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1 Overview

Cluster validation, robustness and stability

P Potential problems with mixture model-based clustering

» Outliers

» Non-normality
Instability

» Interpretation vs. model

| 2 Degenerating likelihood - practical implications

v

P> Robustness and the “noise component” to deal with outliers
» Robustness theory
» The “noise component” approach
» Mixtures of t-distributions

P Cluster validation
» Cluster validation by visualisation
» Stability assessment

P Gaussian mixture models vs. other clustering methods

» k-means and the fixed partition model
» Agglomerative hierarchical methods
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Finite mixtures of generalised linear models

» Basics
The model
A linear regression mixture example
Identifiability
ML estimation and the EM algorithm
Model selection
» Mixtures of linear models
» Fit and visualisation
» Concomitant variables and assignment
dependence
» Mixtures for discrete random effects

» Mixtures of generalised linear models

v

vV YyVvyy

istian Hennig Tutorial on mixture models (2)



Guide to files

mixtutorialnotes.pdf manuscript

mixturetutorial.R all R code used in the manuscript
cladagex.R R code to get you started with example data
clusterboot.R this may only be needed if fpc is not up to date
trigona.dat, jetfighters.dat datasets used in manuscript
melodypoly.dat, teff.dat, effect.dat more example datasets
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2. Potential problems with mixture model-based clustering
Using mclust (Gaussian mixtures) for aim of clustering.
General attitude: models are not true,

model assumptions are always violated,

what does a method do when faced with different situations,
is this desirable, and if not, how to deal with it?

Gaussian distribution defines “cluster prototype”.

All CA methodsa are problematic.
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2.1 Ouitliers
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Gaussian mixture ML is sensitive toward outliers.
Above: mclustBIC solution.
flexmix merges all points.
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2.2 Non-normality
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2.3 Instability
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Sometimes only parts of solution are stable.
Non-normality is one but not only source for instability.
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More reasons for instability:
» Gaussian components may not be properly separated,
» Very small “spurious clusters”
» Dataset too small

Instabilities may be tolerated if for example density estimation is
of interest and not classification.
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2.4 Interpretation vs. model

What a “good”/"true” cluster is, depends on application/aim.
Not always every Gaussian subset corresponds to a “cluster”
(see non-normality, but not only then).
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Application requiring “gaps” (and some within-cluster
homogeneity): species delimitation.

Application not requiring gaps: “disease cluster” in medicine
may have large variation.

“Organisational clustering” requires neither “gaps” nor patterns
but small within-cluster distances.

Gaussian mixture modelling is good for flexible covariance
patterns.

Covariance matrices may be restricted depending on

application. (“EEI” produces similar small within-cluster
variation.)
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3. Degenerating likelihoods - practical implications

Consider (aim, Z1m)men SO that Apin(X1m) — oo and
3IXi ¢ Qay, T, (Xi) > € > 0Vm.

n S
=Ly = Z log Zﬂjm‘pajmijm (xi) | — oo.
i—1 =1

EM may degenerate (but not always).

Problem depends on covariance matrix model,
not usually for “E.."-models
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Theoretically, Amin(X) > ¢ or m'”gzl)) > c prevent degeneration.

But not implemented in mclust and flexmix.

mclustBIC discards solutions with non-invertible X.
Will choose other covariance matrix model.
(So outlier changes the coovariance matrix model.)
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flexmix discards components if #; < c, (default ¢ = 0.05),
joins them with other mixture components.

Outlier is joined with other components and destroys their
parameters.

Change c with control=list(minprior=0.001) , but still
no proper outlier handling.
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Specify prior for mclustBIC
using prior=priorControl()

1| Z ~ N(pp, Z/rp), T ~ inverseWishart(vp, Ap).

Data dependent default choices of parameters

(nonrobust;

overall mean is used, which is affected by outlier;
parameters a bit biased;

not proper Bayes, no posterior distribution).

Compute MAP estimator and BIC based on MAP likelihood.
Improves problems with spurious clusters

and degenerating likelihood.
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4. Robustness and the “noise component” to deal with
outliers

4.1 Robustness theory

Finite sample addition breakdown point
(Donoho and Huber 1983):
smallest possible contamination (
to be added to the dataset
so that estimator becomes “arbitrarily bad”.

n+g)

General robustness results: -2;for X,, s2,

~ 1 for median and MAD scale.
May theoretically depend on dataset, but often does not.

Christian Hennig Tutorial on mixture models (2)



Definition 1. Let xp = (X1,...,Xn) € R" be a data set. Let for any n
large enough 6, s : Xn — 6 € © an estimator, where

© ={(m,...,ms,a1,...,8s,01,...,0°) : m >0, Zﬂ'j =1, 0 > c > 0vj}.
Forg > 0 let

Yg(Xn) = {Xnig € R"™9 : first n observations equal xn}

Then the breakdown point of the estimator 4, s IS
B(fes,%n) = min = so that at least one of the following for at least
oneie {1,.. }:

> infxweyg(xn) 7i(Xnt+g) = 0 for i with #;(xn) > 0,

> SUPy., ey (xa) i (Xntg) = 00,

> SUD L evy (xa) 181 (Xntg)| = 00

where 7; etc. denote the corresponding components of 9.75.
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Theorem 2. Lets > 1,

é\n’s(Xn) = aI‘g max Ln7s(9, Xn),
0cO

Ln,S(07 Xl’l) = ZF:l Iog <st:l 7Tj Qoaj,dj (Xi)> )

the ML-estimator. Then, for any x, for which éms(xn) is well

defined, B(fas,X) = 717.
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Estimating s by BIC:
Qefinition 3. Letx, = (X1,...,X,) € R" be a data set. Let
On : Xn — 0 € O, O, as © in Definition 1 but with an additional
component s € N, an estimator. Under the notation of Definition 1,
the breakdown point  of the estimator d, is B(f,Xn) = min ;= so
that
iNfy, o evq(xn) S(Xntg) < S(Xn),
or at least one of the following for at least one i € {1,...,5(Xn)}:

> infxwng(xn) ﬁi(Xn+g) = 0 for i with ﬁ'i(Xn) > 0,

> SUD,, vy (xn) Gi(Xntg) = 00,

> SUPy, geYq(xn) |&i(Xntg)| = o,

where #; etc. denote the corresponding components of 9.15.
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Theorem 4. Let HAn,S be the ML-estimator as before, and
On(xn) = (8(Xn), B s(xn)) where §(xy,) is the optimal number of
components according to the BIC.

Then B(d., ) > 735 for x, so that

r:l'g Lo, (On,r(Xn), Xn) — Ln,s(enﬁ(xn)ﬂ(n) >1(g),

where f is a monotonically increasing positive finite function of
g.
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BIC(s) = Zlog Zﬂ-]faj’gj X;)

n-+g

+ ) log ijfaj o (X) | —(3s—1)logn.

i=n+1

Breakdown by outliers almost impossible!
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BIC(s) = Zlog z:mfaj,gJ X;)

n+g

+ ) log Z”Jfaj o(X) | —(3s—1)logn.

i=n+1

.. but “in-between-liers” may cause trouble.
May still often be unstable.
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» Fixed s: single outlier spoils ML-estimator.

» s estimated by BIC: adding mixture components to fit
outliers.

» Breakdown can occur if components are not well
separated.

» These do not only hold for p = 1.

» If the number of outliers is large, adding components may
not do, because too many components are needed.

All these statements require o; > ¢ > 0.
Not implemented in mclust, flexmix;
degeneration treatment interferes with robustness.

mclust prior helps but still B = +3.
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4.2 The noise component (Banfield and Raftery, 1993)
1 S
f(x) = moy; + > w5, (%),
j=1

V is fixed during EM-algorithm (mclustBIC),

but initial 7o is needed and outliers should not affect
initialisation of Gaussian components.

B = 3 still, but practical robustness much better.
Do it by initialization=list(noise=initnoise)

May draw initial noise points at random.
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Better (reproducible): NNclean (Byers and Raftery 1998) in
prabclus.

Fits mixture of transformed Gamma-distributions on distances
to k-nearest neighbor

based on mixture of two homogeneous (uniform) Poisson
processes for data.

Component with larger mean is “noise”.

Specification of k required.

Isolated groups of fewer than k points may still be regarded as
noise.

Decide based on application and size of dataset.
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For single outlier data, single outlier is noise with k = 4.
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4.3 Mixtures of t-distributions ~ (McLachlan and Peel 2000)
S
F(x) =) mtya x5 (%).
j=1

t, by generating data from (\)(a, o/H) where H ~ x2.
Not in R, and | don't like it.
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5. Cluster validation

Check whether outcome of clustering method makes sense.
Strategies:

External/subject matter information

» Significance tests for structure

» Compare different clusterings on same dataset
» Validation indexes
| 4
| 4

v

Visual inspection
Stability assessment
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Some indexes, validation information by
cluster.stats in fpc based on distance matrix.

s(i) = % is called the “silhouette width” (Kaufman and
Rousseeuw, 1990),

a(i) is average distance of x; to another point of its own cluster,
b(i) is average distance to another point of closest cluster.

This can be averaged clusterwise over points.
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> c¢s <- cluster.stats(dist(trigonadata),smtrigona$clas sification
> cs

$n

[1] 236

$cluster.number
[1] 10

$cluster.size
[1]1 35 23 20 4 10 8 13 62 48 13

$diameter

[1] 0.2220615 0.2011110 0.8882174 0.2466013 0.2520631
0.7895725 0.3429880

[8] 0.2464109 0.3996499 0.2268971

$average.distance

[1] 0.10960597 0.10530936 0.42058017 0.14797559
0.11524152 0.49448545

[7] 0.18921780 0.09693295 0.18436365 0.11742765
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$median.distance

[1] 0.10757334 0.10478257 0.40924474 0.13831797
0.11075841 0.52140322

[7] 0.19024028 0.09521223 0.18188913 0.11888133

$separation

[1] 0.5889131 0.3425002 0.3425002 0.5002507 0.3354944
0.0897763 0.3193068

[8] 0.1922279 0.1604022 0.0897763

$average.toother

[1] 0.8898844 0.9043505 0.8773002 0.8711378 0.9062254
0.7031898 0.6800758

[8] 0.7083479 0.6734774 0.5841906
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$separation.matrix

(1] (2] (3] (4] [,5] [.6]

[1,] 0.0000000 0.8214897 0.6121101 0.7355199 0.9163432 0. 5889’
[2,] 0.8214897 0.0000000 0.3425002 0.9149291 0.7642136 O. 8000(
[3,] 0.6121101 0.3425002 0.0000000 0.8453088 0.5350112 O. 6501(
[4,] 0.7355199 0.9149291 0.8453088 0.0000000 0.5467675 O. 6286(
[5,] 0.9163432 0.7642136 0.5350112 0.5467675 0.0000000 O. 3354¢
[6,] 0.5889131 0.8000080 0.6501032 0.6286042 0.3354944 0. 0000(
[7,] 0.6446088 0.7271676 0.7943997 0.5002507 0.8125327 0. 4271¢
[8,] 0.8023756 0.8801732 0.6508053 0.8341647 0.8896053 O. 2331
[9,] 0.7274789 0.7901756 0.6227011 0.7106608 0.6295933 0. 1891
[10,] 0.6927242 0.9830951 0.7581647 0.7185608 0.7778999 0O .08977

(8] (9] [.10]
[1,] 0.8023756 0.7274789 0.6927242
[2,] 0.8801732 0.7901756 0.9830951
[3,] 0.6508053 0.6227011 0.7581647
[4,] 0.8341647 0.7106608 0.7185608
[5,] 0.8896053 0.6295933 0.7778999
[6,] 0.2331168 0.1891964 0.0897763
[7,] 0.3685067 0.3193068 0.4601516
[8,] 0.0000000 0.2245057 0.1922279
[9,] 0.2245057 0.0000000 0.1604022
[10,] 0.1922279 0.1604022 0.0000000
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$average.between
[1] 0.7680693

$average.within
[1] 0.1413954

()

$clus.avg.silwidths

1 2 3 4 5
0.8616234 0.8269252 0.2727838 0.7614558 0.8142473
6 7
-0.1954790 0.6117464
8 9 10

0.7245092 0.4113044 0.6319789

$avg.silwidth
[1] 0.6147748

()
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Cluster validation is not about estimating the number of
clusters!
The results of such a method still need to be validated.
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5.1 Cluster validation by visualisation

Generally use different colours and symbols.
Here: projection methods

Given: n x p-dataset X.

Find p x k-matrix C (eg, k = 2), so that
Y = XC is optimally “informative”.
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Definition 5. The first k projection vectors defined by the
choice of Q and R) c;, ... ¢k are defined as the vectors
maximising
~ ¢’Qc

°~ ¢Rc
subject to ¢{Rc; = d;j, where ¢;; = 1 fori = j and J; = O else.
Corollary. The first k projection vectors of X are the
eigenvectors of R~1Q corresponding to the k largest

eigenvalues.

Definition 6. PCA is defined by Q = Cov(X) and R = I,.
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Notation:
Let Xi1, . . ., Xin; the p-dimensional points of groupi =1,...,s, n=3%"
Let Xi = (Xi1, ..., Xin,),i =1,...,s,and X = (Xg,...,Xg)". Let
mi = S X, m= 2350 M g,
Ui = 3000, (i — mi)(xj —mi)', U= 320, Ui,
Si= 74U, W=:5U, B = 225 30 ni(mi — m)(m; —m)’,

ni—1

s
=1 n;.

that is, S; is the covariance matrix of group i with mean vector m;, W is the
pooled within groups-scatter matrix and B is the between groups-scatter
matrix.
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Definition 7. DCs (Rao 1952) are defined by Q = B and
R=W.

Corollary. Only s — 1 eigenvalues of W—1B are larger than 0.
The whole information about the mean differences can be
displayed in s — 1 dimensions (cf. Gnanadesikan, 1977).

Use R-function plotcluster in fpc.
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Difficulties with DC:
» Separation between cluster means is shown.
» All within-cluster cov-matrices equal implicitly assumed.
» More than 3 clusters: cannot see everything in 2-d.
» DCs may still be dominated by outliers.
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Discriminant coordinate p=2>1

1.0

x[,2]
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Discriminant coordinate p=2>1 Discriminant coordinate p=2>1 separates means
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Discriminantcoordinate p=2>1 Discrminant coordinsie p=2>1 separates means Asymmeri veighied coordinate p=2>1
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Definition 8 (Hennig 2005) Let

ng Nz

n1n2 ZZ X1 _XZ] Xll - XZJ)

i=1 j=1

denoting now by x; all points that are not in cluster 1. ADCs for
cluster 1 are definedby Q =B*and R = S;.

Definition 9. Let

np ng
B** — # ZZWJ X1i — ij)(X]J _XZJ) s where
B gt
i d H—
w; = min (1, (xZmel)'sl—l(xZ,fml)) Ji=1,...,n, 1)

d > 0 being some constant, for example the 0.99-quantile of the
x5-distribution.
AWCs for cluster 1 are defined by Q = B** and R = S;.
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Motivation for weights: Consider x,; = my + qv, where v is a
unit vector w.r.t. S; giving the direction of the deviation of xy;
from the mean m, of cluster 1 and g > 0 is the amount of
deviation. The contribution of x,; to B** is, for g large enough,

ng

d
— (Xg5 — m1)'S;* (Xg) — M)

(X1i — Xg5)(X1i — X;)’,

Hnld forqaoo
1
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Small clusters will look “packed”.
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Things to keep in mind:
» Clusters can still be heterogeneous in other directions.

» Cluster may be separated but surrounded. (Check
cluster.stats )

» Ouitliers are influential if members of cluster to plot.
Alternative methods in Hennig (2005), plotcluster

Also try “grand tour/2-d tour” (Asimov 1985) in Ggobi/rggobi!
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5.2 Stability assessment

General principle for stability assessment
» Generate several new datasets out of the original one.
» Cluster all these new datasets.

» Define statistic to formalise how similar new clusterings are
to the original one.

» If they are very similar, it’s stable.
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Most clusterings are unstable in one way or another.
Want to know which clusters are stable

= here cluster-wise methodology,

clusterboot in package fpc (Hennig 2007).
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1. Use the Jaccard coefficient

_|CNnD|

to measure similarity between two subsets of a set.

2. Repeat B times steps 2-4:
resample new data sets from the original one,

3. apply the same clustering method to them.
4. For C € C record m; = maxp.c v(C,D)

5. Use 7y = é Zile m; to assess stability of C.

Various methods to resample are possible.
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Use two different methods,
can discover different kinds of instability.

Bootstrap method discarding multiple points

Replacement by noise Draw 5%, say, of points and replace
them by uniform “noise”.
1. Sphere the dataset to unit covariance matrix.
2. Draw points from U[—4, 4]P.
3. Rotate data back.
Problem with bootstrap: can only increase separation.
Problem with noise: unclear what “realistic” noise would be.
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For computing ~ for given original cluster and cluster in
resampled dataset,

use only points that are both in original dataset and in
resampled one.

In practice, use B = 100 if time allows.
But need some patience.
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Interpretation:

» 0.5 is minimum v so that for given partition it's possible for

every cluster to find another partition so that maximum ~ is
< V.

» New partition with r clusters, original one with s >r = 3 at
least s — r clusters in original partition for which no ~v > v.

Consider clusters with max~ < 0.5 as “dissolved.
Demand 7 >> 0.5 for stability.

Christian Hennig Tutorial on mixture models (2)



> trigonaboot <- clusterboot(trigonadata,B=20,
multipleboot=FALSE,
clustermethod=noisemclustCBI,nnk=0,G=1:15)

* Cluster stability assessment *

Cluster method: mclustBIC

Full clustering results are given as parameter result
of the clusterboot object, which also provides
further statistics of the resampling results.

Number of resampling runs: 20

Number of clusters found in data: 10

istian Hennig Tutorial on mixture models (2)



Clusterwise Jaccard bootstrap (omitting multiple points) mean
[1] 1.0000000 1.0000000 0.9493590 0.9236111 0.9833333
0.6884722 1.0000000

[8] 0.9955763 0.9820907 0.9156313

dissolved:

[l] 0002030000

recovered:

[1] 20 20 20 18 20 7 20 20 20 19

Clusterwise Jaccard replacement by noise mean:

[1] 1.0000000 1.0000000 0.9034211 0.9687500 1.0000000
0.5488095 1.0000000

[8] 0.9974430 1.0000000 0.9288795

dissolved:

1] 0 0 O 1 013 0 0 0 O

recovered:

[1] 20 20 20 19 20 1 20 20 20 20
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(For uniform plus Gaussian dataset)

* Cluster stability assessment *
Cluster method: mclustBIC

Number of resampling runs: 20

Number of clusters found in data: 6

Clusterwise Jaccard bootstrap (omitting multiple points) mean
[1] 0.78226138 0.90698801 0.93042938 0.08628977 0.817281 34
1.00000000
dissolved:

[1] 2 12 120 1 O
recovered:

[1] 17 18 18 0 18 20

Clusterwise Jaccard replacement by noise mean:

[1] 0.35669233 0.26304825 0.31162945 0.07258365 0.199327 78
1.00000000

dissolved:

[1] 17 20 17 19 20 0

recovered:

[f] 0 0 O 1 0 20
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Instabilities can result from
» features of the data,
» instabilities of clustering method,
» mismatch between the two.

Stable clusters are not necessarily good.
(Fixing s = 1 is always stable.)
Unstable clusters can be tolerated if stability is not the aim.
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6. Gaussian mixture models vs. other clustering methods

There is no single best clustering method.

Knowing chracteristics of methods is needed to decide.
Choosing clustering method is not equivalent

to finding the “true” model.
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Advantages of GMBC:

» Explicit probability model; delivers 6, 7jj. Itis possible to
check how data relate to model assumptions.
Note that all methods make implicit assumptions.

» BIC as method to estimate s.
(Somewhat controversial, but situation is better than for
other clustering methods.)

» GMBC is good for clusters with different covariance
structures.

» Mixture setup may incorporate uniform noise or other
distributions.
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Drawbacks of GMBC:

» Sometimes too flexible, unstable (particularly when
estimating covariance model).

» GMBC neither guarantees small within-cluster distances,
nor good separation between clusters.
Non-Gaussian homogeneous data subsets will often be
fitted by more than one not well separated Gaussian
mixture component.

» Depends on EM-initialisation (as k-means).
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6.1 k-means, the fixed partition model and the
CEM-algorithm

Definition 10. The k-means clustering of X is defined by

n
En(X) = arg min > min |x; — %13,
(C1,...C} partition of xi—1 !
= 1
where X; = c inecj X;.

Don't discuss estimation of k /s, but validation indexes are
sometimes used.
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Definition 11. “Gaussian fixed partition model”:

n

f(X) = H Pa,(i)o2lp (i),

i=1
where k@ {1,...,n} —{1,... k}.
The k means are ML estimators for a,, ..., ay,
(but inconsistent!),
assignment of points to C4, ..., Cy is ML for k.

Very similar to mclust “EIl” model.
Clusters are spherical and not equivariant.
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trigonal0 <- clusterboot(trigonadata,B=20,
multipleboot=FALSE, clustermethod=kmeansCBI, k=10)

Clusterwise Jaccard bootstrap (omitting multiple points) mean
[1] 0.1810657 0.8314384 0.6411663 0.7275444 0.5460139

0.5229203 0.4847722

[8] 0.3607726 0.7861804 0.3430862

Clusterwise Jaccard replacement by noise mean:

[1] 0.1656969 0.8172386 0.7362327 0.8139100 0.3887676

0.4390961 0.5134999

[8] 0.3692982 0.9522727 0.2937549
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Good about k-means: it's fast!

Good for small distances to cluster means.

Versions: k-medoids, trimmed k-means.

Fixed partition criteria available for other covariance models.
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“CEM"-algorithm in flexmix (Celeux and Govaert 1992).
Q@ = ZZ iV (log 7 + log ¥ (x))),
i=1j=1

replace 7 by 1(x(i) = j). Faster but biased.
Fixed partition log-likelihood:

Lip (X Z Z 1(k i) log fi(x;).

i=1j=1

(k-means favours clusters of similar size.)
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6.2 Agglomerative hierarchical methods

Definition 12. Letd: P(X) x P(X) — R be a dissimilarity
measure between data subsets. Let
Ch={{x}: xeX}, hp=0.Fork =n—-1,...,1:

(Ak7 Bk) = argminé(A, B)7 he = 5('A‘k7 Bk)7
ABeCy 1

Ck = {Ak UBK} U Cir1 \ {Ax, Bk}

C = Ug—, Ck is called
a) Single linkage hierarchy, if

6(A> B) = 6S(A7 B) = X'ETaneB dij:
1 EAX]

b) Complete linkage hierarchy;, if

(5(A, B) = 5C(A, B) = X-QqA?(.-)(eB dij’
i CAX
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Single linkage:

Cluster Dendrogram

Height

71 Hfﬁ

Get partition by cutting dendrogram at fixed h or s.
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Complete linkage:

Cluster Dendrogram
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Single linkage:

Clusters are merged whenever there is a single small distance
between them.

Resulting clusters are separated.

All between-cluster distances are large.

Complete linkage:

Clusters are not merged whenever there is a single large
between-cluster distance.

Resulting clusters are homogeneous.

All within-cluster distances are small.
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... both are often too extreme for real situations, but for some
applications they are methods of choice.
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7. Mixtures of generalised linear models: basics
7.1 The model

Z = (y,X),where Z = (z1,...,2n)",
Y =(1,---,Y¥n), X=(X1,...,%n)t,

yi € R, xi € R?, i=1,...,n. Xfixed.
y; random and independent.

Clustering idea: data belong together if they are characterised
by the same way of how y depends on x.
Points do not need to be similar to belong together.
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y|X) Zﬂkfﬁ‘x (o8

In standard GLM notation: gix = g(uk), pk = Ex(y|x).
Usually o2 = Vary(y |x), not always needed:

Poisson regression:

faix Poisson ()\)-density,

A = exp(8'x) = E(y[x) = Var(y|x), or g(u) = log(r).

Some (-parameters may be equal across components.
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More generally:

exp(ajx)
ho(y |X) (X, )fiy o (V) T(X, @) = ,
kzl oo > o1 exp(ad)
where o = (ag, ..., ak), ai = (g, ..., qp)t € RPTis part of 6.

Variables on which « depends could differ from those on which
Bix (“concomitant variables”, flexmix terminology),
but could be the same as well.
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7.2 An example

Clusterwise regression: fa, ;. (V) = 4 0, 02(Y)s
g identity function, E(y|x) = B{x.
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7.3 Identifiability

No two non-equivalent parameter vectors should parameterise
the same distribution.

Depends on “equivalence” of parameter vectors.

Mixtures: equivalence allows for permutation of components.
Restrict parameter space to exclude equal parameters for
different components, zero proportions.

Identifiability is necessary for consistency.
In practice, it's necessary for interpreting parameters.
Problems arise for dummay variables, near non-identifiability.
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Aspects of identifiability for GLM mixtures:

» Identifiability of univariate mixture for given x.
(Fulfilled for Gaussian, Poisson, not necessarily Binomial.)

» x allow identification of 3 (and «).
s = 1: (X!X)~! must exist.
Hennig (2000):
for regression mixtures with assignment independence,
S < h number of (p — 1)-dimensional hyperplanes needed
to cover X required.
Griin and Leisch (2008): same for GLM.
Assignment dependence (with «): more complicated.
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7.4 ML-estimation and the EM-algorithm

Nothing essentially new here.

flexmix uses random initialisation.

Spurious or degenerating solutions for ¢ — 0.

Use stepFlexmix  for optimising over several initialisations.
Use set.seed for making results reprodocible.
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E-step: Given 00) forj=1,...,n, k=1,...,s,

7-(|+1) 7Tk(XJ’ a(l))fﬁ ')t ') (y]) ‘
jk > o1 mu(Xj, ol ))fﬁu iy, ’Uﬁi)(yj)

M-step: Given #() through ij(i*l), the expected
log-likelihood

Q(0(|+l)|9(l)) _ Ql(ﬂ(i+1) (i+1)|9(i))—|—Q2(Oé(i+l)|0(i)),
Qu(BY, o Mje) = ZZ 7V log(f e, 0 (34):
j=1 k=1
Qz(a(i+1)|t9(i)) — ZZTJkIH log (i (X; a('+l)))
j=1 k=1
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Maximise Q; and ‘Q; separately.
Q; gives new g+ 4(i+1)
from WML (LS for Gaussian regression).

Q, gives new oY) using WML of multinomial logit models.
Without a-parameters

n
7T|9+1) = le((l+1)7 k=1,...,s.
j=1
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7.5 Model selection

Can use standard AIC and BIC.

AIC overestimates asymptotically with
nonzero probability.

BIC probably consistent. (No strong theory.)

flexmix also offers ICL, where cluster indicators replace 7 in

likelihood/BIC (related to CEM algorithm).
ICL often produces smaller s.
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flexmix implicit model selection by bounding =, from below
(0.05) in algorithm.

BIC plot shows s = 5 in tone example,

but only 4 components fitted.

Specify minprior  in control  -list.

Good if clusters are supposed to be large
but messy with outliers
(may want to delete them first).

Generally, many local optima can be found.
Increase nrep in stepFlexmix
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8. Mixtures of linear models
8.1 Fit and visualisation
Tone perception example.
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> set.seed(73579)

> tonefm <- stepFlexmix(tuned stretchratio,
data=tonedata,k=1:5,nrep=3)

> plot(tonefm)

> tonefm

Call:
stepFlexmix(tuned ~ stretchratio, data = tonedata, k = 1:5, nre

iter converged k kO logLik  AIC BIC ICL

1 2 TRUE1 1 93 -127 37 -3.7
2 15 TRUE 2 2 141.1 -268.3 -247.3 -210.9
3 41 TRUE 3 3 154.6 -287.3 -254.2 -189.2
4 55 TRUE 4 4 161.8 -293.6 -248.5 -138.7
5 85 TRUE 4 5 246.0 -462.0 -416.8 -357.6
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> tonefm4 <- getModel(tonefm,which="BIC")
> plot(tonefm4)
> summary(tonefm4)

Call:
stepFlexmix(tuned ~ stretchratio,
data = tonedata, k = 5, nrep = 3)

prior size post>0 ratio
Comp.1 0.221 23 123 0.1870
Comp.2 0.333 57 109 0.5229
Comp.3 0.345 57 63 0.9048
Comp.4 0.101 13 144 0.0903

log Lik. 246.0216 (df=15)
AIC: -462.0433  BIC: -416.8838
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Try

str(tonefm4)
tonefm4@cluster
parameters(tonefm4)
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Rootogram of posterior probabilities > 1e-04
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> rtonefm4 <- refit(tonefm4)
> summary(rtonefmd4)

$Comp.1

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.796465 0.102142 17.5879 < 2e-16 *oxk
stretchratio 0.086634  0.038654 2.2413 0.02501 *
$Comp.2

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.980572  0.028561 69.3455  <2e-16 *kk
stretchratio 0.018846  0.013008 1.4487  0.1474

$Comp.3

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.0035112 0.0039481  0.8894  0.3738
stretchratio 0.9987576 0.0018175 549.5323  <2e-16 ok

$Comp.4
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.086369  0.256562 -0.3366  0.7364
stretchratio 0.987769  0.108148 9.1335  <2e-16 ok
> plot(rtonefm4)
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Confidence intervals are not correct!
(And level unclear, probably 0.95.)
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plotregcluster -function in mixturetutorial.R
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8.2 Concomitant variables and assignment dependence

fist_fight
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> jetflexchange <- flexmix(first_flight"power,
data=jjet,k=2,
concomitant=FLXPmultinom(™ first_flight))

> rjet <- refit(jetflexchange)
> summary(rjet,which="concomitant")
$Comp.2

Estimate Std. Error z value Pr(>|z|)
(Intercept) 110.180 248.945 0.4426  0.6581
power -40.055 90.592 -0.4421  0.6584

Probability for component 2:

(exp(110.18-40.55  *x)/(exp(110.18-40.55 *x+1)
x=2.7 => 0.88

x=2.8 => 0.12 $
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8.3 Mixtures for discrete random effects

Univariate regression with random effect:

i=1,...,1subjects, j = 1,...,J measurements
X1, ...X4 the four ages,
by, ..., b, be the subject-wise random effects.

Vi = Bo + B1X + by + €, e ~ N(0,02), by ~ N(0,03).

This is a continuous mixture.
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> ortholme <- Ime(distance™age,random="1|Subject)
> summary(ortholme)
Linear mixed-effects model fit by REML
Data: NULL
AIC BIC logLik
455.0025 465.6563 -223.5013

Random effects:
Formula: "1 | Subject

(Intercept) Residual
StdDev: 2.114724 1.431592
Fixed effects: distance ~ age

Value Std.Error DF t-value p-value

(Intercept) 16.761111 0.8023952 80 20.88885 0
age 0.660185 0.0616059 80 10.71626 0
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flexmix model:

y|X) Zﬂkfﬁ‘x ok

with slope (k1 constant over components,
intercept SBxo ~ [g + bj takes
s different values with probabilities 4, ..., 7.
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set.seed(444444)
orthomixrandom <- stepFlexmix(distance™1|Subject,
k=1:4,model=FLXMRgImfix(fixed="age))

> table(ortho3@cluster,Sex)

Sex
Male Female
1 28 4
2 36 24
3 0 16
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> summary(ortho3)

Call:
stepFlexmix(distance ~ 1 | Subject, model = FLXMRgImfix(fi xed :
k = 3)
prior size post>0 ratio
Comp.1 0.322 32 96 0.333
Comp.2 0.529 60 80 0.750
Comp.3 0.149 16 40 0.400

log Lik. -217.9577 (df=9)
AIC: 453.9155 BIC: 465.578

> parameters(ortho3)

Comp.1 Comp.2 Comp.3
coef.age 0.6601852 0.6601852 0.6601852
coef.(Intercept) 19.0737997 16.3302297 13.2781871
sigma 2.3542300 1.0952854 1.4695694
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9. Mixtures of generalised linear models

Fabric faults data,
example for Poisson regression.

Grin and Leisch (2008c) fit

fax Poisson (\)-density with A\ = exp(5'x) = E(y|x) = Var(y x)
and log(Length) as x-variable.

Fix the slope of log(Length) to be equal across components
and s = 2,
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> set.seed(151515)

> fabricmix <- stepFlexmix(Faults™1,
model=FLXMRgImfix(family="poisson",
fixed="log(Length)),data=fabricfault,k=2,nrep=5)
> summary(fabricmix)

prior size post>0 ratio
Comp.1 0.204 5 32 0.156
Comp.2 0.796 27 32 0.844

log Lik. -86.33121 (df=4)
AIC: 180.6624  BIC: 186.5254

> parameters(fabricmix)

Comp.1 Comp.2
coef.log(Length) 0.8012432 0.8012432
coef.(Intercept) -2.3778178 -3.1424896
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Try Length without log and without fitting slope:

Faults

200 400 600 800

Length
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> set.seed(151515)

> fabricmix2 <- stepFlexmix(Faults"Length,
model=FLXMRgIm(family="poisson"),
data=fabricfault,k=2,nrep=5)

> summary(fabricmix2)

prior size post>0 ratio
Comp.1 0.57 22 31 0.710
Comp.2 0.43 10 31 0.323

‘log Lik." -83.78301 (df=5)
AIC: 177.5660 BIC: 184.8947

> parameters(fabricmix2)

Comp.1 Comp.2
coef.(Intercept) 1.8367519820 -0.024776572
coef.Length 0.0003043199 0.003569731
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In principle, flexmix works in the same way as for clusterwise
regression.

Just need suitable model. For example available as well:
Binomial regression with logit link as
model=FLXMRgIm(family="binomial")

See insecticide dataset effect.dat, cladagex.R.

GLMs need different residuals for diagnostic, though!
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