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1. Introduction
Nonrobustness of mean/covariance matrix-based methods well
known.
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Done by Gaussian mixture ML clustering:

f (x) =

s
∑

i=1

πiϕai ,Σi (x).
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Done by Gaussian mixture ML clustering:

f (x) =

s
∑

i=1

πiϕai ,Σi (x).

Number of components can be estimated by BIC (s = 2 here).
Various covariance matrix models (free, all equal, spherical. . . ).
Given the estimated parameters, points can be classified by
max. P̂(γ = j |x) = (π̂jϕâj ,Σ̂j

(x))/(
∑k

i=1 π̂iϕâi ,Σ̂i
(x))

Software R-package mclust (Fraley and Raftery).

Similar robustness problems for k-means, other methods.
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2. Approaches to robust clustering

2.1 Mixture model
◮ Mixtures of t-distributions (McLachlan & Peel 2000)
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2. Approaches to robust clustering

2.1 Mixture model
◮ Mixtures of t-distributions (McLachlan & Peel 2000)
◮ The “noise component” (Banfield & Raftery, 1993)

f (x) = π0
1
V

+

s
∑

j=1

πjϕaj ,Σj (x),
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2. Approaches to robust clustering

2.1 Mixture model
◮ Mixtures of t-distributions (McLachlan & Peel 2000)
◮ The “noise component” (Banfield & Raftery, 1993)

f (x) = π0
1
V

+

s
∑

j=1

πjϕaj ,Σj (x),

◮ Improper noise (Hennig 2004, Coretto 2008)

f (x) = π0c +

s
∑

j=1

πjϕaj ,Σj (x),
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2. Approaches to robust clustering

2.1 Mixture model
◮ Mixtures of t-distributions (McLachlan & Peel 2000)
◮ The “noise component” (Banfield & Raftery, 1993)

f (x) = π0
1
V

+

s
∑

j=1

πjϕaj ,Σj (x),

◮ Improper noise (Hennig 2004, Coretto 2008)

f (x) = π0c +

s
∑

j=1

πjϕaj ,Σj (x),

◮ Trimmed likelihood (Neykov, Filzmoser, Dimova, Neytchev
2007)
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2.2 Fixed Partition Models

f (x1, . . . , xn) =
n

∏

i=1

ϕaγ(i),Σγ(i)
(xi ),

γ : {1, . . . , n} → {1, . . . , s}.
k-means is a fixed partition ML-method
(equal spherical covariance matrices).
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2.2 Fixed Partition Models

f (x1, . . . , xn) =
n

∏

i=1

ϕaγ(i),Σγ(i)
(xi ),

γ : {1, . . . , n} → {1, . . . , s}.
k-means is a fixed partition ML-method
(equal spherical covariance matrices).
Crisp assignment of points,
inconsistent for parameter estimation,
but often good for classification.
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Robustification:
◮ Replacing mean/covariance matrix by robust estimators

(medians, MCD)
(Kaufman & Rousseeuw 1990, Rocke & Hardin 2000)
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Robustification:
◮ Replacing mean/covariance matrix by robust estimators

(medians, MCD)
(Kaufman & Rousseeuw 1990, Rocke & Hardin 2000)

◮ Trimming: optimise ML-criterion for best n − r points.
α-trimmed k-means
(Cuesta-Albertos, Gordaliza, Matran 1997)

◮ Equal covariance matrices (Gallegos & Ritter 2005)
◮ Flexible covariance matrices

(Garcia-Escudero, Gordaliza, Matran, Mayo-Iscar 2008)
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2.3 Finding outlier-free data subsets
◮ Fixed point clusters (Hennig & Christlieb 2002)
◮ Forward search (Atkinson, Cerioli & Riani 2003)
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How the methods do (with s = 2)
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◮ Outlier only “noise point” (proper choice of c)
◮ t-mixtures integrate it with cluster 1.
◮ Trimming: will be trimmed.

Need flexible covarince matrices, proper trimming rate.
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3. Breakdown and robustness measurement
3.1 Breakdown theory for mixtures (Hennig 2004)

Finite sample addition breakdown point
(Donoho and Huber 1983):
smallest possible contamination ( g

n+g )
to be added to the dataset
so that estimator becomes “arbitrarily bad”.
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Definition 1. Be θ̂n,s : xn → θ ∈ Θ estimator, where

Θ = {(π1, . . . , πs, a1, . . . , as, σ1, . . . , σs) :
∑

πj = 1, σj ≥ c > 0∀j}.

For g > 0 let

Yg(xn) = {xn+g ∈ IRn+g : first n observations equal xn}

Breakdown point θ̂•,s: B(θ̂•,s, xn) = min g
n+g so that at least one of

the following for at least one i ∈ {1, . . . , s}:

◮ infxn+g∈Yg(xn) π̂i(xn+g) = 0 for i with π̂i(xn) > 0,

◮ supxn+g∈Yg(xn)
σ̂i (xn+g) = ∞,

◮ supxn+g∈Yg(xn) |âi(xn+g)| = ∞.
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Theorem 2. Let s > 1,

θ̂n,s(xn) = arg max
θ∈Θ

Ln,s(θ, xn),

Ln,s(θ, xn) =
∑n

i=1 log
(

∑s
j=1 πjϕaj ,σj (xi)

)

,

the ML-estimator. Then B(θ̂•,s, xn) = 1
n+1 .
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Ln,s(η) =

n
∑

i=1

log





s
∑

j=1

πj faj ,σj (xi )



 + log





s
∑

j=1

πj faj ,σj (xn+1)
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Ln,s(η) =
n
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No breakdown of original components:

xn+1 → ∞ ⇒ Ln,s → −∞
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as = xn+1 ⇒ Ln,s ≥ const, thus B =
1

n + 1

(as well for t-mixtures and 1
V -noise component)
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Improper noise:

η̂n,s = arg max
η

n
∑

i=1

log





s
∑

j=1

πj faj ,σj (xi) + π0c





with fixed c

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

cc

Christian Hennig Some thoughts about robust clustering



Introduction
Approaches to robust clustering

Breakdown and robustness measurement
Estimated s

Tuning constants
Conclusion

Breakdown theory for mixtures
The dissolution point

Theorem 3.
∀r < s : (L̂n,s − L̂n,r ) >
n log cg

n + g log((π0 + g
n )c) + (n + g) log n

n+g − g log fmax

⇒ Bn > g
n+g (data dependent)
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Theorem 3.
∀r < s : (L̂n,s − L̂n,r ) >
n log cg

n + g log((π0 + g
n )c) + (n + g) log n

n+g − g log fmax

⇒ Bn > g
n+g (data dependent)

Trimming: Gallegos & Ritter (2005)
have data dependent breakdown point
under separation condition, too.
Garcia-Escudero & Gordaliza (1999)
know that it’s data dependent.
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3.2 The dissolution point (Hennig 2008)
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Clusters may break down without parameters breaking down.
Some clustering methods don’t estimate parameters.
Cluster breakdown should be measured in terms of clustering.Christian Hennig Some thoughts about robust clustering
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Aim: “something like” a breakdown point
for general clustering methods (GCM):

E = (En)n∈IN ,

En : xn 7→ {C1, . . . , Ck}, Cj ⊆ xn.

(Assume Ci ∩ Cj = ∅.)

Wanted:
results in terms of set memberships,
not parameters.
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Induced clustering (g points added):

E∗
n (xn+g) = En+g(xn+g) ∩ xn

Cluster similarity (Jaccard, 1901):

γ(C, D) =
|C ∩ D|

|C ∪ D|
, γ∗(C,D) = max

D∈D
γ(C, D).

Principle: A cluster is dissolved
if the closest cluster in induced clustering (under addition)
is too far away. (How far is “too far”?)
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Definition 4.

∆(E , xn, C) = ming
{

g
|C|+g : ∃xn+g = (x1, . . . , xn+g) :

γ∗(C, E∗
n (xn+g)) ≤ 1

2

}

is called dissolution point of cluster C.

1/2 not worst possible value, but. . .
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Definition 4.

∆(E , xn, C) = ming
{

g
|C|+g : ∃xn+g = (x1, . . . , xn+g) :

γ∗(C, E∗
n (xn+g)) ≤ 1

2

}

is called dissolution point of cluster C.

1/2 not worst possible value, but. . .
◮

1
2 is minimal such that

◮ for n ≥ 2, k ≥ 2, every cluster can dissolve,
◮ whenever |C| = s, |D∗| = s − r , at least r members of C

dissolve.
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Example of a dissolution result

Theorem 5. Let Ek be α-trimmed k-means clustering.
For g ≤ n − ⌈n(1 − α)⌉,
if for any possible induced clustering C∗ leading to dissolution of
C:

miny1,...,yg∈D(Ek,n(xn))

g
∑

i=1

min
j

‖yi − x̄j‖
2
2

< Q(xn, C
∗) − Q(xn, Ek ,n(xn)),

then ∆(Ek , xn, C) > g
|C|+g .
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4. Estimated s (by BIC; Hennig 2004)

Definition 6. Let θ̂n : xn → θ ∈ Θ∗, Θ∗ as Θ in Definition 1 but with
parameter s ∈ IN .
The breakdown point of estimator θ̂• is B(θ̂•, xn) = min g

n+g so that

infxn+g∈Yg(xn) ŝ(xn+g) < ŝ(xn),
or at least one of the following for at least one i ∈ {1, . . . , ŝ(xn)}:

◮ infxn+g∈Yg(xn) π̂i(xn+g) = 0 for i with π̂i(xn) > 0,

◮ supxn+g∈Yg(xn)
σ̂i (xn+g) = ∞,

◮ supxn+g∈Yg(xn)
|âi(xn+g)| = ∞.
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Theorem 7. Let θ̂n,s be the ML-estimator as before, and
θ̂n(xn) = (ŝ(xn), θ̂n,ŝ(xn)) where ŝ(xn) is the optimal number of
components according to the BIC.
Then B(θ̂•, x) ≥ g

n+g for xn so that

min
r<ŝ

Ln,r (θn,r (xn), xn) − Ln,s(θn,ŝ(xn), xn) > f (g),

f monotonically increasing positive finite function of g.
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Theorem 7. Let θ̂n,s be the ML-estimator as before, and
θ̂n(xn) = (ŝ(xn), θ̂n,ŝ(xn)) where ŝ(xn) is the optimal number of
components according to the BIC.
Then B(θ̂•, x) ≥ g

n+g for xn so that

min
r<ŝ

Ln,r (θn,r (xn), xn) − Ln,s(θn,ŝ(xn), xn) > f (g),

f monotonically increasing positive finite function of g.

Analogous result for dissolution point.
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BIC(s) =

n+g
∑

i=1

log





s
∑

j=1

πj faj ,σj (xi)



 − (3s − 1) log n.
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Breakdown by outliers almost impossible!
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BIC(s) =

n+g
∑

i=1

log





s
∑

j=1

πj faj ,σj (xi)



 − (3s − 1) log n.
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. . . but “in-between-liers” may cause trouble.
May still often be unstable.
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Unclear s ⇒
any fixed s method breaks down.
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Add more points than size of smallest cluster:
any fixed s method breaks down (on any dataset).
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Add more points than size of smallest cluster:
any fixed s method breaks down (on any dataset).
Estimated s: add clusters to avoid these problems.

Christian Hennig Some thoughts about robust clustering



Introduction
Approaches to robust clustering

Breakdown and robustness measurement
Estimated s

Tuning constants
Conclusion

So do we just have to estimate s then?
(. . . and not worry about noise, trimming etc.?)

Christian Hennig Some thoughts about robust clustering



Introduction
Approaches to robust clustering

Breakdown and robustness measurement
Estimated s

Tuning constants
Conclusion

So do we just have to estimate s then?
(. . . and not worry about noise, trimming etc.?)

◮ May have to fit lots of clusters if many isolated outliers are
present.
Computation & interpretation difficult.

Christian Hennig Some thoughts about robust clustering



Introduction
Approaches to robust clustering

Breakdown and robustness measurement
Estimated s

Tuning constants
Conclusion

So do we just have to estimate s then?
(. . . and not worry about noise, trimming etc.?)

◮ May have to fit lots of clusters if many isolated outliers are
present.
Computation & interpretation difficult.

◮ May rather want points classified as “noise” for reasons of
interpretation.

Christian Hennig Some thoughts about robust clustering



Introduction
Approaches to robust clustering

Breakdown and robustness measurement
Estimated s

Tuning constants
Conclusion

So do we just have to estimate s then?
(. . . and not worry about noise, trimming etc.?)

◮ May have to fit lots of clusters if many isolated outliers are
present.
Computation & interpretation difficult.

◮ May rather want points classified as “noise” for reasons of
interpretation.

Open problem: compare (practical) robustness between
clustering methods estimating s.

Christian Hennig Some thoughts about robust clustering



Introduction
Approaches to robust clustering

Breakdown and robustness measurement
Estimated s

Tuning constants
Conclusion

So do we just have to estimate s then?
(. . . and not worry about noise, trimming etc.?)

◮ May have to fit lots of clusters if many isolated outliers are
present.
Computation & interpretation difficult.

◮ May rather want points classified as “noise” for reasons of
interpretation.

Open problem: compare (practical) robustness between
clustering methods estimating s.
(Can do that data dependently by bootstrap methods;
Hennig 2007)
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mclustBIC solution.
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mclustBIC solution.
No lower bound for cov-eigenvalue specified in mclustBIC.
One-point cluster degenerates L with flexible cov-matrix.
Therefore, outlier changes cov-matrix model.
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5. Tuning constants
◮ Flexible cov-matrices: need lower bound for cov-matrix

eigenvalue.
◮ Trimming methods need trimming rate.
◮ Improper noise method needs noise level c.

These tune robustness behaviour as well.
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How many points are needed to form a “cluster”,
not a “group of outliers”?
(May depend on how packed they are.)
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Rather separate non-well separated clusters?
(May depend on what’s added.)
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Large-variance: cluster or outliers?
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Large-variance: cluster or outliers?

No proper robustness assessment without
decision about what we want a method to do.
In CA we don’t want 0.5 or 0.3 breakdown point.
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Current work on improper noise (Coretto & Hennig)

Republican votes 1960, 2 normal plus improper U/0.018
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Idea: fit noise so that remaining points are “good mixture”
(see also Gallegos & Ritter 2005; χ2/Mahalanobis)
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Current work on improper noise (Coretto & Hennig)

Republican votes 1960, 2 normal plus improper U/0.018
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Idea: fit noise so that remaining points are “good mixture”
(see also Gallegos & Ritter 2005; χ2/Mahalanobis)
Problem: Data-dependent method, needs new robustness
theory.
Interaction with estimating s?
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6. Conclusion

There are more nasty problems in robust clustering than just
outliers.
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Real data are more nasty than our example models.
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Would like to have:
◮ Noise-mixture/trimming method with flexible cov-matrices

and estimation of trimming level and s.
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Would like to have:
◮ Noise-mixture/trimming method with flexible cov-matrices

and estimation of trimming level and s.
◮ Such a method will still need a tuning constant governing

“small cluster”/”group of outliers” trade-off.
◮ Robustness results that show that this is better than plain

Gaussian mixtures with estimated s.
◮ Stronger results to assess non-outlier-related (and

non-worst case) instability/robustness
◮ Always need decision what kind of clusters we want.
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