Cluster validation:
how to think and what to do
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Introduction

1. Introduction
Cluster analysis: finding groups in data.

There are many cluster analysis methods,
and on many datasets these may produce
many different clusterings.

Cluster validation: clustering quality assessment,
either assessing a single clustering,

or comparing different clusterings

(i.e., with different numbers of clusters

for finding a best one).



A short introduction to clustering methods

1.1 A short introduction to clustering methods

Cluster analysis is about finding groups in data.
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1.1.1 k-means (Steinhaus (1956))
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represents all objects by centroid,
“compact” clusters.



1.1.1 k-means (Steinhaus (1956))

n
> " [lxi = X¢(yl|* = min!
i=1

represents all objects by centroid,
“compact” clusters.

Version: Don't square, other centroids than mean (“pam”).



MDS 2

0.4

0.2

0.0

-0.2

04

A short introduction to clustering methods

2
3
0,52 3
33 .
3333 3
3 5,393 2 o
3 6?6& >
3T 86 622 &
é 6222 2
5 65 ~ 2 4
6 2 9
2 9 9
9
gg 9
2 =
9
1
1
1
1
Ty 11
T T T T T
04 02 00 02 04

MDS 1




1.1.2 Gaussian mixture model (Pearson (1894))

k
f(X) = Zﬂﬂﬂaj,zj(x)-
=1

Clusters are described by Gaussian distributions.
Elliptical clusters, flexible size and shape.

Mixtures of other distribution families exist, too.
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1.1.3 Classical hierarchical methods

Operate on dissimilarity matrices;
compute dissimilarity measure for every pair of observations.

Can use Euclidean distance,
but also tailor-made distances for other data formats.



1.1.3 Classical hierarchical methods

Operate on dissimilarity matrices;
compute dissimilarity measure for every pair of observations.

Can use Euclidean distance,
but also tailor-made distances for other data formats.

“Cluster”: a collection of similar objects,
dissimilar to the others.



Genetic data: 236 Tetragonula bees, 13 allele pairs

[,11 [,21 [,3] [,4] [,8]1 [,6] (...)
[1,] "NO" "AA" "PP" "HH" "EH" "FF"
[2,] "EQ" "AA" "PP" "HH" "GH" "FF"
[3,] "NQ" "AA" "PT" "HH" "GF" "EF"
[4,1 "00" "AA" "PP" "GH" "GH" "EF"
[5,1 "00" "AA" "PP" "GH" "GH" "EF"
[6,] "LN" "AA" "PP" "HH" "EG" "FE"
..

Compute “shared allele distance”.
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Introduction

(,11 [,2] [,3] [,4] [,5]

[1,] 0.00 0.21 0.33 0.29 0.25
[2,] 0.21 0.00 0.33 0.25 0.21

D)

[3,] 0.33 0.33 0.00 0.29 0.33 (..
[4,] 0.29 0.25 0.29 0.00 0.08
[5,]1 0.25 0.21 0.33 0.08 0.00

Dataset seen before is a

Euclidean approximation (“MDS") of this.



1.1.3 Classical hierarchical methods

Operate on dissimilarities and produce hierarchical trees
(originally motivated by biological classification).
Differ in definition of “dissimilarity between clusters”.

Cluster Dendrogram




Single Linkage: (Florek et al. (1951))

= in d(a,b
d(A, B) s bEB (2, 6)

Complete Linkage:

= d(a,b
AAB) = e (o)

Average Linkage:

d(A, B) = aveaea pepd(a, b)

These can deliver quite different clusterings.
(Complete L. very compact,
Single L. separated but maybe widespread)



1.1.4 Spectral clustering (Shi and Malik (2000))

Dissimilarity-based nonlinear dimension reduction
for k-means.
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1.1.5 Density-based methods

such as “DBSCAN" (Ester et al. (1996)),
joins observations with all neighbouring points,
and neighbourhoods if they share enough points.
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1.1.6 Other approaches

@ Models and approaches for data with specific structure,
time series, categorical, spatial, and text data,. ..

Overlapping and fuzzy clustering
“Self-organising” algorithmic methods
Semi-supervised and constrained clustering

Multi-mode clustering (e.g., observations and variables)

Big data algorithms, grids, dimension reduction,. ..
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1.2 Introduction to cluster validation

Generally concerned with
evaluating the quality of clusterings.

Of interest for. ..
@ Assessment of reliability/quality of given clustering
@ Choice of clustering method

@ Number of clusters (and other parameters)



Introduction Introduction to cluster validation

1.2 Introduction to cluster validation

Generally concerned with
evaluating the quality of clusterings.

Of interest for. ..
@ Assessment of reliability/quality of given clustering
@ Choice of clustering method
@ Number of clusters (and other parameters)

In literature sometimes “cluster validation”
inappropriately refers to “number of clusters” exclusively.



Introduction to cluster validation

1.2.1 Which clustering is better?
(Old faithful geyser data)
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Which clustering is better?
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Introduction Introduction to cluster validation

... this depends on the aim of clustering.

Different aims of clustering
require different characteristics of a clustering,
and these can be conflicting.

E.g., Single Linkage emphasises between-cluster separation
at the expense of within-cluster homogeneity.



Introduction to cluster validation

E.g., pattern recognition in images
requires separation,
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clustering for information reduction requires
good representation by centroids,
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Introduction Introduction to cluster validation

E.g., pattern recognition in images
requires separation,

clustering for information reduction requires
good representation by centroids,

groups in social network analysis shouldn't have
large within-cluster gaps,

underlying “true” classes (biological species)
may lead to homogeneous distributional shapes.



Introduction Introduction to cluster validation

First principle to choose a clustering method:
“Know what you need and know what the methods do.”



Int ion Introduction to cluster validation

First principle to choose a clustering method:
“Know what you need and know what the methods do.”

Number of clusters:
“What granularity is needed?”




Introduction Introduction to cluster validation

User needs to make decisions about
what qualifies a data subset to be a “cluster”.
The data alone won't tell us.



Introduction Introduction to cluster validation

User needs to make decisions about
what qualifies a data subset to be a “cluster”.

The data alone won't tell us.

This should influence. ..

@ data preprocessing decisions such as
variable transformation and aggregation,
dissimilarity definition etc.,

@ choice of the clustering method,

@ approach for cluster validation.



Introduction Introduction to cluster validation

Clustering method and validation approach. ..
are both guided by required cluster concept,
so should suit one another;

but often clustering aims are multiple or unclear,
and clustering method focuses on narrow criterion,
so validation can complement clustering method.



Introduction Introduction to cluster validation

1.2.2 Approaches for cluster validation

@ Use of external information
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Visual exploration

Stability assessment

Internal validation indexes

Testing for clustering structure



Introduction Introduction to cluster validation

1.2.2 Approaches for cluster validation
@ Use of external information

Visual exploration

Stability assessment

Internal validation indexes

Testing for clustering structure

Sensitivity analysis and comparison
of different clusterings on same dataset



Approaches for cluster validation Use of external information

2. Approaches for cluster validation
2.1 Use of external information

“External information” can mean various things.
o Variables that “should” be related to the clustering:

o known “true” classification,
o known related classification,
e other (e.g. continuous) variables,

e External variable(s) to be explained/predicted by clustering,

@ Informal expert assessment.



Approaches for cluster validation Use of external information

Known classifications

“True” classification known =
clustering not of real scientific interest.

However may be of interest for method benchmarking;
or “true” classification itself may be in some doubt
and in need of confirmation/validation.



Approaches for cluster validation Use of external information

Known classifications

“True” classification known =
clustering not of real scientific interest.

However may be of interest for method benchmarking;
or “true” classification itself may be in some doubt
and in need of confirmation/validation.

More often known classification is assumed to be
strongly related to the found clustering
(e.g., region/country for regional data).



Approaches for cluster validation Use of external information

Measure of similarity between two clusterings

Rand index (Rand (1971)): proportion of pairs of objects
that are in same cluster in both clusterings.

Can compare clusterings with different numbers of clusters.
Doesn't require matching of clusters.



Approaches for cluster validation Use of external information

Adjusted Rand index (ARI, Hubert and Arabie (1985)):
Standardise Rand index to [—1, 1]
with mean 0 for random clusterings:

>y () = 12 (5) X ()1 G)
IS @)+ (-1 () S (916)

i runs over N, j runs over INy,, nj = |Cii N Gy, aj = ;(:21 n;; and
K
bj =2 njj.

ARI(Cy,Cp) =



Approaches for cluster valida Use of external information

Olive oil data
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Approaches for cluster validation Use of external information

library(pdfCluster)
data(oliveoil)

# Look at object:

str(oliveoil)

# ’data.frame’: 572 obs. of 10 variables:

# $ macro.area : Factor w/ 3 levels "South","Sardinia",..: 11111111
# $ region : Factor w/ 9 levels "Apulia.north",..: 1111111111 ...
# $ palmitic : int 1075 1088 911 966 1051 911 922 1100 1082 1037 ...

# ¢ palmitoleic: int 75 73 54 57 67 49 66 61 60 55 ...

# §$ stearic : int 226 224 246 240 259 268 264 235 239 213 ...

# $ oleic : int 7823 7709 8113 7952 7771 7924 7990 7728 7745 7944 ...
# $ linoleic : int 672 781 549 619 672 678 618 734 709 633 ...

# $ linolenic : int 36 31 31 50 50 51 49 39 46 26 ...

# $ arachidic : int 60 61 63 78 80 70 56 64 83 52 ...

# $ eicosenoic : int 29 29 29 35 46 44 29 35 33 30 ...

olive <- oliveoil[,3:10] # Variables for clustering

11 ...



Approaches for cluster validation Use of external information

library(mclust) # This has the adjustedRandIndex command.

solive <- scale(olive)

olive3 <- kmeans(olive,3,nstart=100)

olive3s <- kmeans(solive,3,nstart=100)

# k-means depends on the scale of the variables;
# scaling should help clustering

adjustedRandIndex(olive3$cluster,olive3s$cluster)
# 0.4587804, these are somewhat different.

adjustedRandIndex(olive3$cluster,oliveoil$macro.area)
# 0.3182057

adjustedRandIndex(olive3s$cluster,oliveoil$macro.area)
# 0.448355, both OK but not great, with scaling clearly better



Approaches for cluster validation Use of external information

Note: legitimate clusterings may be in data
that are quite different from given classification.



Approaches for cluster validation Use of external information

External variables to be predicted/explained
by clustering

E.g., given 50 personality variables from
psychological questionnaire among other information
to explain individual's alcohol consumption a,

may want to reduce questionnaire information

to categorical variable with 5-10 personality types
for efficiently modelling a.

Clustering of personality variables can be
Assessed by measuring prediction quality of a.



Approaches for cluster validation Use of external information

Informal expert assessment

When doing clustering for subject matter experts,
sometimes experts object against a clustering.

Sometimes this is good information,

because clustering should have properties
(like being related to certain external variable)
that experts didn't specify in advance.

But it may also reflect expert’s prejudice,
so find out the reasons and how good they are.



Approaches for cluster validation Visual Exploration

2.2 Visual exploration

Try to assess cluster quality by visual means.
Human intuition can spot methods’ artifacts
and give clearer idea

of meanings and shortcomings of clusters.

But high dimensional data is hard to plot.



Approaches for cluster validation Visual Exploration

2.2.1 Multidimensional Scaling
Visualising dissimilarities in low-d Euclidean space

Aim: for {x1, X2, ... Xp}
characterised by dissimilarity d find
Y1, Y2, ... ¥Yn € IRP so that

d(xi,x;) =~ dio(yi, yj)-



Approaches for cluster validation Visual Exploration

There are several MDS methods, see Borg et al. (2012).
Ratio MDS (R-package smacof): minimise

\/Z;q (bd(xi,x}) — dia(yi,¥)))?
n(n—1)/2

over b and yi, Y2, ... ¥n

under Y-, bd(x;, x;)? = "5,




Approaches for cluster validation Visual Exploration

library(smacof) # for mds

library(prabclus) # for data

library(fpc) # provides clusym, see below
data(tetragonula)

ta <- alleleconvert(strmatrix=tetragonula)
tai <- alleleinit(allelematrix=ta)

# Tetragonula bees data as used in Sec. 1.1
# tai$distmat is dissimilarity matrix

atrigona <- hclust(as.dist(tai$distmat) ,method="average")
atrigonal0 <- cutree(atrigona,k=10)
# Use Average Linkage clustering to split into 10 clusters

mdstrigona <- mds(tai$distmat)
plot (mdstrigona$conf,col=atrigonal0,pch=clusym[atrigonall])
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Approaches for cluster validation Visual Exploration

Visualisation of Euclidean data

library(mclust)

molive <- Mclust(solive)

# Gaussian mixture fit for olive oil data
# Has G=9 clusters

plot (molive,what="classification")
# mclust plot method showing all dimensions



Approaches for cluster validation Visual Exploration

Looking at all dimensions is tough.
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Approaches for cluster validation Visual Exploration

2.2.2 Projection methods

Given: n x p-dataset X.
Find p x s-matrix C (eg, s = 2), so that
Y = XC is optimally “informative”.



Approaches for cluster validation Visual Exploration

Definition. The first s projection vectors defined by the choice of Q and
R) ci,...cs are defined as the vectors maximising

B c'Qc

= —
c/Rc

subject to ¢;Rc; = dj;, where §;; = 1 for i = j and §;; = 0 else.

Corollary. The first s projection vectors of X are the eigenvectors of
R~1Q corresponding to the s largest eigenvalues.

Definition. PCA is defined by Q = Cov(X) and R = I,,.



Approaches for cluster validation Visual Exploration

PC2

PCA: “Information” = variance. Clusters ignored.
Define projection methods that optimally separate clusters.



Approaches for cluster validation Visual Exploration

Notation:
Let xi1, ..., X; the p-dimensional points of group i=1,...,k, n= Zf;l n;. Let
X,'Z(X,'l,...,x,'nl.)/,l'Z].,. ,k,and X = ( .. X/),. Let
i 1 k i
m; = L J X, m= il }’:lxlj’
Ui = Zjn 1(Xij —mj)(x; —m;)’, U=377, U,
1 1 k
Si=-=—=5U;, W= _—U, B= WZ"ZI ni(m; — m)(m; — m)’,

that is, S; is the covariance matrix of group i with mean vector m;, W is the pooled within

groups-scatter matrix and B is the between groups-scatter matrix.



Approaches for cluster validation Visual Exploration

Definition. Discriminant Coordinates (DC; Rao (1952))
are defined by Q =B and R=W.

Corollary. Only k — 1 eigenvalues of W™1B are larger than 0. The whole
information about the mean differences can be displayed in kK — 1

dimensions.

Use R-function plotcluster in fpc.
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library(fpc)
plotcluster(solive,molive$classification)
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Approaches for cluster validation Visual Exploration

Difficulties with DC:
@ Separation between cluster means is shown.
@ All within-cluster cov-matrices equal implicitly assumed.
@ More than 3 clusters: cannot see everything in 2-d.
@ DCs may be dominated by outliers.
Cure: Projection method that separates single cluster from rest.
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Discriminant coordinate p=2>1
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w2l

Discriminant coordinate p=2>1

Discriminant coordinate p=2>1 separates means

Asymmetric weighted coordinate p=2>1

w2l




Approaches for cluster validation Visual Exploration

Definition (Hennig (2004)) Let

m mn

. 1
B = > o — ) s )’

i=1 j=1

denoting now by x,; all points that are not in cluster 1.
Asymmetric DCs for cluster 1 are defined by Q = B* and R =S;.

Definition. Let

m n
B**:+E E wi(x1; — Xo;)(X1; — X2;)’, where
myo2, W (X 2) (X1 2)’;
i=1 j=1
. d .
w; =min (1 =1,...,n
J ( ’ (X2j—m1)’5fl(xzj—m1)) »J RN

d > 0 being some constant, for example the 0.99-quantile of the Xf,—distribution.
Asymmetric weighted coordinates (AWC) for cluster 1

are defined by Q = B** and R =S;.



Approaches for cluster validation Visual Exploration

Motivation for weights: Consider xo; = m1 4 gv, where v is a unit vector

w.r.t. Sy giving the direction of the deviation of xo; from the mean m; of
cluster 1 and g > 0 is the amount of deviation. The contribution of xy; to
B** is, for g large enough,

ny d
Z (Xli - x2j)(xli - x2j)/7

— (xg — m1)'SyH(xo5 — my)

— nd-2 for g — .

ls_



Approaches for cluster validation Visual Exploration

Look for a single cluster at a time.

plotcluster(solive,smolive$classification,clnum=1)
plotcluster(solive,smolive$classification,clnum=2)
plotcluster(solive,smolive$classification,clnum=3)
plotcluster(solive,smolive$classification,clnum=4)
plotcluster(solive,smolive$classification,clnum=38)
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Approaches for cluster validation Visual Exploration

2.2.3 Heatmaps
...can be useful for visualising higher dimensions.



Approaches for cluster validation Visual Exploration

Visualising a hierarchical clustering:

dolive <- dist(solive) # Euclidean distances
aveolive <- hclust(dolive,method="average")

heatmap(solive,Rowv=as.dendrogram(aveolive),
col=grey(seq(1,0,-0.01)),scale="none",cexCol=1)
# Heatmap of observations

heatmap(as.matrix(dolive) ,Rowv=as.dendrogram(aveolive),
Colv=as.dendrogram(aveolive),col=grey(seq(1,0,-0.01)),
scale="none",cexCol=1)

# Heatmap of distances
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Approaches for cluster validation Visual Exploration




Approaches for cluster validation Visual Exploration

Visualising a partition:

heatmap(solive[order(smolive$classification),],

Rowv=NA, col=grey(seq(1,0,-0.01)) ,scale="none",

cexCol=1,

RowSideColors=c(palette(),"pink") [smolive$classification]
[order(smolive$classification)])
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Approaches for cluster validation Stability assessment

2.3 Stability assessment

General principle for stability assessment
@ Generate several new datasets out of the original one.
@ Cluster all these new datasets.

@ Define statistic to formalise how similar new clusterings are to the
original one.

o If they are very similar, it's stable.



Approaches for cluster validation Stability assessment

2.3.1 Bootstrap stability assessment

Fang and Wang (2012): for cluster number G, b=1,...,B:
Step 1 Draw two bootstrap subsamples.
Step 2 Partition them both into G clusters.

Step 3 Generalise these to produce two
clusterings on whole dataset by suitable classifier,
i.e., nearest centroid for k-means,
QDA for Gaussian mixtures.

Step 4 With cluster assignments ci1p6, CpG:

Sbe = % Z |1 [c166(xi) = c1be(x;)] — 1 [cab6(xi) = cabc (X;)] |-



Approaches for cluster validation Stability assessment

Average dissimilarity between clusterings

1B
S6=5 > Sie
b=1
measures stability.
Selection of G: minimise S¢.
This cannot be used with G = 1!

Alternative method (both in fpc and flexclust):
“prediction strength” (Tibshirani and Walther (2005)).



Approaches for cluster validation Stability assessment

library(fpc)
nsbolive <- nselectboot(solive,clustermethod=noisemclustCBI,
classification="qda",krange=2:10,nnk=0)

plot(2:10,nsbolive$stabk[2:10] ,x1ab="Number of clusters",
ylab="Average cluster dissimilarity",type="1")
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G = 2 is optimal here; makes some sense.
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Approaches for cluster validation Stability assessment

2.3.2 Cluster-wise stability assessment

Many clusterings are unstable in one way or another.
Want to know which clusters are stable

= here cluster-wise methodology,

clusterboot in package fpc (Hennig (2007)).
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@ Use the Jaccard coefficient

_|€n D]

to measure similarity between two subsets of a set.

@ Repeat B times steps 2-4:
draw bootstrap datasets from original one,

© apply the same clustering method to them.
Q For C € C record m; = maxp+c v(C, D)

Q Use”y = %2?:1 m; to assess stability of C.

Other resampling methods exist.
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For computing «y for given original cluster and cluster in resampled dataset,
use only points that are both in original dataset and in resampled one.

Interpretation:
@ 0.5 is minimum v so that for given partition it's possible for every
cluster to find another partition so that maximum ~ is < v.
@ New partition with m clusters, original one with kK > m = 3 at least

k — m clusters in original partition for which no v > v.

Consider clusters with max~ < 0.5 as “dissolved”.
Demand 7 >> 0.5 for stability.
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cbolive <-
clusterboot(solive,clustermethod=noisemclustCBI,seed=12345,G=1:9,nnk=0)
# B=100 takes some time.

> cbolive

* Cluster stability assessment *

Cluster method: mclustBIC

Full clustering results are given as parameter result

of the clusterboot object, which also provides further statistics
of the resampling results.

Number of resampling runs: 100

Number of clusters found in data: 9
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Clusterwise Jaccard bootstrap (omitting multiple points) mean:
[1] 0.5683592 0.7735421 0.5009002 0.4879526 0.9628937 0.9279366 0.9084475
[8] 0.7808512 0.8851998

dissolved:
[1] 49 27173 0 4

recovered:
[1] 33 55 9 11 96 95 94 72 90

113 4
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Instabilities can result from
@ features of the data,
@ instabilities of clustering method,
@ mismatch between the two.

Stable clusters are not necessarily good.

(Fixing G = 1 is always stable.)

Unstable clusters can be tolerated if stability is not the aim
or if only parts can be stably clustered.
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2.4 Internal validation indexes

...attempt to quantify the quality of a clustering
just by using the data and the clustering,
not any external information (as ARI does).

Traditionally these are often used for
estimating G by optimisation,

and try to capture quality in a single number.

Overview: Halkidi et al. (2015).
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Some examples

Many indexes are based on
the within clusters sum of squares:

We = [Ixi = Xe(y >
i—1

These are directly connected to k-means,
despite being often advertised as more general.

We¢ will decrease with G.
Adjustments are needed to define /(W) so that
optimum /(W) can indicate optimum G.
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One of these is the...
2.4.1 Gap statistic (Tibshirani et al. (2001))

Simulate E(log W), sd(log Wg) under uniform distribution,
Choose smallest G so that

gap(G) > gap(G + 1) — sd(log We 1),

where gap(G) = E(log W) — log W;.
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library(cluster)

set.seed(998877)

gapolive <- clusGap(solive,kmeans,12,d.power=2)
# kmeans up to 12 clusters

print (gapolive,method="Tibs2001SEmax")
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Clustering Gap statistic ["clusGap"].
B=100 simulated reference sets, k = 1..12
--> Number of clusters (method ’Tibs2001SEmax’, SE.factor=1): 3

loghW  E.logW gap SE.sim
[1,] 7.733684 8.692806 0.9591225 0.01847567
[2,] 7.308810 8.330658 1.0218475 0.02621990
[3,] 7.069895 8.184027 1.1141317 0.01900816
[4,] 7.006405 8.059251 1.0528461 0.02544953
[5,] 6.748384 7.986522 1.2381383 0.01714330
[6,] 6.482607 7.925032 1.4424247 0.01849207
[7,] 6.394681 7.867982 1.4733010 0.01879081
[8,] 6.690916 7.818907 1.1279906 0.01959830
[9,] 6.312400 7.778200 1.4658006 0.02095239
[10,] 6.267933 7.738035 1.4701023 0.01902356
[11,] 6.210579 7.704309 1.4937294 0.01888529
[12,] 6.189764 7.674423 1.4846593 0.02026871



Approaches for cluster validation Internal validation indexes

Gap statistic for olive oil data

- ﬂI/I\I

v

Gapy
dc2

This isn't terribly convincing. . .,
but then k-means isn't really appropriate here.
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2.4.2 Indexes for general dissimilarity data
Can be used with Euclidean for n x p-data.

Average silhouette width (ASW)

(Kaufman and Rousseeuw (1990))

, b(i,C)—a(i,C
w(i,C) = msileri oy

1
a(i,C) d(xj, x), b(i,C) = min — d(xi, x).
( ’C‘—lz ) X,-¢C/’C/‘X§: ( )

Maximum average sw = good C.

This contrasts within-cluster homogeneity
with separation from neighbouring clusters.
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Pearson correlation version of Hubert’'s I
(Hubert and Schultz (1976))

I'p(G) = cor(vec(D), vec(De,)),
vec(D) vector of dissimilarities d(x;, x;),

vec(De,): 0 if xj,x; in same cluster, 1 otherwise.

This focuses on approximation
of dissimilarity structure by clustering.
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library(fpc)
cstrigona <- list()
atrigona <- hclust(as.dist(tai$distmat) ,method="average")
asw <- pg <- numeric(0)
for (i in 2:12){
cli <- cutree(atrigona,k=i)
cstrigonal[[i]] <- cluster.stats(tai$distmat,cli)
asw[i] <- cstrigonal[i]l]l$avg.silwidth
pgli] <- cstrigonal[[i]]$pearsongamma

plot(2:12,asw[2:12] ,ylim=c(-0.1,1) ,xlab="Number of clusters",
type="1",ylab="ASW/Pearson Gamma")
points(2:12,pg[2:12],type="1",col=2)
legend(8,0.1,c("ASW","Pearson Gamma"),lty=1,col=1:2)



ation Internal validation indexes

Approaches for cluster va

1.0

0.6
1

ASW/Pearson Gamma

0.2

— ASW
= —— Pearson Gamma

Number of clusters

ASW picks G = 10, I'p picks G =9, just.
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All these suffer from “one size fits it all”"-approach.
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All these suffer from “one size fits it all”"-approach.

Homogeneity will normally dominate here:

9l2)
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Approaches for cluster validation Internal validation indexes

2.4.3 Measuring specific aspects of cluster quality
There are various different aims of clustering.

Measure them separately

to characterise a clustering,

instead of producing a single ranking of clusterings.

Current research project of mine.
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Typical clustering aims
@ Between-cluster separation
Within-cluster homogeneity (low distances)

°
@ Within-cluster homogeneous distributional shape
@ Good representation of data by centroids

°

Little loss of information
from original distance between objects.

Clusters are regions of high density
without within-cluster gaps

Uniform cluster sizes
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Typical clustering aims

@ Between-cluster separation
Within-cluster homogeneity (low distances)
Within-cluster homogeneous distributional shape

Good representation of data by centroids

Little loss of information
from original distance between objects.

o Clusters are regions of high density
without within-cluster gaps

@ Uniform cluster sizes
o Stability
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These may be in conflict with each other.
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Approaches for cluster validation Internal validation indexes

Measuring between-cluster separation

3 several ways measuring separation (as for other aims).
Straightforward: min distance between any two clusters,
or distance between centroids (e.g., k-means).
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Approaches for cluster validation Internal validation indexes

Measuring between-cluster separation

3 several ways measuring separation (as for other aims).
Straightforward: min distance between any two clusters,
or distance between centroids (e.g., k-means).

These measure quite different concepts of separation.
(min distance relies on only two points;
centroid distance ignores what goes on at border.)
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p-separation index:
More stable version of “min distance”:

Average distance to nearest point in different cluster for
p =10% “border” points in any cluster.
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Approaches for cluster validation Internal validation indexes

Function cluster.stats in fpc computes many measures.

> cstrigona[[9]]
$n
[1] 236

$cluster.number
[11 9

$cluster.size
[1] 35 23 18 4 2 11 13 126 4

$min.cluster.size
[11 2

$noisen
[11 o

$diameter
[1] 0.5000000 0.4090909 0.8181818 0.3846154 0.3750000 0.6250000 0.5769231
[8] 0.8461538 0.5769231

$average.distance
[1] 0.2907563 0.2648221 0.5805110 0.3461538 0.3750000 0.3679752 0.3979290
[8] 0.4790426 0.3333333
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$median.distance
[1] 0.2916667 0.2727273 0.5909091 0.3653846 0.3750000 0.3333333 0.3846154
[8] 0.5384615 0.3461538

$separation

[1] 0.6666667 0.5000000 0.5000000 0.7083333 0.7083333 0.5833333 0.5000000
[8] 0.4615385 0.4615385

$average.toother
[1] 0.8922699 0.9025520 0.8876931 0.8884509 0.8508126 0.8993941 0.7739322
[8] 0.8712690 0.8242225
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$separation.matrix

[,11 [,2] [,3] [,4] [,5] [,6] [,71
[1,] 0.0000000 0.8000000 0.7000000 0.7916667 0.7272727 0.8500000 0.6666667
[2,] 0.8000000 0.0000000 0.5000000 0.9545455 0.7727273 0.7727273 0.7272727
[3,]1 0.7000000 0.5000000 0.0000000 0.8181818 0.7272727 0.7272727 0.7272727
[4,] 0.7916667 0.9545455 0.8181818 0.0000000 0.7916667 0.7083333 0.7307692
[5,1 0.7272727 0.7727273 0.7272727 0.7916667 0.0000000 0.9166667 0.7500000
[6,] 0.8500000 0.7727273 0.7272727 0.7083333 0.9166667 0.0000000 0.7083333
[7,]1 0.6666667 0.7272727 0.7272727 0.7307692 0.7500000 0.7083333 0.0000000
[8,] 0.6666667 0.7727273 0.7272727 0.7307692 0.7083333 0.5833333 0.5000000
[9,] 0.8750000 0.9545455 0.7272727 0.8461538 0.8750000 0.5833333 0.6538462
[,8] [,9]
[1,] 0.6666667 0.8750000
[2,] 0.7727273 0.9545455
[3,]1 0.7272727 0.7272727
[4,] 0.7307692 0.8461538
[5,] 0.7083333 0.8750000
[6,] 0.5833333 0.5833333
[7,1 0.5000000 0.6538462
[8,1 0.0000000 0.4615385
[9,] 0.4615385 0.0000000
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$ave.between.matrix

[,11 [,2] [,3] [,4] [,5] [,6] [,71
[1,] 0.0000000 0.9078882 0.9158730 0.8532738 0.8220779 0.9618536 0.8549451
[2,] 0.9078882 0.0000000 0.7134387 0.9876482 0.8221344 0.8521739 0.8754941
[3,] 0.9158730 0.7134387 0.0000000 0.9438131 0.7992424 0.8790863 0.9186092
[4,] 0.8532738 0.9876482 0.9438131 0.0000000 0.8645833 0.7912362 0.7973373
[5,] 0.8220779 0.8221344 0.7992424 0.8645833 0.0000000 0.9619490 0.8878205
[6,] 0.9618536 0.8521739 0.8790863 0.7912362 0.9619490 0.0000000 0.9060712
[7,] 0.8549451 0.8754941 0.9186092 0.7973373 0.8878205 0.9060712 0.0000000
[8,] 0.8834451 0.9310238 0.9077375 0.8909757 0.8550174 0.9014968 0.6944096
[9,] 0.9782738 0.9916008 0.9229798 0.8725962 0.9270833 0.7047176 0.8912722
[,8] [,9]
[1,] 0.8834451 0.9782738
[2,] 0.9310238 0.9916008
[3,]1 0.9077375 0.9229798
[4,]1 0.8909757 0.8725962
[5,] 0.8550174 0.9270833
[6,] 0.9014968 0.7047176
[7,] 0.6944096 0.8912722
[8,1 0.0000000 0.7371159
[9,]1 0.7371159 0.0000000
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$average.between
[1] 0.8743582

$average.within
[1] 0.4607634

...

$max.diameter
[1] 0.8461538

$min.separation
[1] 0.4615385

$within.cluster.ss
[1] 24.09794
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$avg.silwidth
[1] 0.3940591

$pearsongamma
[1] 0.8275561

$dunn
[1] 0.5454545

$dunn2
[1] 1.196204

$entropy
[1] 1.52252

$wb.ratio
[1] 0.5269732

$ch
[1] 54.93135

$cwidegap
[1] 0.2083333 0.2272727 0.5000000 0.3461538 0.3750000 0.4166667 0.4615385
[8] 0.3461538 0.5000000

$widestgap
[1] 0.5

$sindex
[1] 0.5083612
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ave.link-9 | ave.link-10
ASW 0.394 0.486
Ip 0.828 0.825
ave.within 0.461 0.330
sindex 0.508 0.365
widestgap 0.5 0.5

Homogeneity: 10 clusters.
Separation, dissimilarity representation: 9 clusters.
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2.5 Testing for clustering structure
Is a dataset significantly clustered?
Is a clustering with G + 1 clusters

significantly better than one with G?

Want to make sure that we don’t cluster
something truly homogeneous.

This is however not so easy.
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Testing for homogeneity

Hp: no clustering structure,
Hi: data are clustered.

Various approaches in literature (Huang et al. (2015))
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Can make gap statistic into formal significance test:
reject uniform null model if

gap(2) — gap(1) > 2sd(log Wi — log W5),
sd(log Wy — log Wy) = \/sa(log W1)2 4 sd(log Wa)2.
This is just not the case for the olive oil data:
gap(2) — gap(1) = 0.062, sd(log Wy — log Ws) = 0.032,

but with G > 2, many gap(G) — gap(1) are significant.
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Can simulate E and sd
from simple uniform or Gaussian null models
for many validity statistics.

Issues:

@ Real data are not uniform or Gaussian;

may reject homogeneity even if still not “clustered”.
@ Most tests depend on alternative G,

multiple testing issues when trying out many G.

Hennig and Lin (2015) construct more flexible null models,
adapted to specific situation.
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Multiple significance tests (G + 1 against G)
have been used in literature for estimating G
and for testing the “significance of each cluster”.

Warning: issues of multiple testing
and data dependent hypotheses make

most of these approaches theoretically invalid.

If anything they’'re of exploratory value.
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2.6 Sensitivity analyses and comparison
of different clusterings on same dataset

Could apply different clustering methods
on same dataset and see whether
and which clusters coincide.

Sometimes done in literature but hard to interpret.
Issue: which methods to include and why.



Approaches for cluster validation Sensitivity analysis and comparing different clusterings

Still useful for validity assessment to see whether
different methods give similar results that are
expected to give similar results.

Also, clustering and data preprocessing require
many decisions.

Could investigate how much of a difference these
decisions make to the clustering.

External validation indexes such as ARI can be used.



Discussion

3. Discussion

o Clustering quality has many aspects.



Discussion

3. Discussion
o Clustering quality has many aspects.

o Validity assessment is multivariate
(and can be partly informal).



Discussion

3. Discussion
o Clustering quality has many aspects.

o Validity assessment is multivariate
(and can be partly informal).

@ Need to decide what matters in application.



Discussion

3. Discussion
o Clustering quality has many aspects.

o Validity assessment is multivariate
(and can be partly informal).

@ Need to decide what matters in application.

@ Both method selection and validation
require such decisions.



Discussion

3. Discussion

Clustering quality has many aspects.
Validity assessment is multivariate

(and can be partly informal).

Need to decide what matters in application.

Both method selection and validation
require such decisions.

Not all kinds of validation make sense

to combine with all clustering methods

(i.e., sum of squares criteria connected to k-means)
but usually more than one criterion of interest.



Discussion

Reasons for poor (invalid) clustering:
@ data genuinely hard to cluster,
@ wrong method or number of clusters,
@ mismatch between clustering and validation method,

@ bad preprocessing choices or non-choices
(dissimilarity, variable transformation, standardisation etc.)



Discussion

Could choose other methods or
change preprocessing to improve matters,
but be careful!

Preprocessing and clustering method
need to reflect clustering aim and meaning of data.

It's useless to make decisions by optimising
validation values if this is not respected.



Discussion

Sometimes better accept that clusters in data

are unclear and uncertain,

rather than making them clearer by dodgy manipulations

(e.g. can induce clustering easily by some certain transformations;
k-means is often pretty stable even if cluster are not separated).



HTTP://IFCS.BOKU.AC.AT/REPOSITORY
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Some more marketing:

Chapman & Hall/CRC
Handbooks of Modern
Statistical Methods

Handbook of
Cluster Analysis

Edited by

Christian Hennig
Marina Meila
Fionn Murtagh
Roberto Rocci

This work is supported by EPSRC Grant EP/K033972/1.
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