one can have a look at how the clusters related to East/West/Berlin and state:

table(bundestagk5$cluster,ewb)

# ewb

# Berlin East West

# 1 0 0 44

# 2 0 0 82

# 3 6 53 4

# 4 6 0 66

# 5 0 0 38

table(bundestagk5$cluster,state)

# state

# Baden-Wuerttemberg Bayern Berlin Brandenburg Bremen Hamburg Hessen

# 1 0 0 0 0 1 1 4

# 2 27 12 0 0 0 0 6

# 3 0 0 6 10 0 0 0

# 4 7 1 6 0 1 5 11

# 5 3 32 0 0 0 0 0

# state

# Mecklenburg-Vorpommern Niedersachsen Nordrhein-Westfalen Rheinland-Pfalz

# 1 0 17 20 0

# 2 0 3 21 9

# 3 7 0 0 0
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# 4 0 8 21 6

# 5 0 1 2 0

# state

# Saarland Sachsen Sachsen-Anhalt Schleswig-Holstein Thueringen

# 1 0 0 0 1 0

# 2 0 0 0 4 0

# 3 4 17 10 0 9

# 4 0 0 0 6 0

# 5 0 0 0 0 0

The first thing to see here is that cluster 3 is dominated by the eastern states, which are all
in this cluster; actually the LINKE party grew out of the former Eastern German communist
party SED, and still has some traditional support there. Cluster 3 also has half of Berlin (one
could actually check at constituency level whether this is the eastern half), with the other half
in cluster 4, together with most of German’s second city Hamburg, among other constituencies
from the west. This looks like a very urban cluster (there is a third city-state in Germany,
which is Bremen). The further four constituencies in cluster 3 are the whole of Saarland, which
is the home state of the 2005 leader of the LINKE party, Oskar Lafontaine.

Most western states are more heterogeneous, but cluster 5 is dominated by Bayern, and the
states have quite distinct profiles which can be of interest to anyone interested in German
politics, demography and geography.

2.4 Probabilistic background

K-means was originally introduced as a heuristic method, not motivated by statistical mod-
els. However, it can also be derived as a maximum likelihood (ML) estimator in a particular
statistical model. This is very instructive about typical behaviour of K-means.

Recall that if we assume x1, x2, . . . xn be generated i.i.d. fromN (a,Σ) (p-variate normal/Gaussian
distribution with mean vector a and covariance matrix Σ; let ϕa,Σ be the density of this distri-
bution), the mean vector 1

n

∑n
i=1 xi is the ML estimator for a.

For K-means, the K cluster centroid mean vectors are ML-estimators in a model in which the
data are generated by K Gaussian distributions modelling the K clusters with different mean
vectors. The covariance matrices need to be assumed to be equal and of the form bIp with
b ≥ 0 a constant and Ip being the p-dimensional unit matrix. This means that data are not
i.i.d.; independence is assumed (therefore there is a product in (2.1)) but not identity because
there are different distributions within different clusters.

Theorem 2.3 Let x1, x2, . . . xn be distributed according to the joint density

f(x1, x2, . . . xn) =
n∏
i=1

ϕ(x1; aγ(i), bIp), (2.1)
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with γ : INn 7→ INK denoting the true distributions for the n observations, and all parameters
unknown. Then the K-means solutions mKm

1 . . . . ,mKm
n are ML-estimators for a1, . . . , aK, and

the cluster labels cKm(1), . . . , cKm(n) are ML-estimators of the true cluster labels γ(1), . . . , γ(n).

Proof:

log f(x1, x2, . . . xn) =
n∑
i=1

(
− log(

√
2π det(bIp))−

1

2b
(xi − aγ(i))

′(xi − aγ(i))

)
.

Maximising this does not depend on b and amounts to minimising

n∑
i=1

(xi − aγ(i))
′(xi − aγ(i)) =

n∑
i=1

‖xi − aγ(i)‖2

by choice of a1, . . . , aK , γ(1), . . . , γ(n), which is the same problem as minimising S(C,m1, . . . ,mK)
and is therefore solved by K-means.

Remark 2.4 What can be learnt from this is that K-means is implicitly based on Gaussian
clusters with equal and spherical covariance matrices. Indeed K-means has difficulties correctly
finding clusters if their covariance matrices differ strongly, are not spherical (i.e., variances are
not the same in all directions of p-dimensional space) or nonlinear.

Particularly if covariance matrices differ and/or are not spherical, assigning all observations
to the closest mean is often not the best thing to do. This is illustrated by the artificial dataset
2.

c2 <- kmeans(clusterdata2,3,nstart=100)$cluster

plot(clusterdata2,col=c2,pch=clusym[c2])

The results are in Figure 2.5. This lumps the two low variance Gaussian clusters together
but splits up the uniform cluster with larger within-cluster variation. There are applications
in which the 3-means solution can still be useful (e.g., in data compression tasks where large
within-cluster distances are not desired), but in most cases a clustering is preferred that rather
corresponds to the intuitive patterns in the data.

In Chapter 6 on mixture models, methods will be introduced that work in such a situation.

Remark 2.5 Another thing that follows from the implicit assumption of spherical covariance
matrices is that K-means is not scale equivariant, i.e., if one variable is multiplied by a constant
(e.g., by 100 for switching measurement units from m to cm) and other variables are not
multiplied by the same constant, the K-means clustering will normally change. This was already
explored in the Old Faithful Geyser data example above, in which scaling changed the clustering.

Remark 2.6 K-means is usually introduced without mentioning the probabilistic background,
and in some literature it is even stated that (as opposed to the methods that will be introduced in
Chapter 6) K-means is a method that can be applied universally because it doesn’t require any
model assumptions, because it was originally introduced and motivated by heuristic considera-
tions not using a probabilistic model. This is an exemplary case of a misunderstanding about
model assumptions that is very widespread and can be met in almost all areas of statistics.
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On one hand it does not make sense to state that K-means does not require any model as-
sumptions because Theorem 2.3 establishes K-means as ML-estimator under a certain model
assumption, and indeed this model assumption is very informative for understanding what K-
means does and under what circumstances it is not appropriate.

On the other hand, it can make sense to apply K-means in situations in which the model as-
sumptions are not fulfilled. If in a certain application the aim of clustering is to assign objects
to classes in order to represent them by a centroid object (for example for showing a user rep-
resentative images of a database of images that is to be clustered for helping the users to find
images), for this aim it is useful to optimise S(C,m1, . . . ,mK) regardless of whether the data
follow the assumption of Theorem 2.3, because this generates a clustering in which, according
to the squared Euclidean distance, all the objects are well represented by the centroids. Whether
this corresponds to an intuitive clustering as in the example in Remark 2.4 is irrelevant in
such an application. In some other applications, in which researchers are interested in find-
ing clusters with some hidden meaning, which give rise to certain within-cluster distributions,
however, certain violations of the model assumptions of Theorem 2.3 can be problematic. Even
if the model assumptions of the Theorem are violated, though, K-means still will do a good
job in some situations, particularly where clusters are approximately spherical, cover regions of
approximately the same size in data space, are fairly well separated and K is well chosen.

As for all statistical methods, it is a subtle but important issue to what extent real data can be
tolerated to deviate from the formal model assumptions without doing much harm to the results
of the analysis. Not only K-means, but all model-based methods will work well in some but
not all cases in which the assumptions are violated, and to distinguish between acceptable and
unacceptable violations of the model assumptions is a major skill for a statistician, which only
comes with conscious evaluation of experience (one source of such experience is to simulate
datasets with model assumptions violated, and to run the methods and try to understand the
results).

Remark 2.7 K-means as ML-estimator in Theorem 2.3 is a rare case of an inconsistent ML-
estimator. In Figure 2.6 two one-dimensional Gaussian distributions with variance 1 and the
two means −1 and 1 are showed.

For n → ∞, assuming that equally many points are observed from both Gaussian, K-means
with K = 2 will cut the real line in two and assign all negative points to the first cluster and
all positive ones to the second one. This makes sense in terms of clustering. However, the
two cluster means will not be estimated as the means of the two original Gaussians, but rather
as the means of truncated distributions for negative observations (or respectively positive ones)
only, because K-means cannot see that some of the positive points were actually generated by
the Gaussian with the negative mean, albeit with low probability. The estimated 2 means will
therefore have a larger distance from each other and from zero than the true means −1 and 1.
Theory about the consistency of ML-estimators does not apply here, because the model is not
i.i.d. and the cluster label parameter γ that assigns one label to every observation behaves in a
nonstandard way.

The figure was produced as follows:

xpoints <- seq(-4,4,by=0.01)

norm1 <- dnorm(xpoints,mean=-1,sd=1)
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norm2 <- dnorm(xpoints,mean=1,sd=1)

# Plotting densities:

plot(xpoints,norm1,type="l",ylab="density")

points(xpoints,norm2,type="l")

# red line, and means of distributions

lines(c(0,0),c(0,0.4),col=2)

points(1,0,pch="X",col=4)

points(-1,0,pch="X",col=4)

# Computations for truncated distributions.

# See https://en.wikipedia.org/wiki/Truncated_normal_distribution

# for formulae.

# Probability of being below zero for left Gaussian

prob1 <- pnorm(0,-1,1)

# Probability of being below zero for right Gaussian

prob2 <- pnorm(0,1,1)

# Expected value of Gaussian with mean -1, truncated at 0.

te1 <- -1-dnorm(1)/pnorm(1)

# Expected value of Gaussian with mean 1, truncated at 0.

te2 <- 1-dnorm(-1)/pnorm(-1)

# Expected value for left cluster combines the two according to

# their probabilities for their controbutions to the left cluster.

ecluster1 <- prob1*te1+prob2*te2

# Symmetric for right cluster.

ecluster2 <- -ecluster1

# Plot cluster means

points(ecluster1,0,pch="M",col=3)

points(ecluster2,0,pch="M",col=3)

2.5 Estimating the number of clusters

The classical K-means requires the researcher to specify K. In some applications such as the
image database one, K can be specified by practical considerations. More often, however, K is
not known and the researcher would like to estimate it from the data.

A straightforward idea for this is to compute the K-means clustering for various values of K.
For fixed K, SK = S(C, m̂Km

1 , . . . , m̂Km
K ) measures the quality of the K-means solution, the

smaller SK the better. Unfortunately, comparing values of SK for different K cannot directly
be used to estimate K, because SK will always decrease with increasing K. The reason for
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this is that if there are more than K distinct observations, from every K-means clustering
a K + 1-means clustering can be constructed by choosing a single observation xi, say, that
was a member of a bigger cluster before, as a cluster on its own with m∗K+1 = xi, so that
‖xi − m̂∗K+1‖ = 0. Defining C∗ by keeping all other cluster assignments the same as for K-
means, and m∗1 = mKm

1 , . . . ,m∗K = mKm
K , a clustering with K + 1 clusters is defined, which

achieves S(C∗,m∗1, . . . ,m∗K) < SK , and therefore SK+1 < SK , because SK+1 minimises S among
all clusterings with K + 1 clusters.

A folklore approach is to plot SK against K and to look for an “elbow”, where SK decreases
strongly up to a certain value K0 and decreases only a little bit for K > K0. However, such a
value cannot always clearly found and the plot may be ambiguous in many cases, see the left
sides of Figure 2.8; on the left side of Figure 2.7 this works better.

There are many attempts in the literature to define an index based on investigating the expected
behaviour of SK for growing K that can be chosen to estimate the number of clusters, for an
overview see Halkidi et al. (2015); an alternative index will be defined in Chapter 5.

A theoretically quite elegant and promising approach is by Sugar and James (2003) (although
experience how well this works in practice is somewhat limited up to now). The theory in
that paper is skipped but one of the results there is as follows, assuming a mixture model,
which is the model of Theorem 2.3 with true number of Gaussians G conditional on the labels
γ(i), i ∈ INn, but with γ(i) being an i.i.d. random variables that takes values 1, . . . , G with
probabilities π1, . . . , πG (see Section 6). These are here assumed to be equal. Also a certain
minimum distance between cluster centers is assumed. Then, approximately,(

SK
p

)−p/2
≈
{
aK
G

+ q for K ≥ G
q for K < G

(2.2)

for a constant q ≥ 0 and another constant 0 < a < 1. The approximation is for p → ∞ but
seems to be a pretty good guideline for choosing K even for small p according to Sugar and
James (2003).

(2.2) leads to the recommendation to estimate G by

K̂ = arg max
K

D(K), D(K) = S
−p/2
K − S−p/2K−1 , (2.3)

because this is expected according to 2.2 to be about zero for K < G, about ap−p/2 for K = G

and about ap−p/2

G
for K > G. G is therefore estimated at the biggest “jump” in S

−p/2
K , see

Figure 2.7.

The assumptions for this are somewhat restrictive (for example, the theory assumes that all
clusters asymptotically have the same size and p is large), and more practical experience is
required to compare this approach with others appearing in Halkidi et al. (2015). Sugar and
James (2003) have more general theory, but this is based on looking at S−YK with Y dependent
on the in practice unknown within-cluster distributions; Y = p/2 as above is often good but
not always.

Example 2.8 Gareth James, co-author of Sugar and James (2003), put some free R-code for
computing (2.3) on his website. I put this on Moodle as sugarjames.R. For artificial dataset
1:
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source("sugarjames.R")

# You may have to add the path.

set.seed(12345)

# K=20 indicates the maximum number of clusters; rand=100 indicates

# 100 algorithm initiatlisations.

jg <- jump(clusterdata1,K=20,rand=100)

# [1] "The maximum jump occurred at 3 clusters with Y= 1"

This produces Figure 2.7 as result, in which it can be seen how SK
p

changes with growing K,

and how D(K) from (2.3) picks 3 as best K. For this dataset, (2.3) seems to work well.

As another example, consider the geyser dataset.

set.seed(76543)

# Use the scaled version of the dataset!

jg <- jump(sgeyser,K=20,rand=100)

# [1] "The maximum jump occurred at 3 clusters with Y= 1"

# Unfortunately, the "jump"-function doesn’t give out a clustering,

# so this has to be computed afterwards again.

geyser3 <- kmeans(sgeyser,3,nstart=100)

# Also, after the jump-function, plot needs to be told

# that there should only be one plot in a window:

par(mfrow=c(1,1))

plot(sgeyser,col=geyser3$cluster,pch=clusym[geyser3$cluster])

The result was already in Figure 2.3. K = 3 here indeed looks more intuitive than K = 2.

For the Bundestag-data:

set.seed(12345)

jg <- jump(p05,K=20,rand=100)

# [1] "The maximum jump occurred at 19 clusters with Y= 2.5"

The output is in Figure 2.8. Unfortunately interpreting 19 clusters is hard, and even though
this may be a good clustering, in practice it may be more useful to have fewer clusters, and it
may be of interest to look at clusterings at local maxima of D(K), which occur, for example, at
K = 4 and K = 7.

Generally, methods for estimating K may be quite sensitive to model assumptions (the method
may decide that more smaller clusters are better for fulfilling Gaussian and equal size assump-
tions, despite lower numbers of clusters being perfectly fine intuitively) and datasets may be
ambiguous in this respect.

The estimation of the number of clusters is generally an extremely difficult problem.
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As an alternative, graphical inspection of the data can often be used to find a good K. Although
this is subjective and difficult for large p, the problem of estimating the number of clusters is
so difficult and no existing index is reliable in all situations, it is in most cases advisable to use
graphical diagnostics to at least check whether D(K) or any other index appears to do a good
job.
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Figure 2.4: Bundestag data with 5-means clustering.
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Figure 2.5: Artificial dataset 2 with 3-means clustering.
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Chapter 3

Dissimilarities

An intuitive definition of clustering is that observations in the same cluster should be sim-
ilar (within-cluster homogeneity) and observations in different clusters should be dissimilar
(between-cluster separation).

Many cluster analysis methods, including most hierarchical clustering methods introduced later
in this chapter, are based on measures of dissimilarity for pairs of observations. K-means
was a method for observations characterised by p real-valued variables. Methods based on
dissimilarity measures can be applied to all kinds of data including potentially multivariate
binary or categorical data such as the Veronica dataset, for which dissimilarity measures can
be defined. There are also dissimilarity measures for data with variables of mixed type, or for
other types of data such time series, texts, images or melodies. Dissimilarity measures can also
be used to cluster variables.

The choice of a dissimilarity measure does not only depend on the type of data. For the same
kind of data, one may use different dissimilarity measures, depending on the meaning of the
data and the aim of clustering. Consider Figure 3.1. There are three observations on eight
variables, x1 = (1, 4, 5, 4, 2, 1, 1, 4),x2 = (2, 3, 2, 2, 3, 3, 3, 3),x3 = (7, 11, 11, 12, 9, 8, 8, 12). On
every single variable, x1 is closer to x2 than to x3, so according to the Euclidean distance,
dL2(x1,x2) < dL2(x1,x3). This makes sense for applications in which observations indeed can
be treated as similar if the values on the individual variables are similar. This is for example
the case if these are 8 different measurements on a patient that are all related positively to a
certain disease; the third patient may be quite ill and patients 1 and 2 may be more or less fine
and very similar, particularly if there is some measurement error with variance of about 1, say.
On the other hand, there are also similarities between x1 and x3. Both have higher values on
V2-V4 and V8 and lower values on the other four variables. This does not hold for x2. The
variables may refer to the same measurement on 8 different time points, and the researcher
may be interested in seasonal patterns, according to which x1 and x3 should be defined to be
similar and x1 should be quite different from x2. This would require a different dissimilarity
measure.

It is even conceivable that for the very same variables depending on the aim of clustering two
different similarity measures could be appropriate. For example the observations may be species
of plants and the variables may state their frequency in 8 different places. Should species be
treated as similar if they prefer the same places, regardless of how abundant they are in terms

32
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Figure 3.1: Parallel coordinates plot of three observations x1,x2,x3 on 8 variables V1-V8.

of absolute values? This depends on the aim of the analysis and has to be decided by a subject
matter specialist; it cannot be “estimated” from the data.

Definition 3.1 A dissimilarity is a function d : X 2 7→ IR+
0 , X being the object space, so that

d(x,y) = d(y,x) ≥ 0 and d(x,x) = 0 for x,y ∈ X . (Some literature also requires d(x,y) > 0
for x 6= y.)

A dissimilarity fulfilling the triangle equality

d(x,y) + d(y, z) ≥ d(x, z), x,y, z ∈ X ,

is called a distance or metric.

The triangle inequality is connected to Euclidean intuition and therefore seems to be a “natural”
requirement, but in fact it is not required in all applications and sometimes not appropriate.

A vast number of dissimilarity measures has been proposed, some for rather general purposes.
Chapter 3 in Everitt et al. (2011) gives a good overview of general purpose dissimilarities, with
some more references in Hennig (2015).

Note that there is also the concept of similarity which has the opposite interpretation of a
dissimilarity, namely larger values mean more similarity. Similarity can usually be constructed
from dissimilarities (for example, max dissimilarity value minus dissimilarity gives a similarity
and the other way round), therefore mostly only one of them is needed.

Both dissimilarities and similarities are called proximities in some literature.
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3.1 Continuous variables

Definition 3.2 The Minkowski (Lq)-distance between two objects xi,xj on p real-valued
variables xi = (xi1, . . . , xip) is

dLq(xi,xj) = q

√√√√ p∑
l=1

dl(xil, xjl)q, (3.1)

where dl(x, y) = |x− y|.

Most often, the Euclidean distance dL2 and the Manhattan/city block distance dL1 are used.
Using dLq with larger q gives the variables with larger dl more weight, i.e., two observations are
treated as less similar if there is a very large dissimilarity on one variable and small dissimilarities
on the others than if there is about the same medium-sized dissimilarity on all variables, whereas
dL1 gives all variable-wise contributions implicitly the same weight. Note that this does not
hold for the Euclidean distance that corresponds to physical distances and is used as default
choice in many applications; however, if the variables have fairly different meanings and different
measurement units, dL1 may be more appropriate. Figure 3.2 illustrates the difference between
dL1 and dL2.

All the Minkowski distances are not scale equivariant, i.e., they will be dominated by vari-
ables with larger variation, and will change if variables are multiplied by constants, e.g., when
measurement units are changed.

The Euclidean distance is rotation invariant, i.e., it doesn’t change if the points in IRp are
rotated, but this doesn’t hold for the other Lq-distances.

Here is an alternative that is both scale and rotation invariant:
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Figure 3.3: Points on ellipsoids have same Mahalanobis distance to center.

Definition 3.3 The (squared) Mahalanobis distance is defined by

dM(xi,xj)
2 = (xi − xj)

TS−1(xi − xj), (3.2)

where S is a scatter matrix such as the sample covariance matrix.

See Figure 3.3.

R’s dist-function computes several standard distance measures, including Euclidean, Manhat-
tan and Minkowski-distance. There is also a function mahalanobis that computes Mahalanobis-
distances.

For example (see Figure 3.4):

dolive2 <- dist(olive,method="euclidean")

dolive1 <- dist(olive,method="manhattan")

# This shows you how similar they are:

plot(dolive1,dolive2,cex=0.3)

# Actually, it makes much more of a difference to scale the data.

solive <- scale(olive)

dolives2 <- dist(solive,method="euclidean")

dolives1 <- dist(solive,method="manhattan")

plot(dolive2,dolives2,cex=0.3) # For example.

# Note that dist produces an object of class dist.
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Figure 3.4: Olive oil dataset, comparing (a) Euclidean and Manhattan distance, (b) Euclidean
distances on standardised and unstandardised data, (c) Euclidean distance on standardised
data and Mahalanobis distance.

# This is a vector of all distances in one row.

# This is memory efficient, but sometimes it’s more

# useful to have a distance matrix, so that it is

# easy to look up specific values:

dolivematrix <- as.matrix(dolives2)

# This gives the distance between observations 1 and 2.

dolivematrix[1,2]

# [1] 0.6644688

# A distance matrix can be transformed into a dist-object

# by as.dist.

# The mahalanobis command can only compute a vector of

# Mahalanobis distances, so producing all distances is

# more tedious; here’s how to make a distance matrix:

mahalm <- matrix(0,ncol=572,nrow=572)

olivecov <- cov(olive)

for (i in 1:572)

mahalm[i,] <- mahalanobis(olive,olive[i,],olivecov)

# Note that for the Mahalanobis distance it doesn’t make

# a difference whether the dataset is scaled or not.

# Still it’s quite different from the distance on

# standardised data.

plot(as.dist(mahalm),dolives2,cex=0.3)
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3.2 Binary and categorical variables

If objects xi = (xi1, . . . , xip), i = 1, . . . , n, are represented by p categorical variables from a set
B (for binary variables, B = {0, 1}), the most straightforward way to define a dissimilarity is
to just count the number of variables on which two objects x1 and x2 do not coincide, divided
by p.

Definition 3.4

dSM(x1,x2) =
1

p

p∑
j=1

1(x1j 6= x2j)

is called simple matching distance (1(•) denotes the indicator function).

However, often for binary data (e.g. in the case of geographical presence-absence data in
ecology, particularly if there are much more absences than presences) common presences are
important, whereas common absences are not. In such a situation, a different dissimilarity is
often more suitable.

Definition 3.5

dJ(x1,x2) = 1−
∑p

j=1 1(x1j = 1 and x2j = 1)∑p
j=1 1(x1j = 1 or x2j = 1)

is called Jaccard distance.

Example 3.6 The difference between the two distances (both fulfill the triangle inequality) is
illustrated by the following examples with p = 10. The most extreme examples are when there
is only one presence each: x1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0), x2 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0). Then
according to dSM these are very similar, dSM(x1,x2) = 0.2, because of the many joint zeroes.
According to dJ these are as dissimilar as possible, dJ(x1,x2) = 1, the maximum, because the
ones are in different places. Generally, observations with very few ones are similar according
to dSM , whereas dJ depends on whether the ones are in the same places. On the other hand,
x1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 0), x2 = (0, 1, 1, 1, 1, 1, 1, 1, 1, 1) have dSM(x1,x2) = dJ(x1,x2) = 0.2.

For the Veronica data, joint presences of genetic information are important and joint absences
are meaningless, and therefore the Jaccard distance is better than the simple matching distance.

There are many other distance measures for binary and categorical data.

The dist-function computes the Jaccard distance for binary observations with method="binary"

(the name Jaccard doesn’t appear on the help page, which is somewhat confusing). It doesn’t
compute the simple matching distance, which is implemented as function sm in package nomclust.
For binary variables, dist can be used to compute the simple matching coefficient, because
this is the same as the Manhattan distance divided by p.

jveronica <- dist(veronica,method="binary")

smveronica <- dist(veronica,method="manhattan")/p

plot(jveronica,smveronica,cex=0.3)

These are fairly similar, see Figure 3.5.
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Figure 3.5: Veronica dataset, comparing Jaccard and simple matching distance.

3.3 Correlation dissimilarity

Sometimes researchers are interested in clustering variables. In the Veronica dataset one could
as well be interested in clustering AFLP bands (genes) instead of plants. Also, in the Bundestag
dataset, one could be interested in clustering parties in principle, although there are only five
of them.

Often similarity between variables is connected to correlation. Two variables are seen as similar
if they are highly correlated, which may well be the case even if they take quite different values.
In the Bundestag dataset, for example, one may rather be interested in which parties are
similar according to what their strong and weak constituencies are; it is less interesting and
more obvious to analyse which parties rather have bigger and which parties rather have smaller
percentage values overall.

For two variables x.1, x.2, for the empirical correlation coefficient −1 ≤ r(x.1, x.2) ≤ 1. A
dissimilarity must be non-negative and zero for identical objects (variables), i.e., for correlation
1. This can be achieved by

dC(x.1, x.2) =
1

2
(1− r(x.1, x.2)).

Have another look at Figure 3.1; if the variables are the objects and V1-V8 are the observations,
the problem illustrated there can be tackled by dC , which has x1 more similar to x3 than to x2

(there are also some time series dissimilarity measures that achieve the same thing).

Example 3.7 This computes the correlation dissimilarity between parties in the Bundestag
dataset:
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corp05 <- cor(p05)

# > corp05

# SPD UNION GRUENE FDP LINKE

# SPD 1.00000000 -0.5662267 0.08935976 -0.3300797 -0.1337904

# UNION -0.56622666 1.0000000 -0.15295824 0.3563825 -0.6220824

# GRUENE 0.08935976 -0.1529582 1.00000000 0.3386211 -0.3644767

# FDP -0.33007972 0.3563825 0.33862105 1.0000000 -0.4741279

# LINKE -0.13379043 -0.6220824 -0.36447674 -0.4741279 1.0000000

cordistp05 <- 0.5-corp05/2

# > cordistp05

# SPD UNION GRUENE FDP LINKE

# SPD 0.0000000 0.7831133 0.4553201 0.6650399 0.5668952

# UNION 0.7831133 0.0000000 0.5764791 0.3218088 0.8110412

# GRUENE 0.4553201 0.5764791 0.0000000 0.3306895 0.6822384

# FDP 0.6650399 0.3218088 0.3306895 0.0000000 0.7370640

# LINKE 0.5668952 0.8110412 0.6822384 0.7370640 0.0000000

In some applications, variables should be treated as similar if they are strongly related, even if
the relation is negative. This is achieved by

dCN(x.1, x.2) = 1− |r(x.1, x.2)|.

3.4 Mixed type variables and missing values

In some applications, variables are of mixed type, i.e., some continuous, some binary or cate-
gorical, some perhaps ordinal or of other nonstandard type. Gower (1971) proposed a general
formula that can accommodate different dissimilarity measures dl, l ∈ INp that one may use
for different variables, or even different sets of variables.

dG(xi,xj) =

∑p
l=1 wlδijldl(xil, xjl)∑p

l=1 δijl

for i, j ∈ INn, where wl serves for variable standardisation and δijl = 1 except if xil or xjl
are missing, in which case δijl = 0. This is a generalisation of dL1 and takes into account
missing values by just leaving the corresponding variable out and rescaling the others. Gower
recommended to use the weight wl for standardization to [0, 1]-range, i.e., wl = 1

max dl
, but it

can be chosen in different ways.

3.5 Multidimensional Scaling

Multidimensional Scaling (MDS) is not really a part of cluster analysis, but it is a very useful
tool for work with dissimilarities. I will only treat it very shortly and on a practical level. There
is much more to MDS, see Borg and Groenen (2005).
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Figure 3.6: Classical 2-dimensional MDS for Bundestag parties with correlation dissimilarity
(left) and Veronica plants with Jaccard distance (right).

The aim of MDS is to map objects that are characterised by a dissimilarity measure into
Euclidean space so that the Euclidean distances in that space approximate in some sense
optimally the dissimilarities. This means that the data can then be visualised by standard
scatterplots which represent the dissimilarities approximately, i.e., given data {x1, x2, . . . xn}
that are characterised by a dissimilarity measure d find y1, y2, . . . yn ∈ IRp so that for all
i, j ∈ INn:

d(xi,xj) ≈ dL2(yi,yj).

Example 3.8 For the Bundestag parties, using the correlation dissimilarity:

mdsparties <- cmdscale(cordistp05,k=2)

# k is the number of dimensions here.

plot(mdsparties,type="n")

text(mdsparties,labels=dimnames(p05)[[2]])

This produces the left side of Figure 3.6, the first dimension of which has some kind of left
wing/right wing interpretation, although the right wing parties appear on the left (the orientation
of the plot is meaningless regarding the quality of approximation of dissimilarities).

For visualising the Jaccard distance for the Veronica data:

mdsveronica <- cmdscale(jveronica,k=2)

plot(mdsveronica)

This dataset appears to be clearly clustered, see the right side of Figure 3.6.

Never forget, though, that this is only an approximation of the dissimilarities, and that in two
dimensions the approximation may be quite weak.
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One could run cmdscale with, e.g., k=5, and look at a pairs-plot to see more (for only five
observation as in case of the Bundestag parties, there is not much to expect from k>2).

3.6 Similarity between clusterings

Clusterings on a dataset can themselves be seen as data, and one may be interested in how
similar different clusterings on a dataset are. As opposed to the other sections, for reasons of
consistency with most literature, I focus on similarity measures here.

There are many applications for this.

• It may be of interest to see to what extent a clustering corresponds to a given external
grouping, for interpreting and validating the clustering (such as the regional groupings
for the Olive Oil and Bundestag datasets).

• If such an external grouping is interpreted as “truth”, different clustering methods can
be compared according to how similar to the truth their results are.

• The influence of certain features of the dataset may be investigated. For example, clus-
terings with all variables and with some variables left out can be compared to see how
much difference the variables in question make. The same applies to clustering with all
data and with certain outliers left out.

• There is some recent work on exploring the stability of a clustering by running a clustering
method on various subsets of the data (“bootstrap”/“resampling”). Results can be com-
pared on the data points these subsets have in common, which measures the stability of
the clustering. This can even be used to decide the number of clusters as the number for
which the clustering is most stable. See Leisch (2015) for an overview of such techniques.

• There are also certain applications where one wants to cluster clusterings based on a
dissimilarity measure, although the is rarer than the applications of a similarity between
clusterings mentioned above.

The most widely used similarity goes back to Rand (1971). This is a version of the simple
matching distance for binary data.

Definition 3.9 Let C1 = {C11, . . . , C1K1}, C2 = {C21, . . . , C2K1} be partitions of a dataset D
with |D| = n. For every pair of points x,y ∈ D and j = 1, 2, define

ij(x,y) = 1(x,y) are in same cluster in Cj.

The Rand index is the simple matching similarity between i1 and i2 over all pairs of points:

R(C1, C2) =
1

n(n− 1)/2

∑
x,y∈D

1 (i1(x,y) = i2(x,y)) .
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The Rand index is the proportion of pairs of points that are either in the same cluster in both
clusterings or in different clusters in both clusterings. As such, its computation does not rely
on whether K1 = K2, and it does not require to match specific clusters in C1 with clusters in
C2.

Unfortunately, the interpretation of values of R depends on the numbers and sizes of clusters
in the two clusterings. Two random clusterings with large K1, K2 can be expected to have a
rather high value of R. Therefore, people usually use an adjustment by Hubert and Arabie
(1985).

Definition 3.10 The adjusted Rand index (ARI) is defined as ARI(C1, C2) = R(C1,C2)−ER
1−ER ,

where ER is the expected value of R assuming that points are randomly assigned to clusters in
such a way that numbers and sizes of clusters in C1, C2 are held constant.

Theorem 3.11 With the definition above,

ARI(C1, C2) =

∑
ij

(
nij
2

)
− [
∑

i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

)
1
2
[
∑

i

(
ai
2

)
+
∑

j

(
bj
2

)
]− [

∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

) ,
where i always runs over INK1 and j runs over INK2, with nij = |C1i ∩C2j|, ai =

∑K2

j=1 nij and

bj =
∑K1

i=1 nij.

This was proved by Hubert and Arabie (1985).

The ARI can take values between −1 and 1. It takes value 1 if and only if the clusterings are
identical, and 0 is its expected value for two independent random clusterings. Some experience
is helpful for interpreting ARI values; certainly negative and very small ones do not indicate
hardly any similarity between clusterings. Whether values between, say, 0.3 and 0.7 indicate
“good similarity” depends on the standards required and on whether and what different ARI
values are compared.

Example 3.12 For the Olive Oil data, we may be interested in whether or not scaling of the
data gives a better K-means clustering result. Assuming that the macro areas are some kind of
true clustering with K = 3, we get:

library(mclust) # This has the adjustedRandIndex command.

solive <- scale(olive)

olive3 <- kmeans(olive,3,nstart=100)

olive3s <- kmeans(solive,3,nstart=100)

adjustedRandIndex(olive3$cluster,olive3s$cluster)

# 0.4587804, these are somewhat different.

adjustedRandIndex(olive3$cluster,oliveoil$macro.area)

# 0.3182057
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adjustedRandIndex(olive3s$cluster,oliveoil$macro.area)

# 0.448355, both OK but not great, with scaling clearly better

# The Sugar and James index suggests a higher number of clusters.

olive20 <- kmeans(solive,20,nstart=100)

adjustedRandIndex(olive20$cluster,oliveoil$macro.area)

# 0.166162, not helpful.

Meila (2015) lists more similarity indexes for clusterings. In the same way in which the Rand
index uses the simple matching (dis)similarity, the Jaccard distance can also be used.



Chapter 4

Hierarchical clustering

4.1 Basic concepts

Hierarchical clustering is even older than K-means, and its origins are in Poland as well. Florek
et al. (1951) introduced Single Linkage clustering in order to group objects based on a given
dissimilarity. Research on hierarchical clustering can be seen as part of discrete mathematics
rather than statistics; connecting it to statistical models is difficult. In many applications,
however, hierarchical clustering is a competitor to K-means and clustering based on statistical
models; it has its own characteristics that are sometimes useful.

The aim of hierarchical clustering is to set up a hierarchy of clusters, i.e., not only to partition
the data into a fixed number of clusters but rather to have a sequence of groupings at different
levels, with member sets of finer groupings being subsets of coarser groupings, in the same
way in which human beings have traditionally thought about biological classification, in which
species (such as the domestic cat) contain subspecies or breeds (such as the Persian cat), but
are also part of bigger genuses (such as felis, small and medium-sized cats), families (such
as felidae, general cats including lions, panthers etc.), orders (carnivora mammals), classes
(mammals) etc. Here is the mathematical definition:

Definition 4.1 A hierarchy is a sequence of partitions C =
⋃m
j=1 Cj, where Cj, i = j, . . . ,m

are partitions with K1 = |C1| > . . . > Km = |Cm| (|C| denoting the number of elements of C)
so that for Cj ∈ Cj and Ck ∈ Ck with j < k either Cj ∩ Ck = Cj or Cj ∩ Ck = ∅, so that the
sets on lower levels are partitions of the sets of the higher levels.

Hierarchies can be visualised as trees (“dendrograms”), which show how the clusters in the
“finer” lower level partitions are merged in order to arrive at the higher level partitions (whether
the finer partitions are called of “lower” or “higher” level is somewhat arbitrary; here we use
these terms in agreement with the most widespread convention to draw dendrograms). Figure
4.1 shows a hierarchy of sets and the corresponding dendrogram for a toy dataset.

There are two main types of methods to set up hierarchies:

agglomerative methods start from an initial low level hierarchy in which every observation
is a cluster on its own, and proceed by merging clusters upward until everything is merged,

44
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Figure 4.1: Hierarchy of sets and corresponding dendrogram (Average Linkage based on Eu-
clidean distance) on toy dataset.

divisive methods start with the whole dataset as a single cluster and proceed downward by
dividing clusters until everything is isolated.

For computational reasons, agglomerative methods are in far more widespread use, and we will
only treat agglomerative methods here. The methods diana and mona in R’s cluster-package
are divisive, see Kaufman and Rousseeuw (1990).

Here is a general algorithm for agglomerative hierarchical clustering (AAHC). Required is a
dissimilarity between sets, D : (P(X ))2 7→ IR+

0 , where P(X ) is the set of subsets of the object
set X . Normally, this is based on a dissimilarity d on X , see below, and D({xi}, {xj}) = d(xixj)
for i, j ∈ INn.

Initialisation. k = 1. Every object is a cluster on its own.

C1 = {C1, . . . , Cn} = {{x1}, . . . , {xn}} , K1 = n.

Step k.1. Find Ci, Cj ∈ Ck so that D(Ci, Cj) = min(Cl,Cm) D(Cl, Cm).

Step k.2. Merge Ci, Cj:
Ck+1 = Ck ∪ {Ci ∪ Cj} \ {Ci, Cj}

so that Kk+1 = Kk − 1. Set Hk = D(Ci, Cj), the level (dendrogram height) at which Ci
and Cj are merged1.

1It is assumed here that there is a unique pair of clusters Ci, Cj minimising D. Otherwise one would normally
merge all candidate pairs at the same time, unless this would lead to merging triplets or bigger collections of
clusters, in which case what has to be done depends on the choice of D.)
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Figure 4.2: Single, Complete and Average Linkage dissimilarity between clusters.

Stop when everything is merged, Kk+1 = 1, Ck+1 = {X}.
Otherwise, increase k by 1 and go to Step k.1.

What is missing is the definition of D. This can be done in various ways, defining different
methods for agglomerative hierarchical clustering.

The merging levels H1, . . . , HK−1 correspond to the “Height” in Figure 4.1. For most choices
of D, the AAHC is monotonic, i.e., H1 ≤ . . . ≤ HK−1, which means that smaller clusters are
always merged at higher levels than those at which they were produced. This coincides with
the intuition that the clustering becomes coarser and coarser, and later stages of the algorithm
work at higher levels. If this is not the case (as for the “centroid method” not treated here),
drawing the dendrogram becomes less straightforward.

From a complete hierarchy or a dendrogram, a partition with K clusters can always be obtained
by using Ci with Ki = K. This amounts to cutting the dendrogram so that there are K clusters.
Equivalently, instead of fixing K, one can also fix the height H at which the dendrogram is cut,
and choose Ci so that Hi ≥ H but Hi−1 ≤ H, which implicitly decides the number of clusters
K = Ki. In some rare applications something is known about an acceptable dissimilarity
within clusters, and in such cases it may be easier to fix H than K. R’s function cutree cuts a
partition out of a dendrogram. It has a parameter k for fixing K and h for fixing H, only one
of which needs to be set.

For datasets with large n, dendrograms cannot be drawn at the lowest levels anymore, and stor-
ing all pairwise dissimilarities becomes problematic. Sometimes micro-clusters are constructed
in large datasets before running the AAHC with these micro-clusters as objects, see also p.106
of Aggarwal and Reddy (2014) for some hierarchical methods for larger datasets.

4.2 Dissimilarities for clusters and standard methods

Here are three of the four most popular instances of the AAHC (the fourth one is Ward’s
method, see below).
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Figure 4.3: Dendrograms for Veronica data with Jaccard distance between individuals, Average
Linkage (left) and Single Linkage (right).

Definition 4.2 The AAHC with

D(B,C) = min
x∈B,y∈C

d(x,y)

is called Single Linkage (or nearest neighbour) clustering.
The AAHC with

D(B,C) = max
x∈B,y∈C

d(x,y)

is called Complete Linkage (or furthest neighbour) clustering.
The AAHC with

D(B,C) =
1

|B||C|
∑

x∈B,y∈C

d(x,y)

is called Average Linkage (or UPGMA for “Unweighted Pair Group Method with Arithmetic
Mean”) clustering.

See Figure 4.2 for an example. Single Linkage was the method introduced by Florek et al.
(1951). Although these methods look fairly similar, they can give quite different results in
some situations.

Remark 4.3 For all these methods the AAHC is monotonic. For Single Linkage this is obvious;
merging two clusters, say C∗1 = C1 ∪C2 cannot produce a smaller dissimilarity between a point
in C∗1 and any other cluster C3 than there was at the lower level before between either C1 or C2

and C3.

Formally: Consider Ck with C1, C2 ∈ Ck and Ck+1 = Ck ∪ {C∗1} \ {C1, C2}. Now

Hk = D(C1, C2) = min
x∈Ci,y∈Cj , Ci 6=Cj∈Ck

d(x,y).
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Figure 4.4: Left: Dendrograms for Veronica data with Jaccard distance between individuals,
Complete Linkage. Right: MDS plot with 8-cluster solution from any of the Linkage methods

Then for any C3 ∈ Ck ∩ Ck+1, D(C∗1 , C3) is either equal to D(C1, C3) or to D(C2, C3) (because
the minimising x ∈ C∗1 is either from C1 or from C2), and because D(C1, C2) was the mini-
mum of D within Ck and all clusters from Ck+1 apart from C∗1 are also in Ck, the minimum
D(Ci, Cj), Ci, Cj ∈ Ck+1, i.e., Hk+1, must be ≥ D(C1, C2) = Hk.

For Complete Linkage the argument works in the same way, again realising that the maximum
d(x,y) for x ∈ C∗1 ,y ∈ C3 requires x to be from either C1 or C2, and therefore the corresponding
D(C∗1 , C3) and actually all D(Ci, Cj), Ci, Cj ∈ Ck+1 had been in the competition at the lower
level already.

For Average Linkage, the argument is different and is an exercise.

Remark 4.4 In Complete Linkage, in Ck, for all within-cluster dissimilarities there is d(x,y) ≤
Hk−1. This can be useful in applications in which a clustering is required that cannot tolerate
within-cluster dissimilarities above a certain upper bound. Such a clustering can be found by
cutting the Complete Linkage at the corresponding height. There is therefore a “within-cluster
homogeneity guarantee” in Complete Linkage.

Proof by complete induction: C2 is the first clustering to have two objects in the same cluster,
say w.l.o.g. C1 = {x1,x2}, and H1 = d(x1,x2) by definition. Now assume that for Ck all
within-cluster dissimilarities are ≤ Hk−1. As above, assume Ck+1 = Ck ∪ {C∗1} \ {C1, C2},
with Hk = D(C1, C2). This means that the maximum within-cluster dissimilarity in C∗1 is Hk,
and all other clusters in Ck+1 were in Ck already and therefore their maximum within-cluster
dissimilarities are all ≤ Hk−1 ≤ Hk because of the monotonicity of Complete Linkage.

Remark 4.5 In Single Linkage, in Ck, for all between-cluster dissimilarities there is d(x,y) ≥
Hk−1. This is because pairs of clusters C1, C2 that have d(x,y) < Hk−1, x ∈ C1,y ∈ C2, must
have been merged before stage k of the AAHC. There is therefore a “between-cluster separation
guarantee” in Simple Linkage.
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Figure 4.5: Heatmap for Veronica data with row and column order determined by Average
Linkage clustering.

Looking at these results from a different angle, Complete Linkage enforces within-cluster ho-
mogeneity disregarding separation (Complete Linkage clusters are often not properly separated
at all), and Single Linkage enforces between-cluster separation disregarding homogeneity (Sin-
gle Linkage clusters can be extremely heterogeneous). Note that these statements are to be
understood for cuts at fixed nontrivial numbers of clusters K; obviously, at the lowest and at
the top level, both methods have the same clusterings.

Average Linkage does not come with straightforward guarantees like the above. It is a compro-
mise between Single and Complete Linkage, between within-cluster homogeneity and between-
cluster separation, and as such in practice often the preferred choice.
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4.3 Examples

In R, hierarchical clustering is run using the hclust-function, which has a method-argument
that can take (among others) the values "average","single" or "complete".

The first example is the Veronica dataset with the Jaccard distance. An informal way of
finding a good level at which to cut the clustering is to look at whether the appearance of the
dendrogram “suggests” a value, e.g., by having a big interval between two heights. A formal
method will be introduced in Chapter 5.

# Average Linkage

plantclust <- hclust(jveronica,method="average")

# Plot the dendrogram:

plot(plantclust)

# 8 looks like a good number of clusters.

plantclust8 <- cutree(plantclust,8)

# Visualisation using MDS:

plot(mdsveronica,col=plantclust8,pch=clusym[plantclust8])

# This looks good.

# Single Linkage

plantclusts <- hclust(jveronica,method="single")

plot(plantclusts) # 8 looks still OK

plantclusts8 <- cutree(plantclusts,8)

plot(mdsveronica,col=plantclusts8,pch=clusym[plantclusts8])

# The same as before.

# Complete Linkage

plantclustc <- hclust(jveronica,method="complete")

plot(plantclustc) # Could use 8 or 9.

plantclustc8 <- cutree(plantclustc,8)

plot(mdsveronica,col=plantclustc8,pch=clusym[plantclustc8])

# The same as before.

The 8-cluster solutions are identical here, which suggests a very strong clustering. The den-
drograms can be seen in Figures 4.3 and 4.4. The clustering process below the 8-cluster level
differs somewhat between the methods (with Complete Linkage, K = 8 is not a very obvious
choice), but overall the methods are very similar here. Figure 4.4 also shows the MDS-plot
with the 8-cluster solution, which looks very convincing.

One application of the dendrogram is that it can be used for ordering the rows and columns in
the heatmap for visualisation. Setting up a dendrogram requires to order the points in such a
way that clusters should be neighbours to each other at the stage at which they are merged.
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Figure 4.6: Average Linkage dendrogram and 4-cluster solution for Old Faithful Geyser data.

This order holds clustering information, although it is not uniquely defined (rotating within
clusters produces different orders that could be used for dendrograms of the same hierarchy).
It can be used as follows:

# I decided to use the Jaccard distance also for AFLP bands/genes:

vveronica <- dist(t(veronicam),method="binary")

varclust <- hclust(vveronica,method="average")

# As a clustering this is pretty messy, but still it

# can be used to impose an order of genes.

# This submits the two dendrograms to the heatmap:

heatmap(veronicam,Rowv=as.dendrogram(plantclust),

Colv=as.dendrogram(varclust),

col=grey(seq(1,0,-0.01)))

The result is in Figure 4.5.

The Geyser dataset is an example in which the different AAHC methods give quite different
results.

# Average Linkage

geyclust <- hclust(dist(sgeyser),method="average")

plot(geyclust)

# 4 looks like a good K, will isolate one outlier

geyclust4 <- cutree(geyclust,4)

plot(sgeyser,col=geyclust4,pch=clusym[geyclust4])



CH: STATG019, 2016 52

1
4
9

6
1

2
4
3

5
8

1
2

6
2

1
8
3

1
5
5

2
6
8

3
3

7
0

2
6
2

1
6
4

2
2
4
5 4

1
1
3
9

1
6

8
2

2
4
8

3
7

5
5

1
7
8

2
1
6

2
8
8

2
3
1

2
2
1

9
6

5
3

1
0
0

1
2
1

1
5
3

2
3
3

1
5
1

9
8

1
3

1
0
2

2
5
0

1
7
4

1
8
1

7
6

1
2
5

2
8
4

1
6
8

6
7

1
0
6 1

8
8

2
5
6

2
1

2
5
4

2
8
6 1
8

1
9
0 1
6
6

4
7

2
7
5 1
9
8

2
3
8

2
7
3
6
5

8
8

7
2

2
9
9

2
5

1
0
4 1

1
3

9
2
6
6 6

6
3 2

9
2

4
5

1
4
7 2

0
0

2
4
1

3
9

1
1
7

4
9

2
9
4

8
6

2
1
2
9
0

2
9
0 1
9
4

1
0
8

2
0
2

4
3

2
3

2
0
5 1

1
9

2
9
6

1
1
5

2
2
9

1
5
7

1
9
2

9
2

1
1

9
4

2
1
4

5
1

1
7
6

2
0
8

3
5

1
3
3

2
7

2
7
0

1
8
7

2
0
6

8
5

2
8
5

2
1
8

1
7
0

8
4

1
1
0

2
6
5

1
6
9

2
4
7

5
4

2
4
2 1
0
1

9
9

2
7
4

2
8
9

2
0
1

2
6
9

6
8

1
8
4

2
5
5

1
0

1
7
1 1
4

2
2

1
8
2

2
3
2

2
9
5

1
6
5

4
6

1
0
9

2
4
6

4
4

2
6
3

1
1
4

1
2
2

4
2

7
3

3
6

6
4 3

2
6

6
6

5
2

2
9
7

2
4

1
0
5

8
3

1
2
6

3
4

1
4
0

1
9
9

1
9

1
4
8

2
4
9

1
7

1
2
0

7
7

2
7
1

1
7
9

1
7
7

2
5
1 4
8

7
1

2
3
9

2
1
3 7

5
6

1
9
1

2
5
7

9
3

1
7
5

1
1
8

2
1
7

1
1
6

1
0
7

8
7

2
9
3

1
5
2

2
1
5

2
6
7

2
8
7

1
5
0

9
1

2
9
1

1
5
4

2
0
3 1

8
9

3
8

2
7
6

4
0

9
5

1
6
7

2
3
4

5
0

2
3
0

9
7

1
5
6 2

2
2

1
0
3

8
9

1
9
5

1
3
4

1
9
3

1
1
1

2
8

2
5
9

2
0
9

2
1
1

1
3
2

1
5

2
1
0

1
6
1

2
6
1

1
2
3

1
3
8

2
1
9

8
1

3
1

1
4
2

2
5
2

1
5
8

2
5
8 8

3
2

2
6
0

1
8
0

2
3
7

7
8

1
3
5

2
3
6

2
9
8

1
6
3

2
2
3

1
2
7

2
7
7

5
7

2
7
2

1
1
2

2
8
0

2
2
7

2
6
4

1
3
0

1
4
4

2
2
4

2
8
1

2
7
9

2
7
8

2
0
4

1
8
5

1
4
3

1
6
2

1
4
5

1
8
6
1

4
1
2
4

2
2
5

2
8
3

2
0
7 5

1
4
6

2
9

2
8
2

1
3
7

7
5

1
7
3 1
9
7

2
2
8

2
2
0

2
2
6

2
5
3

1
2
9

1
6
0

2
4
4
6
0

7
9

1
2
8

8
0

1
4
1

2
3
5

7
4

2
4
0

1
5
9

2
0

1
3
6

3
0

5
9

1
3
1

6
9

1
7
2

1
9
6

0
.0

0
.2

0
.4

0
.6

0
.8

Cluster Dendrogram

hclust (*, "single")

dist(sgeyser)

H
e
ig

h
t

1

2

1 11

2

1
1

2

1

2

3

2

1

1

2

1

2

1

1

2

1

2

1

2

1

1

1

1

1

1

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

1

4

1

1

5

3

2

1

2

1

2

1

1

2

1

2

1 1
1

2

1

1

1
1

1

2

1

1

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

1

1

1

2

1

2

1

2

1

2

1

2

1

1

1

2

1 1

1
1

1

1

1

2

1

1

1

1

1

2

1

1

1

11 11

2

1

6

1

2

1

2

1

2

1

2

1 1

1

1

1 1

2

1

2

1

2

1

1

1

1

1

2

1

2

1

2

1 1

2

1

2

1 11
1

2

1

2

1

2

1

2

1

1

1

2

1

2

1

2

1

1

2

1 1

2

1

1
1

2

1

2

1

2

1

1

1

1

2

1

111

1

1
1

2

1

2

1

2

1

1

1

1

2

1

1

2

1

7

1

2

1

1

2

1

2

1 1

1

2

1

2

1
1

1
1

1

2

1 1
1

2

1

2

1

1

1

1

2

1

2

1

111 1111

2

1

2

1

2

1

2

1

2

1

2

1

2

1 1

2

−2 −1 0 1 2

−
2

−
1

0
1

waiting

d
u
ra

ti
o
n

Figure 4.7: Single Linkage dendrogram and 7-cluster solution for Old Faithful Geyser data.

# Single Linkage

geyclusts <- hclust(dist(sgeyser),method="single")

plot(geyclusts)

# 7 looks like a good K

geyclusts7 <- cutree(geyclusts,7)

plot(sgeyser,col=geyclusts7,pch=clusym[geyclusts7])

# Complete Linkage

geyclustc <- hclust(dist(sgeyser),method="complete")

plot(geyclustc)

# 5 looks like a good K

geyclustc5 <- cutree(geyclustc,5)

plot(sgeyser,col=geyclustc5,pch=clusym[geyclustc5])

The results can be seen in Figures 4.6, 4.7 and 4.8. For numbers of cluster smaller than 7,
Single Linkage only isolates outliers by producing one- and two-point clusters. The main bulk
of the data is a single very heterogeneous cluster (but separated from the outliers). One needs
to use K = 7 or larger to still have a split within the main bulk of the points. This happens
very often with Single Linkage (putting quite heterogeneous clusters together because there are
some connecting points is often called “chaining” in the literature, and Single Linkage is prone
to this).

Apart from the somewhat odd decision to isolate one outlier with a large waiting time but not
the other one with the shortest duration, Average Linkage looks more or less fine.

The Complete Linkage dendrogram does not give a particularly strong indication about the
number of clusters. Complete Linkage will not isolate outliers as long as this requires to put
together parts of the dataset that are more heterogeneous (in terms of the maximum distance)
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Figure 4.8: Single Linkage dendrogram and 5-cluster solution for Old Faithful Geyser data.

than what is obtained by merging the outliers with some parts of the dataset.

The 5-cluster solution illustrates well that Complete Linkage tries to keep maximum distances
down in all clusters at the same time. For the 4-cluster solution, Complete Linkage will merge
clusters 1 and 4 in Figure 4.8, and for the 3-cluster solution, clusters 2 and 5 will be merged,
which seems like a fairly good solution (the integrated outliers stop clusters 2 and 5 from
merging earlier, or with cluster 1).

An issue with the AAHC in general is that points once merged can never be separated again
at a later stage, which may lead to trouble if the global structure at a higher level is not really
consistent with what looked like the best local structure at a lower level to the algorithm.

4.4 Ward’s method

A different way of using the AAHC is Ward’s method (Ward (1963)). Ward proposed to use
an objective function for agglomerative hierarchical clustering, so that in each step clusters are
merged in order to give the best possible value of the objective function. What is today known
as Ward’s method is the use of the K-means criterion S(C,m1, . . . ,mK) from Definition 2.2 as
objective function.

This amounts to running the AAHC with

D(B,C) = Dk(B,C) = S(C∗,m∗1, . . . ,m∗Kk+1
),

where Dk depends on the step k and the clustering Ck in which B and C occur, C∗ is produced
from Ck by merging B and C, and m∗1, . . . ,m

∗
Kk+1

are the cluster means of the clusters in C∗.
Ward’s method is therefore a hierarchical version of K-means. It produces a local optimum
(among the clusterings that can be constructed by merging clusters of the previous level) of
S at each level of the hierarchy. A disadvantage of Ward’s method is that the value of S
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for given K achieved is in many cases not as good as what can be achieved by running the
K-means algorithm several times. On the other hand there are two advantages. Firstly, the
algorithm produced a hierarchy (in case that this is required). Secondly, the algorithm works
in a deterministic way and is not dependent on random initialisation. Results will reproduce
without fixing the random numbers. One could use Ward’s method to generate a deterministic
starting point for the K-means algorithm, although this does not usually improve on Ward’s
solution substantially.

In the given form, Ward’s method cannot be computed for general dissimilarities; as K-means
it relies on the Euclidean space and observations characterised by variables, so that means can
be computed. However, it can be shown that for a given clustering C = {C1, . . . , Ck} with
means m1, . . . ,mK :

S(C,m1, . . . ,mK) =
K∑
k=1

1

2|Ck|
∑

xi,xj∈Ck

d2
L2(xi,xj). (4.1)

This means that the K-means criterion can be computed from Euclidean dissimilarities with-
out knowing the variables. The R-function hclust with method="ward.D2" computes Ward’s
AAHC from dissimilarities. These have to be Euclidean distances DL2 to compute what is
normally referred to as Ward’s method, but one can also use other more general dissimilarity
measures d; the method then uses the right side of (4.1) with d instead of dL2 as D. The
R-function agnes in package cluster computes Ward’s method from n data points with p
variables with method="ward". Note that all these implementations compute Dk in a compu-
tationally simplified but equivalent way.

For the Bundestag data:

# kmeans with 5 clusters

set.seed(12345)

kmbundestag5 <- kmeans(p05,5,nstart=100)

# Ward’s method

wbundestag <- hclust(dist(p05),method="ward.D2")

# plot(wbundestag) # Dendrogram not shown

# Same as wbundestag <- agnes(p05,method="ward")

# With K=5:

wbundestag5 <- cutree(wbundestag,5)

table(kmbundestag5$cluster,wbundestag5)

# wbundestag5

# 1 2 3 4 5

# 1 27 0 0 55 0

# 2 72 0 0 0 0

# 3 0 0 0 16 22

# 4 8 0 36 0 0

# 5 0 63 0 0 0
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# Fairly different.

adjustedRandIndex(kmbundestag5$cluster,wbundestag5)

# [1] 0.6362054

library(fpc)

# This can be used to compute S for any clustering:

kmb <- cluster.stats(dist(p05),kmbundestag5$cluster)

kmb$within.cluster.ss

# 1.319956

# This is the same as kmbundestag5$tot.withinss

wmb <- cluster.stats(dist(p05),wbundestag5)

wmb$within.cluster.ss

# 1.534854

# Quite a bit worse.



Chapter 5

PAM and ASW - further methods for
dissimilarities

5.1 Partitioning Around Medoids

Partitioning Around Medoids (PAM) (Kaufman and Rousseeuw (1990)) is a clustering method
for dissimilarity data that has a strong connection to K-means. As K-means, PAM aims at
finding centroid objects for each of a given fixed number of K clusters. These centroid objects
cannot be mean vectors, because the computation of mean vectors requires Euclidean space
and cannot be done for general dissimilarity data. Instead, for PAM, the centroid objects
(“medoids”) are members of the dataset.

Definition 5.1 Let D = {x1, x2, . . . xn} with objects xi from some set X characterised by a
dissimilarity measure d : X 2 7→ IR+

0 .

The Partitioning Around Medoids (PAM) clustering of D for given fixed K is defined
by choosing mPK

1 , . . . ,mPK
K ∈ D and cPK(1), . . . , cPK(n) in such a way that they minimise

T (C,m1, . . . ,mK) =
n∑
i=1

d(xi,mc(i)).

This is obviously the very same idea as in Definition 2.2.

Compared with K-means, obviously PAM is more flexible. Particularly, PAM can also be run
for Euclidean data, using the squared Euclidean distance (as K-means) but also the unsquared
Euclidean distance, the Manhattan distance or the Mahalanobis distance. When run with the
squared Euclidean distance, it is worse than K-means, because mean vectors are better in terms
of minimising T which then becomes S from Definition 2.2 than data objects.

Using the unsquared Euclidean or Manhattan distance, PAM has the advantage of not penal-
ising large within-cluster distances as strongly as K-means, so that it is somewhat better at
finding non-spherical clusters, as long as the deviation from a spherical shape is not all too
strong. This can also incur a problem, though, if large distances are too easily integrated into
a cluster, see the Veronica-example in Section 5.5.

56
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Figure 5.1: MDS based on Manhattan distance for Bundestag data with 5-means clustering
(right), PAM-clustering with Euclidean distances (middle), PAM-clustering with Manhattan-
distances (left).

5.2 Computation of PAM

In principle, PAM could be computed using the same idea as in Section 2.2, but Kaufman and
Rousseeuw (1990) proposed a different algorithm, which is deterministic and will usually get
closer to the global optimum than the algorithm in Section 2.2. It is much slower, though.

Build phase Step 0 Start with k = 1.

Step 1 For fixed (mIk
1 , . . . ,m

Ik
k−1) = (m

I(k−1)
1 , . . . ,m

I(k−1)
k−1 ), choose

mIk
k = arg min

mk∈D

n∑
i=1

d(xi −mck(i)),

where ck(i) = arg min
j∈INk

d(xi −mIk
j ).

End if k = K, otherwise k = k + 1, go to Step 1.

Swap phase Step 0 T (0) = T ((ck(1), . . . , ck(n)), (m∗1, . . . ,m
∗
K) = (mIK

1 , . . . ,mIK
K ), q = 1.

Step 1 For all pairs (i, k) so that xi 6∈ {m∗1, . . . ,m∗K) and m∗k ∈ {m∗1, . . . ,m∗K) compute
Tik = T (Cik,mik

1 , . . . ,m
ik
K), where (mik

1 , . . . ,m
ik
K) are (m∗1, . . . ,m

∗
K) but with m∗k

replaced by xi, and Cik assigns every object to the closest centroid in {mik
1 , . . . ,m

ik
K}.

Step 2 (j, l) = arg min
(i,k)

Tik, T
(q) = Tjl.

End if T (q) ≥ T (q−1). Otherwise (m∗1, . . . ,m
∗
K) = (mjl

1 , . . . ,m
jl
K), q = q + 1, Step 1.

PAM is fitted by the R-function pam in package cluster, see below. The algorithm is too
slow for bigger datasets, and also, generally, the size of dissimilarity objects or matrices grows
quadratically with n so that any dissimilarity based algorithm has a hard time for large n
(n > 4000, say).



CH: STATG019, 2016 58

For larger datasets, there is a version clara (“clustering large applications”) of pam, which
works by applying PAM to several small enough subsets of the dataset and classifying all
further points to their closest centroids, picking the best solution among these according to T .
clara works for Euclidean data only, in which case it is not necessary to store all dissimilarities.

5.3 Example for PAM

PAM is fitted by the R-function pam in package cluster, which implements the methods from
the book Kaufman and Rousseeuw (1990). Here I just quickly show its basic use with the
Bundestag data; there will be more in Section 5.5.

library(cluster)

bundestagk5 <- kmeans(p05,5,nstart=100)

# By default, if pam is called with a dataset that is not a

# dist-object, the Euclidean distance is used:

bundestagp5 <- pam(p05,5)

# There’s a bit of a difference between k-means and pam

# based on Euclidean distances

adjustedRandIndex(bundestagk5$cluster,bundestagp5$cluster)

[1] 0.7249983

# Alternatively, pam can be started with a dist-object, which allows

# computing it with the Manhattan-distance:

p05manhattan <- dist(p05,method="manhattan")

bundestagp5m <- pam(p05manhattan,5)

# Somewhat surprisingly, with Manhattan distance the clustering

# is more similar to K-means than to PAM with Euclidean

# distance. This is atypical.

adjustedRandIndex(bundestagp5$cluster,bundestagp5m$cluster)

[1] 0.6607979

adjustedRandIndex(bundestagk5$cluster,bundestagp5m$cluster)

[1] 0.8863854

# One can visualise this with an MDS-plot based on the

# Manhattan distance.

mdsp05m <- cmdscale(p05manhattan,2)

plot(mdsp05m,col=bundestagk5$cluster,pch=clusym[bundestagk5$cluster])

plot(mdsp05m,col=bundestagp5$cluster,pch=clusym[bundestagp5$cluster])

plot(mdsp05m,col=bundestagp5m$cluster,pch=clusym[bundestagp5m$cluster])
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The plots can be seen in Figure 5.1. Note that the Manhattan distance-based clustering has
a somewhat better chance of looking well, because the MDS is based on Manhattan distances.
In any case, the methods agree on separating the constituencies in which the LINKE party is
strong (mostly from the former communist GDR), and how to cluster the rest of the data is
rather ambiguous anyway.

5.4 Average Silhouette Width

For estimating the number of clusters K using PAM, Kaufman and Rousseeuw (1990) recom-
mend the Average Silhouette Width (ASW). The ASW is less strongly connected to PAM than
the Sugar & James-index is to K-means, though. The Sugar & James-index is based on direct
investigation of the K-means objective function S, whereas the ASW has its own rationale
that is only loosely connected to PAM. It is not based on centroids and can rather be seen
as a general purpose index for dissimilarities that can also be used to choose K for cutting
hierarchical dendrograms.

Definition 5.2 Let D = {x1, x2, . . . xn} with objects xi from some set X characterised by
a dissimilarity measure d : X 2 7→ IR+

0 . For a given clustering CK characterised by labels
c(1), . . . , c(n) ∈ INK, with nk =

∑n
i=1 1(c(i) = k), k ∈ INK as usually, the silhouette width

of xi, i ∈ INn, is

s(i) = b(i)−a(i)
max(a(i),b(i))

, where

a(i) = 1
nc(i)−1

∑
c(j)=c(i), j 6=i d(xi,xj), b(i) = mink 6=c(i)

1
nk

∑
c(j)=k d(xi,xj).

In words, this is the difference between b(i), the average dissimilarity of xi and all the points
in the closest cluster to which xi does not belong, and a(i), the average dissimilarity of xi and
all the points of the cluster c(i) to which it belongs, standardised by the maximum of the two.
The latter implies −1 ≤ s(i) ≤ 1. The idea is that if this is positive and big, xi sits very well
and clearly within its own cluster, whereas if this is very small or negative, xi should rather be
in another cluster, or at least its cluster membership is not very clear. The ASW averages this
over all points.

Definition 5.3

ASW(CK) =
1

n

n∑
i=1

s(i)

is called Average Silhouette Width. The ASW-estimate of K (assuming that 2 ≤ K ≤
kmax for some pre-chosen kmax) is

KASW = arg max
k=2,...,kmax

ASW(Ck).
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Figure 5.2: Left: ASW-values for Bundestag-data and PAM-clustering with Manhattan-
distance. Right: MDS based on Manhattan distance and ASW-optimal PAM-clustering with
K = 2.

The definition of KASW maximising the ASW is heuristic; there is no theory confirming under
which circumstances this really yields a good K; the rationale rather is that if the ASW is
accepted as a good measurement of the quality of a clustering, maximising it will give the best
one.

The ASW cannot be computed for a homogeneous dataset, i.e., a “clustering” with K = 1,
because b(i) is not defined if there is no cluster to which an observation does not belong. Hennig
and Lin (2015) argue that one can test whether K = 1 by simulating data from a null model
for which K = 1, and comparing the distribution of the ASW for larger K for such data with
the ASW observed in the dataset to be investigated. This can also be used to investigate how
the distribution of the ASW changes over various values of K.

5.5 Examples for the ASW

The ASW is computed by function silhouette in library cluster. This function can also be
used to produce a diagnostic plot of the silhouettes s(i). As first example, estimate K for the
Bundestag data with Manhattan distance (the Sugar & James-index and K-means produced
too many clusters here for reasonable interpretation, and this was also unstable).

pasw <- NA

pclusk <- list()

psil <- list()

# Look at K between 2 and 30:
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Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of pam(x = p05manhattan, k = k)

Average silhouette width :  0.49

n = 299 2  clusters  Cj

j :  nj | avei∈Cj  si

1 :   236  |  0.47

2 :   63  |  0.56

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of pam(x = p05manhattan, k = k)

Average silhouette width :  0.38

n = 299 5  clusters  Cj

j :  nj | avei∈Cj  si

1 :   67  |  0.19

2 :   88  |  0.37

3 :   63  |  0.49

4 :   41  |  0.42

5 :   40  |  0.48

Figure 5.3: Silhouette plots for K = 2 and K = 5 for Bundestag-data and PAM-clustering with
Manhattan-distance. The grey bars correspond to the values s(i) ordered by clusters and by
size of s(i) within clusters.

for (k in 2:30){

# PAM clustering:

pclusk[[k]] <- pam(p05manhattan,k)

# Computation of silhouettes:

psil[[k]] <- silhouette(pclusk[[k]],dist=p05manhattan)

# The silhouette function produces a lot of information,

# from which the ASW needs to be extracted.

pasw[k] <- summary(psil[[k]])$avg.width

}

# Plot the ASW-values against K:

plot(1:30,pasw,type="l",xlab="Number of clusters",ylab="ASW")

# Result in numbers:

# > pasw

# [1] NA 0.4867459 0.4228157 0.4265560 0.3779154 0.3345530

# 0.3131574

# [8] 0.3254449 0.3177023 0.3185734 0.3036558 0.3130183 0.3039691

# 0.3157744

# [15] 0.3235948 0.3151002 0.3000481 0.2983881 0.3003727 0.3017265

# 0.3043202

# [22] 0.3101771 0.3085357 0.3115082 0.3091192 0.2995540 0.3008825

# 0.2839130

# [29] 0.2832789 0.2888274
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Figure 5.4: ASW-values for Veronica data with Jaccard-distance, PAM (left) and Average
Linkage (right).

# Best value at K=2.

# MDS-plot:

plot(mdsp05m,col=pclusk[[2]]$cluster,pch=clusym[pclusk[[2]]$cluster])

# Silhouette plots for 2 and 5 clusters:

plot(psil[[2]])

plot(psil[[5]])

The results are in Figure 5.2 with Silhouette plots in Figure 5.3. Although KASW = 2 at the
lower end of the value range for K should make the researcher wonder whether the dataset is
clustered at all, the MDS-plot shows a clear and intuitive clustering at K = 2, namely the one
separating the LINKE strongholds.

For the Veronica dataset, the ASW can be computed for both hierarchical clustering (Average
Linkage is chosen here) and PAM.

# Jaccard-distance:

jveronica <- dist(veronica,method="binary")

# PAM:

pasw <- NA

pclusk <- list()

psil <- list()

for (k in 2:30){

pclusk[[k]] <- pam(jveronica,k)
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Figure 5.5: MDS-plots for Veronica data with Jaccard-distance, PAM, K = 7 (left), PAM,
K = 8 (middle) and Average Linkage, K = 8 (right).
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Figure 5.6: Silhouette-plots for Veronica data with Jaccard-distance, PAM, K = 7 (left), PAM,
K = 8 (middle) and Average Linkage, K = 8 (right).

psil[[k]] <- silhouette(pclusk[[k]])

pasw[k] <- summary(psil[[k]])$avg.width

}

plot(1:30,pasw,type="l",xlab="Number of clusters",ylab="ASW")

pasw

# (gives the numbers; there’s a maximum at K=7,

# ASW=0.5386146

# Average Linkage

plantclust <- hclust(jveronica,method="average")

tasw <- NA

tclusk <- list()

tsil <- list()

for (k in 2:30){
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tclusk[[k]] <- cutree(plantclust,k)

tsil[[k]] <- silhouette(tclusk[[k]],dist=jveronica)

tasw[k] <- summary(silhouette(tclusk[[k]],dist=jveronica))$avg.width

}

plot(1:30,tasw,type="l",xlab="Number of clusters",ylab="ASW")

tasw

# The maximum is at K=8, ASW=0.5524769

# The Average Linkage clustering at K=8 has a slightly better

# ASW. Actually it looks much better:

mdsveronica <- cmdscale(jveronica,k=2)

# PAM with K=7:

plot(mdsveronica,pch=clusym[pclusk[[7]]$cluster],col=pclusk[[7]]$cluster)

# PAM with K=8:

plot(mdsveronica,pch=clusym[pclusk[[8]]$cluster],col=pclusk[[8]]$cluster)

# Average Linkage with K=8:

plot(mdsveronica,pch=clusym[tclusk[[8]]],col=tclusk[[8]])

The results are in Figures 5.4 and 5.5. The Average Linkage results seems fine here, whereas
PAM does not handle the smallest cluster appropriately; the PAM-criterion T for K = 8 gives
a better value of T splitting up what is cluster no. 1 in the Average Linkage clustering, but
this does not look convincing, and the ASW-value is worse than the value for K = 7.

The Silhouette-plots (Figure 5.6) show that cluster 2 for PAM with K = 8 looks bad. For
K = 7 it looks slightly better but one could suspect that cluster 2 has two subclusters. For the
Average Linkage-clustering, all clusters look fine:

plot(psil[[7]])

plot(psil[[8]])

plot(tsil[[8]])



Chapter 6

Mixture models

6.1 Basic concepts

Mixture models are the most popular clustering approach based on statistical models (K-means
is used mostly ignoring its probability background). The term “model-based cluster analysis”
is often used when mixture models are applied for clustering.

The general idea of mixture models is that the data x1, . . . ,xn (often but not necessarily
from IRp) are modelled as i.i.d. according to distributions from a parametric family F =
{Pθ with density fθ : θ ∈ Θ}, Θ being the parameter set. K clusters are modelled as being
generated by densities fθ1 , . . . , fθK that occur with probabilities 0 ≤ π1, . . . , πK ≤ 1 with∑K

k=1 πk = 1.

Overall, in a mixture model, x1, . . . ,xn are modelled as i.i.d. with density

fη(x) =
K∑
k=1

πkfθk(x), (6.1)

where η = (π1, . . . , πK , θ1, . . . , θK) is the parameter vector.

Equivalently, connecting this to (2.1), the mixture model can be written down in two steps,
introducing random variables γ(1), . . . , γ(n) giving cluster labels:

i ∈ INn : γ(i) i.i.d. ∼ Multinomial(1, π1, . . . , πK),

xi|γ(i) = k ∼ fθγ(i)
,

which implies that (6.1) is the marginal density for the xi, i ∈ INn (“xi” is here and below
used as a short hand for “random variable Xi takes value xi”). Bayes’ formula then yields:

P (γ(i) = k|xi) =
πkfθk(xi)∑K
j=1 πjfθj(xi)

, (6.2)

which is helpful for classifying the observations, see below.

The parameters η are, for fixed K, usually estimated by ML, i.e.,

η̂ = (π̂1, . . . , π̂K , θ̂1, . . . , θ̂K) = arg max
η

n∏
i=1

(
K∑
k=1

πkfθk(xi)

)
. (6.3)

65
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The estimated parameters can then be used in (6.2) to estimate probabilities for an observation
xi, i ∈ INn having been generated by mixture component k, which means belonging to cluster
k interpreting (as is normally done) the mixture components as clusters:

pik = P̂ (γ(i) = k|xi) =
π̂kfθ̂k(xi)∑K
j=1 π̂jfθ̂j(xi)

.

If a partition is required, cluster labels can be estimated by maximising this:

γ̂(i) = arg max
k∈INk

pik.

The number of cluster K can be estimated by general model selection techniques. The most
widely used one in model-based cluster analysis is the Bayesian Information Criterion
(BIC). Let

L̂n,K,Θ =
n∏
i=1

(
K∑
k=1

π̂kfθ̂k(xi)

)
with ML-estimators η̂ assuming the number of clusters K plugged in. Because models with
smaller K are nested in models with larger K (by choosing, e.g., one or more πi = 0), L̂n,K,Θ
will increase monotonically in K. The BIC penalises L̂n,K,Θ with a function of the complexity
(i.e., the number of free fitted parameters) of the model so that the complexity is traded off
against L̂n,K,Θ. This can also be used to compare parametric models with different numbers of
parameters per mixture component.

Definition 6.1 The Bayesian Information Criterion is

BIC(n,K,Θ) = 2 log L̂n,K,Θ − v(K,Θ) log(n),

where v(K,Θ) is the number of free parameters in the model with K mixture components in
parameter space Θ.

The BIC-optimal model (and more specifically the BIC-optimal K) is the one maximising
BIC(n,K,Θ).

This can also be used to compare parametric models with different numbers of parameters
per mixture component, hence the dependence on Θ. K = 1 (i.e., a homogeneous model for
unclustered data) can be included in the comparisons by the BIC. Note that in the literature
sometimes the BIC is defined as −2 log L̂n,K,Θ + v(K,Θ) log(n), which then would have to
be minimised (“small is good”), whereas I use the “large is good”-version here, following the
mclust-package.

The BIC was originally introduced by Schwarz (1978). For mixture models, there is a consis-
tency result for the BIC as estimator of K under very restrictive conditions by Keribin (2000).
Such results are phenomenally difficult to prove.
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6.2 The Gaussian mixture model

The most popular mixture modelling for clustering is the Gaussian mixture model, in which
the Gaussian distribution models clusters. There are many recent publications about mixtures
of other parametric models, but this is not treated here. In the Gaussian case, (6.1) becomes

fη(x) =
K∑
k=1

πkϕak,Σk(x) (6.4)

with η = (π1, . . . , πK , (a1,Σ1), . . . , (aK ,ΣK)).

Figure 6.1 shows some data generated by 4 different Gaussian mixtures. Gaussian populations
are flexible with elliptical shapes. If interpreted as clusters, they may generate large within-
cluster distances. They may not necessarily be well separated, and mixtures of K > 1 Gaussians
may be unimodal. In some applications this may be desired; consider the two datasets at the
bottom of Figure 6.1; despite the fact that the Gaussian populations are not separated and the
mixture is unimodal, the data may still point at two real populations that differ in a meaningful
way; and a cluster analyst may want to find these.

On the other hand, considering e.g. the upper right dataset in Figure 6.1, a mixture of two
not well separated Gaussians may just be a homogeneous distribution with a slightly non-
Gaussian shape, and an interpretation of the Gaussian components as meaningful clusters may
not be justified. More generally, almost every distribution, homogeneous or inhomogeneous,
can be approximated by a mixture of Gaussians if only enough Gaussians are used, so some
care is required when interpreting Gaussian mixture components as clusters. Actually, mixture
models are also sometimes used for density estimation with the aim of fitting the dataset
without interpreting mixture components as clusters.

A comprehensive overview paper for Gaussian mixtures for clustering and other purposes is
Fraley and Raftery (2002).

Remark 6.2 The pdfCluster-package in R provides a method for clustering based on high
density regions without parametric assumptions, see Azzalini and Menardi (2014). The function
mergenormals in the fpc-package implements methods to merge Gaussian components in a
mixture model that are not separated enough, see Hennig (2010).

6.3 Covariance matrix models

The R-package mclust (developed by the authors of Fraley and Raftery (2002)) fits Gaussian
mixtures. It allows to fit a number of models that are constrained versions of model (6.4),
making certain assumptions for the covariance matrices. For example, the assumption ∀k ∈
INK : Σk = bIp fits a “K-means style” spherical Gaussian mixture not suffering from the
inconsistency problem of K-means mentioned in Remark 2.7. Another possible constraint is to
assume all covariance matrices to be equal: ∀k ∈ INK : Σk = Σ.

Such constraints are sometimes useful because the most general model with unconstrained
covariances may have too many parameters and may be numerically unstable, particularly if p
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and K are large. Also, in some applications constraints may help to make the clusters better
interpretable; for example, the K-means assumption will be much better at avoiding large
within-cluster distances than the fully flexible model.

The mclust-system of constraints is based in spectral decomposition of the covariance matrix:

Σk = λkDkAkD
T
k , k ∈ INK ,

where

• (λk1, . . . , λkp) are the eigenvalues of Σk,

• λk =
∏p

i=1(λki)
1/p is the “hypervolume”,

• Dk is the matrix of eigenvectors, the direction of which determines the “orientation”,

• Ak = 1
λk

diag(λk1, . . . , λkp) is called “shape” of Σk with detAk = 1.

These are illustrated in Figure 6.2. One or more of these can be assumed equal between clusters.
The shape can be assumed to be the unit matrix.

mclust has a coding system for constraints. “V” means “variable” (i.e., flexible), “E” means
“equal”, “I” means “unit matrix”. Constrained models are defined by three letter codes for
volume, shape, and orientation:

From ?mclustModelNames:

*univariate mixture*

"E": equal variance (one-dimensional)

"V": variable variance (one-dimensional)

*multivariate mixture*

"EII": spherical, equal volume

"VII": spherical, unequal volume

"EEI": diagonal, equal volume and shape

"VEI": diagonal, varying volume, equal shape

"EVI": diagonal, equal volume, varying shape

"VVI": diagonal, varying volume and shape

"EEE": ellipsoidal, equal volume, shape, and orientation

"EEV": ellipsoidal, equal volume and equal shape

"VEV": ellipsoidal, equal shape

"VVV": ellipsoidal, varying volume, shape, and orientation

mclust allows the user to specify one or more models using the parameter modelNames. The
default (in case modelNames is not specified) is to fit all models and to select the optimal one
using the BIC.
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6.4 Computation: the EM-algorithm

Assume K and the covariance matrix model to be fixed (for applying the BIC, this is done for
a range of values of K and models). Fitting the Gaussian mixture by ML means maximising

logLn,K,Θ(η) =
n∑
i=1

log

(
K∑
k=1

πkϕak,Σk(xi)

)
.

Again, there is no straightforward analytic solution, and an algorithm is needed that computes
a local optimum.

This is done in mclust by the so-called EM-algorithm (Dempster et al. (1977)). This is a
general principle for finding an ML-estimator in case of incomplete information. Sometimes
the EM-algorithm is referred to as “clustering method”, by which people usually mean that the
EM-algorithm is used to fit a Gaussian mixture model.

The general principle of the EM-algorithm is as follows: Let ỹ = y1, . . . ,yn be the unobserved
complete data and D = T (ỹ) be the observed data.

The missing information in the mixture model are the cluster memberships γ(i), . . . , γ(n), i.e.,
yi = (γ(i),xi).

In general, the EM-algorithm attempts to maximise L(η) =
∑n

i=1 log fη(xi). Define Ln,c(η) =∑n
i=1 log fη,c(yi), where fη,c is the density for complete information. The algorithm is initialised

by a starting parameter η0, t = 1, and proceeds by iterating:

E-step Compute the Expected complete likelihood.

q(η|ηt−1) = Eηt−1(Ln,c(η)|T = D).

M-step Maximise the conditional likelihood.

ηt = arg max
η

q(η|ηt−1), t = t+ 1.

Dempster et al. (1977) proved that both steps never decrease L(η).

In the Gaussian mixture model, η = (π1, . . . , πK , a1, . . . aK ,Σ1, . . . ,ΣK).

The complete loglikelihood with γ(i), i ∈ INn known is

Ln,K,Θ,c(η) =
n∑
i=1

K∑
k=1

1(γi = k)(log πk + logϕak,Σk(xi)).

E-step:

Eηt−1(Ln,K,Θ,c(η)|T = D) =

=
∑n

i=1

∑K
k=1 P (γ(i) = k|ηt−1,xi)(log πk + logϕak,Σk(xi)),

p
(t−1)
ik = P{γ(i) = k|ηt−1,xi} =

π
(t−1)
k ϕ

a
(t−1)
k

,Σ
(t−1)
k

(xi)∑K
h=1 π

(t−1)
h ϕ

a
(t−1)
h

,Σ
(t−1)
h

(xi)
.
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M-step: maximise
n∑
i=1

K∑
k=1

p
(t−1)
ij (log πk + logϕak,Σk(xi)).

Assume fully flexible covariance matrices, i.e., model “VVV” (in other cases it is more difficult).
It is then possible to maximise separately

n∑
i=1

K∑
k=1

p
(t−1)
ik log πk ⇒ π

(t)
k =

1

n

n∑
i=1

p
(t−1)
ik ,

n∑
i=1

K∑
k=1

p
(t−1)
ik logϕak,Σk(xi),

which yields weighted Gaussian ML estimators for (ak,Σk), k ∈ INK :

a
(t)
k =

1∑n
i=1 p

(t−1)
ik

n∑
i=1

p
(t−1)
ik xi, Σ

(t)
k =

1∑n
i=1 p

(t−1)
ik

n∑
i=1

p
(t−1)
ik (xi − a

(t)
k )(xi − a

(t)
k )′.

These can be iterated until convergence, i.e., until there is (almost) no improvement in Ln,K,Θ(η)
anymore.

mclust initialises the algorithm by running a Ward-style hierarchical clustering applied to the
loglikelihood.

6.5 Example

The core command in the mclust-package for fitting Gaussian mixtures is Mclust. This is
applied to the Olive Oil data.

# Fit all models with K between 1 and 15.

# In mclust, the number of clusters is called G.

# This takes quite some time. May choose a smaller range

# or fit only one or a few models, see below, to make

# it faster.

molive <- Mclust(olive,G=1:15)

summary(molive)

# ----------------------------------------------------

# Gaussian finite mixture model fitted by EM algorithm

# ----------------------------------------------------

#

# Mclust VVE (ellipsoidal, equal orientation) model with 8 components:

#

# log.likelihood n df BIC ICL

# -20585.88 572 163 -42206.68 -42239.66
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#

# Clustering table:

# 1 2 3 4 5 6 7 8

# 193 49 69 61 65 57 33 45

# The optimal clustering is VVE with K=8.

# The cluster labels are in molive$classification.

# A bit more information about the BIC-values:

summary(molive$BIC)

# Best BIC values:

# VVE,8 VVV,3 VVV,6

# BIC -42206.68 -42671.283 -42712.2220

# BIC diff 0.00 -464.607 -505.5457

# Diagnostic plots:

plot(molive)

# Compare VVE,8-clustering with regions:

adjustedRandIndex(molive$classification,oliveoil$region)

# [1] 0.8808006

# Very good!

# The VVV,3-model is second best and could be good for macro.areas.

# Fit model for fixed K and fixed model:

molive3 <- Mclust(olive,G=3,modelNames="VVV")

adjustedRandIndex(molive3$classification,oliveoil$macro.area)

# [1] 0.8141643

# Also quite good.

# Diagnostic plots:

plot(molive3)

The plot-command applied to an Mclust-output offers four diagnostic plots. The first plot
visualises the BIC-values for the different fitted models. The second plot plots the clusters in
a matrix plot. The third plot plots “uncertainties”, i.e., 1 − piγ̂(i). If piγ̂(i) is large, it means
that the probability that xi is from cluster γ̂(i) is estimated to be very high. Otherwise there
is large uncertainty about whether γ̂(i) is really the correct cluster for xi. These points are
darker in the uncertainty plot. The fourth plot gives density contours of the estimated mixture
density. For the results for the Olive Oil data, see Figure 6.3.
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6.6 Remarks

Remark 6.3 An important theoretical issue with mixture models is identifiability. A mixture
model is identifiable if it is not possible (up to permutation of the numbers of the mixture com-
ponents) to obtain the same probability model with two or more different choices of parameters.
If this were the case, an arbitrarily large dataset could still not tell the different parameters
(which may imply different clusterings) apart.

The Gaussian mixture model is identifiable, but not all mixture models are.

Remark 6.4 A problem with some of the more flexible covariance matrix models is that a mix-
ture component can be chosen in such a way that it fits one point precisely, which means that
the covariance matrix degenerates to a zero matrix and the likelihood degenerates to infinity.
Consequently, one normally looks for local optima of the likelihood for which the smallest eigen-
value of a covariance matrix is bounded away from zero. In practice, still sometimes “spurious
clusters” occur which are very small and meaningless but produce a very large likelihood because
their covariance matrix has an eigenvalue close to zero.

Remark 6.5 Some of the covariance matrix models (e.g., “VVV” and “EEE”) are scale and
rotation invariant, i.e., the clusters do not change if the dataset is rotated, or the scale of
the variables is changed with different variables treated potentially differently. Other models
such as the K-means type “EII” are not scale equivariant, and some (“VII”) are not rotation
equivariant.

Consequently, picking the best model using the BIC is not invariant in any sense, although
rotation and scaling often do not make much of a difference in practice in case that the BIC
picks an invariant model.
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Figure 6.1: Data from 4 Gaussian mixtures (colours and numbers indicate the mixture compo-
nents from which observations were generated).



CH: STATG019, 2016 74

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

y
1

Eigenvector 1
Eigenvector 2

Orientation

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

y
1

sqrt(lambda_1)
sqrt(lambda_2)

Volume lambda=sqrt(lambda_1)*sqrt(lambda_2)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

y
1

shape A

Figure 6.2: Illustration of orientation, volume and shape of covariance matrices of Gaussian
distributions.



CH: STATG019, 2016 75

−
6

0
0

0
0

−
5

5
0

0
0

−
5

0
0

0
0

−
4

5
0

0
0

Number of components

B
IC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EII

VII

EEI

VEI

EVI

VVI

EEE

EVE

VEE

VVE

EEV

VEV

EVV

VVV

palmitic

50 150 250 6500 7500 0 20 60 0 20 40 60

6
0

0
1

2
0

0

5
0

1
5

0
2

5
0

palmitoleic

stearic

1
5

0
2

5
0

3
5

0

6
5

0
0

7
5

0
0

oleic

linoleic

6
0

0
1

2
0

0

0
2

0
6

0

linolenic

arachidic

0
4

0
8

0

600 1200

0
2

0
4

0
6

0

150 250 350 600 1200 0 40 80

eicosenoic

palmitic

50 150 250 6500 7500 0 20 60 0 20 40 60

6
0

0
1

2
0

0

5
0

1
5

0
2

5
0

palmitoleic

stearic

1
5

0
2

5
0

3
5

0

6
5

0
0

7
5

0
0

oleic

linoleic

6
0

0
1

2
0

0

0
2

0
6

0

linolenic

arachidic

0
4

0
8

0

600 1200

0
2

0
4

0
6

0

150 250 350 600 1200 0 40 80

eicosenoic

palmitic

50 150 250 6500 7500 0 20 60 0 20 40 60

6
0

0
1

2
0

0

5
0

1
5

0
2

5
0

palmitoleic

stearic

1
5

0
2

5
0

3
5

0

6
5

0
0

7
5

0
0

oleic

linoleic

6
0

0
1

2
0

0

0
2

0
6

0

linolenic

arachidic

0
4

0
8

0

600 1200

0
2

0
4

0
6

0

150 250 350 600 1200 0 40 80

eicosenoic

Figure 6.3: “mclust”-plots for Olive Oil data: Upper left: BIC values for different K and
covariance matrix models from “plot(molive)”. The following plots are for model “VVV” with
K = 3, i.e., from “plot(molive3)”. Upper right: Clustering, lower left: uncertainty plot, lower
right: density plot.
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