Clustering with the Gaussian mixture model
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1.1 The Gaussian mixture model Gaussian populations are elliptical with flexible shapes.
Observations X = X1, ..., X, € RP are assumed i.i.d. with Within-cluster distances may not be small.
density
k
f(Xi) = TiPa ,%; (Xi)- .
ir% o]
j=1 S
Parameters 7ij, a;, ¥; will be estimated by .
maximum likelihood. e ( :
k will be estimated by the BIC (penalised ML). E gﬁn :
] gﬂﬁ‘fj

For clustering, normally identify ~ 1 i

each Gaussian subpopulation with a cluster.

What does this imply?
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Gaussian mixtures may have more modes than mixture

Gaussian mixtures may be unimodal and not heterogeneous. components.
Sometimes that’s desired, sometimes not.

Density approximation vs.
“mode clustering” vs.
“pattern clustering”. : : : : : : :

. . . o k
Gaussian mixtures can emulate all kinds of distributional f(x1) Z (x)
) — Toa s (X:).
shapes. T RCRIN
]:
Starting from such a model does not mean that
111 . ol it is required that the data really come

i from a Gaussian mixture.

Gaussian mixtures are very flexible and

AN ; “all models are wrong” anyway.
injllﬁ ! " ;iﬂ 272
™ ? e 1] H ” H ] ”
: - S £ The model “assumption” rather defines the “cluster prototypes
" ] N o we are looking for.

; ! B ; ; : B (Concentrated in centre, linear, maybe large variance.)

It tells us what “view on the data” is implied.
Whether that's suitable depends on the application.
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) 1.3 Gaussian mixtures and k-means clustering
1.2 The two-step version of the model

(71:%1), -+ -5 (s %n) Lid., k-means clustering is defined by
j=1,....,k: P{yi=j} = m, n
fxili=i) = ¢ax(Xi) Z argmin [x; — a.,||> = min!
i CREA i=1 7€{l,...k}
This implies This is maximum likelihood for
. Tipa;, 5 (Xi) n
Lo— P = 1Ix )} = 1= . .
P T a0 ) = [ [ e, x, (0.
i—1

After estimating all parameters, cluster points by where ~; € {1 K}, ¥ — cl, Vj (‘Fixed Partition Model")
| Yt ’ ] = p .

X A 7y 5, (Xi) .
4i = arg max P = argmax ——— ) f(Xiln =1) = ¢a, 5, (Xi)
j i 2h=1fhes s, (i)
as in mixture, but without component probability ;.
Can fit Gaussian mixture model with ¥; = cl,, Vj, too.
Constraining covariance matrices,
Gaussian mixtures can emulate k-means cluster shapes Gaussian mixtures vs.  k-means clustering
(less flexible, more homogeneous). Gaussian mixtures allow more flexible cluster shapes.

k-means tends to produce clusters of similar sizes.
k-means is inconsistent because of crisp classification.

...and others.
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1.4 Constrained covariance matrices

k Banfield and Raftery (1993): use spectral decomposition
f(xi) = mea 5(X)- .
j=1 Zj:)\ijAij ,j:l,...,k,

k-means model: ¥ = clp V. where
Linear discriminant analysis: ¥ = ¥. > (A1, - -, Ajp) eigenvalues,
- . . C=TTP ()P
Reasons for constraining the covariance matrices: > A = 1= (4)7F hypervolume,

» Fewer parameters to estimate (low n, large p). > Dj matrix of eigenvectors,

o 1 A4 . . “ ” H L
» Sometimes numerical problems with fully flexible ;. > A = 5 diag(Ajg - .- Ajp) “shape” with detA; = 1.
» Sometimes better interpretation.
But may not fit the data very well. (BIC can decide.)
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Volume lambda=sqri(ambda_1)'sqri(ambda_2) o
< o Orientation °©

yl
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Volume lambda=sqrt(lambda_1)*sqri(lambda_2) o
o

One or more of these can be assumed equal between clusters.
1 Shape can be assumed to be the unit matrix.

N . mclust coding
“V” variable, “E” equal, “I” unit matrix.

™ Models are defined by three letter codes for
. volume, shape, orientation.

Christian Hennig Clustering with the Gaussian mixture model Christian Hennig Clustering with the Gaussian mixture model

“VVV”: fully flexible model.
From ?ntl ust Model Nanes:

uni vari ateM xture: A vector with the foll owi ng conponents

"E": equal variance (one-dinensional) v
"V': variable variance (one-dinmensional) 7

nmul tivariateM xture: A vector with the follow ng conmponents: ©

"ElIl": spherical, equal volune

"VI1": spherical, unequal vol unme RE

"EEl": diagonal, equal volune and shape ‘25

"VEl": diagonal, varying volume, equal shape . }

"EVI": diagonal, equal volune, varying shape wﬁ

"WI": diagonal, varying volune and shape o lg%

"EEE": ellipsoidal, equal volume, shape, and orientation !

"EEV': ellipsoidal, equal volume and equal shape )

"VEV': ellipsoidal, equal shape Hfi ; : ) T T ;

"VWW': ellipsoidal, varying volune, shape, and orientation
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“Ell”: equal volume, spherical (k-means)

-2
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“EEE”": equal (but flexible) volume, shape and orientation.
Assumptions of linear discriminant analysis.
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“VVI": diagonal (“local independence”);

components can be interpreted in terms of marginals
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Constraints used for estimation:

Equal volume: clusters are similar

2 2330, 2
2272 57,
22122225?22
2 7%
2, 2 22,
2 22

in terms of within-cluster dissimilarity/variation.
Non-unit shape: clustering invariant against variable scaling.
Non-diagonal orientation: clustering rotation invariant.

Optimising over all models: not rotation and scale invariant.

Note again: models are not required to be true,
but determine implications for clustering.

Christian Hennig Clustering with the Gaussian mixture model




Christian Hennig Clustering with the Gaussian mixture model

1.5 Identifiability

Can the same dataset be fitted equally well
by two different mixtures of Gaussians?

If so, the found “clusters” cannot be interpreted.

Theoretically: can the same underlying distribution
be written down as a mixture in two different ways?

(If not, there may still be trouble for certain datasets,
which cannot generally be excluded.)
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2. Computation of the ML-estimator: The EM-algorithm
Assume k fixed. Try to maximise

n k
logLnk(X) = > log | > mjea, 5, (Xi)
i=1 j=1

under 7; > OVj, Z}‘Zl m = 1.
Unfortunately there is no straightforward analytic solution.
Need algorithm to find local optima.

Several ones exist, most popular is the EM-algorithm.
Initialisation treated afterwards.

Theorem (Yakowitz and Spragins 1968): Assume f = g with

K
f(x) = mea 5 (X), 9(X) =D gep,.r,(X),
i—1

j=1

Zjn:]_TFj = Zjnzlej =1,Vj: > 0,6]' > 0,
Vi #h: (a,%)) # (an, Xn), (bj,Tj) # (bn, ).

Then k = | and there is a permutation 7 so that

V] =1,.. .,k : (Wj,aj,zj') = (ET(j),bT(j), FT(,-)).
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2.1 The general EM-algorithm

EM-algorithm (Dempster, Laird and Rubin 1977):
general principle to find ML-estimator if information is
incomplete.

Sometimes “EM-algorithm”

is referred to as “clustering method”,

but EM-algorithm can be used

for many different problems and models.

Missing information in the mixture model:
cluster memberships v1,...,n.
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. 2.2 EM in the Gaussian mixture model
General principle:

Y =V1,...,Yn unobserved complete data.

X = T(y) observed data (mixture: y; = (v, Xj))- n = (m, Idots, m, a1, ... 8, 21, -, Tk).

Complete loglikelihood with ~; known:

Attempt to maximise In k(7)) = i, log f,(xi). n
Define Inc(n) = 21, logf, ¢ (vi)- 7o initialisation. hic(n) = Z 1(v =])(log 7 + 10 ¢a, 5, (Xi)),
E-step Compute Expected complete likelihood. i=1j=1
Anln-1) = Ep_y (ne(n)|T =%). =-step:
M-step Maximise conditional likelihood. Ep1(nie(m)|T = %) =
=2 Z] 1 P(yi = jlm—1,xi)(log mj + 109 ¢q, 5, (Xi)),
ne = arg max q(n|ne—1)- (t-1)
n (1) _ TP (1) 2(t—1)(><i)
Py =P =lln-1,xi} = "
Theorem (DLR 1977): Both steps never decrease Iy k(7). Shoam ¢ al~ 1) (- n0a)

M-step : maximise

n k
> e log 7 + log pa, 5, (xi)).

i=1 j=1

Model VVV: can separately maximise Can iterate these until “convergence”,

normally defined by “increase in I, , smaller than c”
Z Z pﬁt Yiogm = = Z |o(t 2 though doesn’t guarantee convergence of all parameters.
i=1j=1

Note that this gives you (at best) a local optimum.

n kK 1
Zzplﬁ - )Iog 4Paj,zj(xi)7

i=1j=1
which yields weighted Gaussian ML estimators for (a;, ¥;):

1~ (-
Zp“ Uxi, £ = 23 p P - a)xi - &)
i=1
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Initialisation by hierarchical clustering

2.3 Initialisation (default for mclust package, function hc)

EM-algorithm depends on initialisation. 1. Start with every data point as cluster.
Better initialisation = better local optimum. 2. Merge the two “closest” clusters.
3. Go to 2 until there are k clusters

or an initial set of py.
It can therefore be initialised by a partition of the data,
in which case pi(j’ is either O or 1.

In Step 2, merge clusters that lead to maximum |, i.

Can be computed from pairwise dissimilarity matrix,

» Start EM g times from random partitions and choose which requires much memory and time for large n.
solution that maximises I . For large n do this on subset and extract parameters.

» Try to find an “intelligent” starting partition.

» Various alternatives in literature. Implemented for VVV, EEE, ElI, VII.

(Where not implemented, VVV is default.)
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BIC: With d (k) number of free parameters:
3 Estimating model complexity by the BIC
2l —d(k)log(n) = max!
Estimating k is a model complexity problem.

Models are nested (k mixture components are Note that in the literature often BIC = —2I7, +d(k)log(n).
special case of k + 1 with 7; = 0 for some j). Motivation 1
if k increases, I*, = I, k(n«.mL) = max, I, k(n) increases, too. otvation 1 .

ke = o) (1) Originally (Schwarz 1978), the BIC has been derived
Penalised likelihood is a popular approach in a Bayesian setup as approximation for

to estimate model complexity. With p(k) increasing:
() = [ Ini(.00n(n)d,
,;“7k — pn(k) = max!

where h is uniform prior for 7.

p(X|k) is proportional to the posterior for k
if all k have the same prior probability.

Various choices of py(k) are in the literature (AIC, BIC, CAIC).
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Motivation 2: Keribin (2000):

BIC estimates k consistently in mixture model
under some assumptions, which are fulfilled

for a 1-d Gaussian mixture with equal variances
bounded from below.

BIC model selection

Fit models with all k of interest.
Choose the one with largest BIC.
Still seems to be best existing consistency result. ,

Can use BIC as well in order to select
covariance constraints

Problem with consistency:
Y governed by number of parameters.

If Gaussian mixture model does not hold precisely,
for large n estimated k will become larger and larger
in order to give optimal Gaussian mixture approximation.
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4 Model-based clustering with the mclust package _
Example: old faithful dataset

mclust (Fraley and Raftery 2002, 2010) is an add-on package

for R (R development core team, 2011) for

(Gaussian mixture) model-based clustering.

\Y%

l'ibrary(nclust)
Loads ntlust package

H*

\%

data(faithful)

mclust-documentation: Fraley and Raftery, (2010)
Supplied with R base

http://ww. stat.washi ngton. edu/ fral ey/ ntl ust/tr504. pdf

F*

\Y

pl ot (faithful)
Standard scatterplot of data

H*

mclust has a nonstandard licence:
http://ww. stat.washi ngton. edu/ ntlust/|icense.txt

Christian Hennig Clustering with the Gaussian mixture model Christian Hennig Clustering with the Gaussian mixture model




o
o
o o
o
o
- om ooo
@ o S
o ©o oo 00
o o
@ o
o o oo
0o’ @ @ @ o
o o o 00 @0 6 o
0o o "om ®Qo 0o
o oo 0000@ O ® ©
S - o © 0 000 0
00 0 0 ® @O
o © 00®mO 0 ®mwoo
® "®oo® O o
06 0000 ~0 J o
0o 0" @6
o 0 o000
o o ® o
=)
o o oo
£ o 380
g o o
g o o
o o
o o o
o o o o
o o
o o o o
o
- o ooa
© o ® @ oo
om® o
o "o
@ o
o® 0o o
@ o o
66 oo s o
0o 0 006 o
o 0@oo o
32 - o coo
0@ 00
0o o
606 o
w o
oo o
o
T T T T T T T T
15 2.0 25 3.0 35 4.0 45 5.0
eruptions

Christian Hennig Clustering with the Gaussian mixture model

8
o
S
3 4
«
b
o
S
S 4
&
i [
Q
@
. /
S A
3 4
«
I
o
S 4
¥ IN

o——n

A/ :
ENl © Wi
A VI = EEE
EEI EEV
= VEI VEV
® EVI O VW

ChristianHennig ClusteringwiththeGaussianmixturemodel

number of components

faithfulm<- Mlust(faithful)

# Run Mclust on old faithful data

plot(faithfulmfaithful)
# Four ntlust default plots

names(faithfulm

[1] "nodel Name" W " g e
[5] "BIC "bic" "l oglik" "paranmet ers"
[9] "z" "classification" "uncertainty"

Christian Hennig
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Classification
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Uncertainty of 4 : 1 — pjs,.
Uncertainty graph shows upward 0.75- and 0.9-quantile.

Classification Uncertainty > faithfulm

best nodel: elliposidal, equal variance with 3 conponents

R > faithful nbcl assification

o', 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
3 2 3 2 1 2 1 3 2 1 2 3 1 2 1 2 2 1 2 1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
2 2 3 3 1 3 2 1 3 1 1 1 3 3 3 2 2 1 2 1

()
261 262 263 264 265 266 267 268 269 270 271 272
. 1 1 2 1 2 2 1 1 2 1 2 1
> faithful n$l oglik

[1] -1126.361

eruptions
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# The following enulates the results before; generally nclustBIC al | ows
# some nore.
faithfulnb <- ntlustBlI C(faithful)

\2

\2

pl ot (f ai t hf ul nb)

\%

faithfulsum<- summary(faithful nb, faithful)

> narmes(faithful sum

[1] "nodel Nane" "n" "d" "G
[5] “bic" “loglik" “paraneters” "z" > faithful vvv <- Ml ust(faithful, nodel Names="VW")
[9] "classification" "uncertainty" # Force nodel to be "VW"
> ncl ust 2Dpl ot (dat a=f ai t hf ul , par anet er s=f ai t hf ul sunfspar anet ers,
z=fai t hf ul sun$z, cl assi fi cati on=faithful suntcl assi fication, > p| ot ( faithful vvv, faithful )
uncer tai nty=faithful sununcertainty, what = "classification")

> ntl ust 2Dpl ot (dat a=f ai t hf ul , par anet er s=f ai t hf ul sunpar aneters,
z=fai t hf ul sun$z, cl assi fi cati on=fai t hful suntcl assi fi cation,
uncer tai nty=fait hful sunfuncertai nty, what = "uncertainty")

> faithful sum

classification table:
1 2 3

130 97 45

best BI C val ues:

EEE, 3 EEE, 4 VWV, 2
-2314. 386 -2320.207 -2322.192
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A 5-dimensional dataset

Classification

Vi
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eruptions |
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> trigonadata <- read.table("trigona.dat") b
> trigonam <- Ml ust(trigonadata) g |
War ni ng messages: h
1. In sunmary.nclustBlI C(Bic, data, G = G nodel Nanes = nodel Nanes)
best nodel occurs at the nmin or nmax # of conponents considered s |
2: In Mclust(trigonadata) 0 =
opti mal number of clusters occurs at max choice ®
# G nunber of conponents. Default Gis 1:9. E
> trigonam <- Ml ust(trigonadata, G=1:12)
> plot(trigonamtrigonadat a) g

N;
& -
> -
© -

10 12

number of components
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e 1,2 Coordinate Projection showing Uncertainty
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pl ot (trigonamtrigonadata, what ="uncertainty", di mens=c(3, 4))

3,4 Coordinate Projection showing Uncertainty

5. Potential problems with mixture model-based clustering
" Using mclust (Gaussian mixtures) for aim of clustering.
1 General attitude: models are not true,
. model assumptions are always violated,
31 what does a method do when faced with different situations,
is this desirable, and if not, how to deal with it?
| All CA methods are problematic.
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5.1 Outliers _
5.2 Non-normality
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Gaussian mixture ML is sensitive toward outliers.
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5.3 Instability

£ T g
8 ffgog BT More reasons for instability:
3 %0 TR .
o] o 5L » Gaussian components may not be properly separated,
- :;E; %k AL » Very small “spurious clusters”
s % . SRV » Dataset too small
o 00 x N LY
18 L g o m i . . T
| res . Instabilities may be tolerated if for example density estimation is
° = " of interest and not classification.

Sometimes only parts of solution are stable.
Non-normality is one but not only source for instability.
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6 Degenerating likelihood

Consider k fixed, (a1m, X1m)men SO that

Amin(X1m) — 00, IXj = aim, and Implications of degenerating likelihood
VX, M) @a, 5, (Xi) > € > 0. » Consistency proofs for fixed k
are for local optima and don’t deliver uniqueness
n S . . . .
(which makes asymptotic normality problematic).
=y = Zlog ijmgoajm;jm(xi) — 0. _ ’
— et » In practice, the EM-algorithm may degenerate.
» The EM-algorithm may find a “spurious” local optimum
with very small covariance eigenvalue.
(Few points lying almost precisely on a low-d hyperplane.)

The likelihood therefore is unbounded
and “Maximum Likelihood” rather means
“a local non-degenerated likelihood optimum”.

Argument requires variable volumes
(models starting with “V”).
Does not hold where cov-EVs — O for all j.

Christian Hennig Clustering with the Gaussian mixture model Christian Hennig Clustering with the Gaussian mixture model

Outliers in data may change the covariance matrix model.

Theoretically, Amin(X) > c or %@k}) > ¢ prevent degeneration. " - “

But not implemented in mclust (and choice of c tricky). oo . s ot oe

Default mclust discards solutions with non-invertible . I ¥ RS

Will choose other k or covariance matrix model by BIC. IS N 2 F- f% .
Radical solution: Use models starting with “E” only. e Te % b
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Bayesian maximum posterior

mclust-option for handling degenerating likelihoods:
introduce prior distributions for a;, %,
compute maximum posterior (MAP) estimator instead of ML.

pX ~ N (pp, X/kp), X ~ inverseWishart(vp, Ap)

MAP maximises
Ik (1) +log p(n),

and is therefore penalised ML;
should penalise too small EVs of cov-matrices.

Christian Hennig Clustering with the Gaussian mixture model

Not proper Bayes, no posterior distribution, no prior for ;.
Compute MAP estimator and BIC based on MAP likelihood.
Improves problems with spurious clusters

and degenerating likelihood.

Fraley and Raftery (2007):
11p, Ap overall mean, cov-matrix/k?/P,

Note that MAP estimators are biased. M-step change for VVV:

_ Ngag MmL—m+Epip
A MAP-M = ——n T

n
Ap"‘%(ak,MLfM —pp) (@ MM —p) T+ T mL—m
vp+Ng+p+2 ’

Y MAP-M =

push cov-EVs closer to Ap’s and deviation of a, from .,
means closer to .
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set.seed(11111)

z1 <- rnorm(100,0, 1)

z2 <- rnorm(100, 3.5,0.1)

z3 <- rnorn(100,0, 1)

z4 <- rnorm(100,0, 1)

za <- chind(c(zl,z2),c(z3,2z4))
zb <- rbind(za, c(50,0))
pl ot (zb)

VVVVVYVVYV

\

nmza <- nclust Bl C(za)
snza <- sumary(nea, za)
pl ot (za, col =snza$cl assi fi cati on)

VvV Vv

> neb <- nctlust Bl C(zb)
> sneb <- sunmary(neb, zb)
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o o Mo nebp <- ntlustBl C(zb, prior=priorControl())
jAg: S smebp <- sunmmary(nebp, zb)
"1 e g§m R pl ot (zb, col =snebp$cl assi fi cation)
= | %Zﬁ . ;’gjg B . . .
) . % ‘;%X Prior parameters can be set in pri or Control ,
" . ) 10 e.g. priorControl (shrinkage=0. 1, scal e=di ag(2))
o ° 200 Fid . .
oo . I to set kp, Ap, see ?pri or Control, ?defaul tPrior.
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7 The noise component to deal with outliers

Unfortunately priors can’t solve all outlier problems.

(2]

faithful x <- rbind(faithful,c(7,30),c(3,80))
nfaithful x <- nclustBl C(faithful x, prior=priorControl())

; :
i

o NS NSRS B S 19 RN 1o
VV VYV

1 snfaithful x <- summary(nfaithful x, faithful x)
1 pl ot (faithful x, col =snfait hful x$cl assi fication)
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The “noise component” (Banfield and Raftery, 1993)

Classification

. R 1 o
s B 1a A“n“ & R : f(X) = ﬂ-ov + Zﬂ'j@aj,):j (X)7
° le

- V is fixed during EM-algorithm (mclustBIC)

21 gis as volume of smallest hyperrectangle covering data,
but initial 7 is needed and outliers should not affect
. initialisation of Gaussian components.

s In mclustBIC: i ni ti alization=list(noi se=initnoise).

May draw initial noise points at random.
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Better (reproducible):
NNcl| ean (Byers and Raftery 1998) in prabclus.
Fits mixture of transformed Gamma-distributions

on distances to K -nearest neighbor > library(prabclus)
based on mixture of > initnoise <- as. | ogical (1- NNcl ean(f ai t hf ul x, k=4) $2)
two homogeneous (uniform) Poisson processes for data. > nfaithfulxn <- nmelustBI C(faithfulx,

initialization=list(noise=initnoise))
snfaithful xn <- summary(nfaithful xn, faithful x)
pl ot (faithful x, col =snfait hful xn$cl assi fi cati on+1)

Component with larger mean is “noise”.

VvV Vv

Specification of K required.

Isolated groups of fewer than K points may still be regarded as
noise.

Decide based on application and size of dataset.
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> faithfulnn <- NNcl ean(faithful x, k=4, pl ot =TRUE)
> pl ot (faithful x, col =1+f ai t hf ul nn$z)

Classification
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Histogram of kihNND

An example with lots of noise: “ et gl
> dat a(chevron) B ™
> nnc <- as.logical (1-NNcl ean(chevron[, 2: 3], 15, pl ot =TRUE) $z) ERER &1 FLI ,&NNW
> nc <- ntlustBl C(chevron[,2:3],initialization=list(noise=nnc)) H - wh NWNNNMN
> snc <- summary(nt, chevron[, 2: 3]) 7] ] w AR
> pl ot (chevron[, 2: 3], col =1+snt$cl assi fi cati on) 1 < @ﬁfwm @;NNNN Q’N‘”N
W N N”Mﬂ“m x‘;
&1 ’ ‘N'{H\NN ‘;é] %‘\‘NN%N
: | D ) 9 Mrf‘ NWBN mWN Ny
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8. Cluster validation

The noise component can break down with extreme outliers. Check whether outcome of clustering method makes sense.
Much recent work on robust clustering, for example Strategies:

Coretto and Hennig (2010) » External/subject matter information

on finding an optimal value for the “noise density”, » Significance tests for structure

trimmed clustering, mixtures of t-distributions,

» Compare different clusterings on same dataset
forward search etc.

» Validation indexes
» Visual inspection
» Stability assessment

Some indexes, validation information by 6 3
. . . 6 3
cl uster. stat s in fpc based on distance matrix. ’ 3
6 2 3
s(i) = _bl)-all) _ s called the “silhouette width” (Kaufman and IR T4,
— max(a(i),b(i)) o 4 o
Rousseeuw, 1990), £ s
a(i) is average distance of x; to another point of its own cluster, S L AR
N - . . a9 2
b(i) is average distance to another point of closest cluster. - 1 9%9% g, 2% 2
. . . 9 29 g 1
This can be averaged clusterwise over points. %0, ggggg N
9 6 9 t
. 9 9 %9;99 9 hi
; ' : 2
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> cs <- cluster.stats(dist(trigonadata),trigonantclassification)

> CS

$'11 236 $medi an. di st ance

(1] [1] 0.10757334 0. 10478257 0. 40924474 0.13831797
| T 0.11075841 0.52140322

?i]“iger'”“ er [7] 0.19024028 0.09521223 0.18188913 0. 11888133

$separ ati on

[1] 0.5889131 0.3425002 0.3425002 0.5002507 0.3354944
0.0897763 0.3193068

[8] 0.1922279 0.1604022 0.0897763

$cl uster. si ze
[1] 35 23 20 4 10 8 13 62 48 13

$di anet er

[1] 0.2220615 0.2011110 0.8882174 0.2466013 0.2520631
0. 7895725 0. 3429880

[8] 0.2464109 0.3996499 0.2268971

$aver age. t oot her
[1] ©0.8898844 0.9043505 0.8773002 0.8711378 0.9062254
0. 7031898 0. 6800758

$aver age. di st ance [8] 0.7083479 0.6734774 0.5841906

[1] 0.10960597 0.10530936 0.42058017 0.14797559
0.11524152 0. 49448545
[7] 0.18921780 0.09693295 0. 18436365 0.11742765
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$aver age. bet ween

$separation. matrix [1] 0. 7680693
[,1] [.2] [,3] [,4] [.5] [,6] [,7]
[1,] 0.0000000 0.8214897 0.6121101 0. 7355199 0.9163432 0.5889131 0. 6446088 —_
[2,] 0.8214897 0.0000000 0.3425002 0. 9149291 0.7642136 0. 8000080 0.7271676 $average. wi thin
[3,] 0.6121101 0.3425002 0. 0000000 0. 8453088 0.5350112 0. 6501032 0. 7943997 [1] 0.1413954
[4,] 0.7355199 0.9149291 0.8453088 0. 0000000 0.5467675 0. 6286042 0.5002507
[5,] 0.9163432 0.7642136 0.5350112 0.5467675 0. 0000000 0. 3354944 0. 8125327
[6,] 0.5889131 0.8000080 0.6501032 0. 6286042 0.3354944 0.0000000 0. 4271635 (--)
[7.] 0.6446088 0.7271676 0.7943997 0.5002507 0.8125327 0. 4271635 0. 0000000
[8,] 0.8023756 0.8801732 0. 6508053 0.8341647 0. 8896053 0. 2331168 0. 3685067 .
[9,] 0.7274789 0.7901756 0.6227011 0.7106608 0. 6295933 0.1891964 0. 3193068 $clus. avg. silwidths
[10,] 0.6927242 0.9830951 0.7581647 0.7185608 0.7778999 0.0897763 0. 4601516 1 2 3 4 5
[,8] [,9] [,10] 0.8616234 0.8269252 0.2727838 0.7614558 0.8142473
[1,] 0.8023756 0.7274789 0.6927242 6 7
[2,] 0.8801732 0.7901756 0.9830951
[3,] 0.6508053 0.6227011 0.7581647 -0.1954790 0.6117464
[4,] 0.8341647 0.7106608 0.7185608 3 9 10
[5,] 0.8896053 0.6295933 0. 7778999
[6] 0. 2331168 0.1891964 0. 0897763 0.7245092 0.4113044 0.6319789
[7.] 0.3685067 0.3193068 0.4601516
[8,] 0.0000000 0.2245057 0.1922279 1w
[9.] 0.2245057 0.0000000 0. 1604022 $avg. silwidth
[10.] 0.1922279 0.1604022 0. 0000000 [1] 0.6147748

(...)
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8.1 Cluster validation by visualisation

Cluster validation is not about estimating the number of Generally use different colours and symbols.
clusters! Here: projection methods
The results of such a method still need to be validated.

Given: n x p-dataset X.

Find p x s-matrix C (eg, s = 2), so that

Y = XC is optimally “informative”.

Definition. The first s projection vectors defined by the choice °
of Q and R) cy,...Cg are defined as the vectors maximising o ¥
6 3
~ 3
c’'Qc 6 3
— 4 3 %33
¢ ¢/Rc I 39,
R
subject to ¢{Rc; = §jj, where ¢; = 1 fori = j and §; = O else. 8 g
22 3
AE gzz;;
. . . o 4 a a 1 2
Corollary. The first s projection vectors of X are the s §Myg 0 gl S
. -1 . 9999 999 1.\1 ﬁjﬁ t
eigenvectors of R™*Q corresponding to the s largest 2% S0 iy
. 9 99 9 ks
eigenvalues. 71 % ¢°
Definition. PCA is defined by Q = Cov(X) and R = I,. M M : J ’

PCA: “Information” = variance. Clusters ignored.
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Notation:
Let Xj1, . .., Xin, the p-dimensional points of group i =1,...,k, n = Z!‘Zl n;. Let A . _ _
X = (X )T = L. K, and X — (XL, ... X_)'. Let ! Definition. DCs (Rao 1952) are defined by Q = B and R = W.
mi= L5, m= A3 S X, Corollary. Only k — 1 eigenvalues of W—'B are larger than 0.
The whole information about the mean differences can be

Ui = 3200, (ki — mi) (i —m;)’, U =325, U, X ] . ) .
S = LU W= LU B = iy T nm, - m)(m, — . displayed in k — 1 dimensions (cf. Gnanadesikan, 1977).

nj—1

that is, S; is the covariance matrix of group i with mean vector m;, W is the pooled Use R-function pl otcluster in pr-

within groups-scatter matrix and B is the between groups-scatter matrix.
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ER 4
4 a4
i
Ay
o 7
72 & 6
l'ibrary(fpc) :7 in
clusym <- c(sapply(1:9,toString),"a") ad 3, &6 7
pl otcluster(trigonadata,trigonantcl assification,
pch=cl usyni tri gonantscl assi fi cation])
E
v+ 4+ e =

More than 3 clusters: cannot see everything in 2-d.
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Discriminant coordinate p=2>1

Difficulties with DC: *7
» Separation between cluster means is shown. g |
» All within-cluster cov-matrices equal implicitly assumed.
» More than 3 clusters: cannot see everything in 2-d. =
» DCs may still be dominated by outliers. .

-2.0 -15 -1.0 -05 0.0 0.5 1.0
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Discriminant coordinate p=2>1 Discriminant coordinate p=2>1 separates means

Discriminant coor dinate p=2>1 separates means Asymmetsic weighied coordinate p=2>1
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Definition (Hennig 2005) Let

1 ny ny
B" = — DD (xai = Xg)(Xai — Xg),
R

denoting now by Xy; all points that are not in cluster 1. ADCs for
cluster 1 are defined by Q =B*and R = S;.

Definition. Let

ny no
Kk 1 2 L . L Y
B** — Ty ;j_ZlWJ(XlI X2 )(X1i — X2j)’, where
R d L
w; = min (1, (ijiml)lsl,l(xzjiml)) L i=1,...,ny, 1)

d > 0 being some constant, for example the 0.99-quantile of the
X5-distribution.
AWCs for cluster 1 are defined by Q = B** and R = S;.
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Look for a single cluster at a time.

> plotcluster(trigonadata,trigonantcl assification,
3, net hod="awc", pch=cl usyni tri gonantcl assi fi cation],
col =1+(trigonantcl assi fi cati on==3))

> plotcluster(trigonadata,trigonantcl assification,
6, met hod="awc", pch=cl usyni tri gonantscl assi fication],
col =1+(tri gonantcl assi fi cati on==6))

Motivation for weights: Consider xp; = my + qv, where v is a
unit vector w.r.t. S; giving the direction of the deviation of xy;
from the mean m1 of cluster 1 and q > 0 is the amount of
deviation. The contribution of x,; to B** is, for q large enough,

ng

d
 (Xgy — M1)'STH(Xg — My)

(X2i — Xgj)(X2i — Xz)’,

v/

— nid v'sitv

for g — oo.
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8.2 Stability assessment
Things to keep in mind:

» Clusters can still be heterogeneous in other directions. General principle for stability assessment

» Cluster may be separated but surrounded. (Check » Generate several new datasets out of the original one.
cluster.stats) » Cluster all these new datasets.

» Outliers are influential if members of cluster to plot. » Define statistic to formalise how similar new clusterings are
Alternative methods in Hennig (2005), pl ot cl ust er. to the original one.

» If they are very similar, it's stable.
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1. Use the Jaccard coefficient

CnD
Most clusterings are unstable in one way or another.
Want to know which clusters are stable to measure similarity between two subsets of a set.
= here cluster-wise methodology, 2. Repeat B times steps 2-4:
cl ust erboot in package fpc (Hennig 2007). resample new data sets from the original one,

3. apply the same clustering method to them.
4. For C € C record m; = maxpxc v(C,D)

5. Use 7 = 1 -2 | m; to assess stability of C.

Various methods to resample are possible.
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Use two different methods,
can discover different kinds of instability.

Bootstrap method discarding multiple points
Replacement by noise Draw 5%, say, of points and replace
them by uniform “noise”.

1. Sphere the dataset to unit covariance matrix.
2. Draw points from U[—4, 4]P.
3. Rotate data back.

Problem with bootstrap: can only increase separation.
Problem with noise: unclear what “realistic” noise would be.

Christian Hennig Clustering with the Gaussian mixture model

For computing ~ for given original cluster and cluster in
resampled dataset,

use only points that are both in original dataset and in
resampled one.

In practice, use B = 100 if time allows.
But need some patience.
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x1
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Interpretation:

» 0.5 is minimum v so that for given partition it's possible for
every cluster to find another partition so that maximum ~ is
<wv.

» New partition with m clusters, original one with k > m = 3
at least k — m clusters in original partition for which no
v > V.

Consider clusters with max~ < 0.5 as “dissolved”.
Demand 5 >> 0.5 for stability.




10
I

> trigonaboot <- clusterboot(trigonadata, B=20, i

mul ti pl eboot =FALSE, 1%%}
cl ust er met hod=noi senctl ust CBI, nnk=0, G=1: 15) o 4 7
e 6
* Cluster stability assessment * ;; {«7{7
Cluster nethod: ntlustBIC ad 38, &6 7
Full clustering results are given as paraneter result s 7

of the clusterboot object, which also provides
further statistics of the resanpling results.

Nunber of resanpling runs: 20 o | 5
222, 2
Nunber of clusters found in data: 10 %
v+ e+ e s
dcl
: o . . Example where uniform is split up into Gaussians.
Clusterw se Jaccard bootstrap (omtting nultiple points) nean:

[1] 1.0000000 1.0000000 0.9493590 0.9236111 0.9833333
0.6884722 1. 0000000

[8] 0.9955763 0.9820907 0.9156313
di ssol ved:

[]] 0002030000
recover ed:

[1] 20 20 20 18 20 7 20 20 20 19

Clusterw se Jaccard replacenent by noise nean:

[1] 1.0000000 1.0000000 0.9034211 0.9687500 1. 0000000
0. 5488095 1. 0000000

[8] 0.9974430 1.0000000 0.9288795

-1000 -500

BIC
-1500

2000
L

di ssol ved: g ol - e

[1] 0 0 0 1 013 0 0 0 O 1 i =
recover ed: ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ s 0w
[1] 20 20 20 19 20 1 20 20 20 20 P s e : ‘ ‘ :
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set.seed(234567)
x1 <- runif(300,0,1)
x2 <- runif(300,0,1)
x3 <- rnorn(100,5,0.1)
x4 <- rnorm(100,0,0.1)
X <- rbind(cbind(x1, x2), cbi nd(x3, x4))
mx <- ntlust Bl C(x)
s <- sunmary(nx, X)
pl ot (x, col =snx$cl assi fication,
pch=cl usyni smx$cl assi fi cation])

uni boot <- cl usterboot (x, B=20, nul ti pl eboot =FALSE,
cl ust er met hod=noi senctl ust CBI, nnk=0)

Christian Hennig Clustering with the Gaussian mixture model

Instabilities can result from
» features of the data,
» instabilities of clustering method,
» mismatch between the two.

Stable clusters are not necessarily good.
(Fixing k = 1 is always stable.)
Unstable clusters can be tolerated if stability is not the aim.
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(For uniform plus Gaussi an dat aset)
* Cluster stability assessnment *
Cluster method: nctlustBIC

Number of resanpling runs: 20

Nurmber of clusters found in data: 6

Clusterw se Jaccard bootstrap (omitting multiple points) nean:
[1] 0.78226138 0.90698801 0.93042938 0.08628977 0.81728134
1. 00000000
di ssol ved:

[1] 2 1 120 1 O
recover ed:
[1] 17 18 18 0 18 20

Cl usterw se Jaccard replacement by noi se nmean:

[1] 0.35669233 0.26304825 0.31162945 0.07258365 0.19932778
1. 00000000

di ssol ved:

[1] 17 20 17 19 20 ©

recover ed:

[1] 0 O O 1 0 20
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9. Merging Gaussian components

mclustBIC may fit homogeneous non-Gaussian sets
by too many components.




May want to merge components that “belong together”
in a clustering sense.

Problem: “mixture of mixtures” is not identifiable.
Not a statistical estimation problem.

Need to formalise “component similarity”.
There are various possibilities,
implemented in fpc's mer genor mal s (Hennig 2010).

Christian Hennig Clustering with the Gaussian mixture model

Ridgelines can be evaluated easily for 2 components.
Ridgeline ratio: r =ratio minimum/min.maximum density.

nnnnnnnnnnnnnnn

Should not insist on unimodality for merging (r = 1),
because mclustBIC separates tiny insignificant gaps.
Suggest merge forr > 0.2.
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The ridgeline (Ray and Lindsay 2005)

Density on k — 1-dimensional manifold containing
all density extrema of k-component Gaussian mixture
= 1-d density for 2-component Gaussian.

x*(a) = [(1 - )L + a1 - o) tay + aX; tay),
a € [0,1].

nnnnnnnnnnnnnnnnnnnnnnnnnnnnn
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How to join more than two components?
Hierarchically. . .

1. Compute all pairwise ridgeline ratios.

2. Unless all ratios below cutoff,
join pair of components with max. ratio.

3. Recompute mean and cov-matrix for new cluster.
4. Goto 1.
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mx <- mergenor mal s(x, snx, met hod="ri dge.ratio")
coul d specify cutoff=0.2

summar y( mx)

Mer gi ng Gaussi an mi xture conponents *

*V #H Vv

Method: ridge.ratio , cutoff value: 0.2
Origi nal nunber of conponents: 6

Number of clusters after nmerging: 2

Val ues at which clusters were nerged

[,1] [.2]
[1,] 5 6. 257516e-01
[2,] 4 5.004525e-01
[3,] 3 6.990044e-01
[4,] 2 2.071673e-01
[5,] 1 4.856773e-30
Conponents assigned to clusters:
[,1]
[1,] 1
[2,] 1
[3,] 1
[4,] 1
[5.] 1
[6,] 2
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However, one may not always waht to merge for modality.

Alternative methods available in Hennig(2010), mer genor mal s

This merges 1-5, as it should.

0.0

-0.2
I
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