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Abstract

In this paper, the theoretical foundation of Least Squares-Fixed Point Clusters
for clusterwise linear regression is given in full detail, as well as a discussion of the
computation and application of the approach and a comparison with other cluster
analysis methods based on stochastic models. Fixed Point Clustering is based on
iteratively reweighted estimation with zero weight for all outliers. A Fixed Point
Cluster is defined as a data subset that is exactly the set of non-outliers w.r.t. its
own parameter estimators. Consistency results are given for certain mixture mod-
els of interest in cluster analysis. Convergence of a fixed point algorithm is shown
and the implementation is discussed in detail. Simulations and the application to
a real dataset show that Fixed Point Clustering has advantages over maximum
likelihood methods to detect well separated homogeneous subpopulations in the
presence of deviations from the usual assumptions of model based cluster analysis.

1 Introduction

Cluster analysis is related to the concept of outliers. If a part of a dataset forms a
well separated cluster, this means that the other points of the dataset appear outlying
with respect to the cluster. It may be interpreted synonymously that the cluster is
homogeneous and that it does not contain any outlier. The idea of Fixed Point Clusters
(FPCs) is to formalize a cluster as a data subset that does not contain any outlier and
with respect to which all other data points are outliers. It is rooted in robust statistics
as explained in Section 2.

The concept is applied to clusterwise linear regression in this paper, that is, a relation

y=2'8+u, E(u) =0,

between dependent variable y and independent variable z € IRP x {1} (B,+1 denoting
the intercept parameter) should be adequate for a single cluster. Figure 1.1 shows data
from the Old Faithful Geyser in the Yellowstone National Park, collected in August
1985. The duration of an eruption of the geyser is modeled here as dependent on the
waiting time since the previous eruption. Besides other features, which are discussed
in more detail in Section 9, one can recognize roughly two groups of linear dependence
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Figure 1.1: Old Faithful Geyser data.

between “waiting” and “duration”, corresponding to the eruptions with lower and higher
duration, the latter group with a moderately decreasing tendency for increasing waiting
times. The data was taken from Azzalini and Bowman (1990). The aim of clusterwise
linear regression is to find such kind of heterogeneity. Further applications of clusterwise
linear regression appear in e.g. in biology (Hosmer 1974) and market segmentation
(DeSarbo and Cron 1988).

For the sake of simplicity I discuss the one dimensional location clustering problem
(i.e., linear regression without slope, p = 0) to motivate the FPC idea in Section 2. Least
Squares-FPCs for the linear regression setup are defined in Section 3. Section 4 discusses
generalizations of the approach. Section 3.2 introduces a convergent algorithm to find
FPCs. Conditions for the consistency of Least Squares FPCs for theoretical FPCs are
given in Section 5. Theoretical FPCs are calculated for certain mixture distributions
and the consistency conditions are checked in Section 6. Section 7 discusses a reasonable
implementation of the method along with the choice of all required constants.

The literature on clusterwise linear regression concentrates mainly on least squares
and maximum likelihood methods for mixture and partition models (with exception of
the paper of Morgenthaler, 1990, see Section 2). An overview is given by Hennig (1999).
FPC analysis is compared to the maximum likelihood method of DeSarbo and Cron
(1988) by means of simulations in Section 8 and by application to the Old Faithful data
in Section 9. Linear regression clusters with normal distributed independent variable
may be estimated as well by methods for normal mixture distributions. The procedure
of DasGupta and Raftery (1998) concentrates on linearly shaped clusters and allows
for noise modeled by a Poisson process mixture component. It was included in the
comparisons as well.

After a short conclusion has been given in Section 10, all lemmas and theorems are
proven in Section 11.
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Here is some notation. “||z||” denotes the Euklidean norm of x € IR*. I, denotes the
p X p-unit matrix. For € > 0, B.(z) is the closed e-ball around z w.r.t. the Euklidean
metric. For a given probability distribution P, k € IN U {oo}, P* denotes the k-fold
independent product. P is used as parent distribution for i.i.d. random variables
Z1,...,Z, with L(z1) = P, which means that z; is distributed according to P. P
denotes the empirical distribution according to (z1,...,zy) where L(zy,...,zx) = P*. 1
write Pf for [ fdP. 1[(x,y) € B] denotes the indicator function of the set B.

2 Clusters, outliers, M-estimators and fixed points

The link between outlier identification, robust statistics and cluster analysis is mentioned
first by Hampel, Ronchetti, Rousseeuw and Stahel (1986, p. 46), to my knowledge.
Robust statistics often deals with the location of a large homogeneous “main part” of
the data in presence of outliers, which may be produced by mechanisms different from
the rest, and which should not largely affect the estimation of the main part. Cluster
analysis more generally aims to locate any homogeneous part of the data. The recognition
of such a part should not be strongly affected by changes in distant parts of the data.
This demand is violated by many CA methods, in particular by partitioning methods
such as k-means (see Garcia-Escudero and Gordaliza, 1999). If there is a clear separation
between main part and outliers, the main part can be regarded as the largest cluster,
and robust statistics may serve to find it. But it can also point to the other ones, as
explained in the following.

Imagine a one-dimensional dataset (z1,...,%,), n = 30, with 20 observations from
N(0,1) (avoiding the extreme tail areas), 5 observations from N(10,1), and 5 observa-
tions from AN (30, 1), i.e., three strongly separated clusters. M-estimators 7}, of location
(see e.g. Huber 1981) are defined by

iép <$Z%Tp) < min (2.1)

with suitable chosen loss function p and scale s > 0, or alternatively by

i:ilqp (LT”) Lo, (2.2)

S

where 9 = p/ (possibly piecewise). A solution of (2.2) is a fixed point of

f(t) = Z?zlw((mi - t)/S)ZL‘Z- w( ) i 77/1(?/) (23)

Siw((m—0)/s) 0 T Ty

That is, T, is a weighted mean, where the weights depend on T, itself. It may be
obtained by the ordinary fixed point algorithm under certain conditions (Huber, 1981,
p. 146; in linear regression such algorithms are sometimes called “iteratively reweighted
least squares”, see e.g. Morgenthaler, 1990). w((xz; — t)/s) gives the weight of x; at
the computation of ¢ and may be interpreted as a measure of centrality (outlyingness,
respectively) of the point x; with respect to t.

For example, the median corresponds to p(z) =z x 1[z > 0] — z x 1[z < 0] regardless
of s. As many robust location estimators, it will appear close to 0 for the data above,
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but positively biased (if interpreted as estimator for the data from N(0,1))) because of
the asymmetrical contamination in positive direction.

The bias may be avoided by the so called “redescending M-estimators”, which are M-
estimators with p(y) constant for large absolute values of y, and therefore ¥ (y) = w(y) =
0. Such points do not have any weight at the computation of 7}, as desired for outliers.
If s is chosen small enough, such an estimator estimates the center of A/(0, 1) unaffected
by any point from the smaller populations. Furthermore it remains a solution of (2.3)
under addition or deletion of outliers in the sense of this definition, i.e., of points with
w((z —t9)/s) = 0. But a solution of (2.2), (2.3), respectively, is usually not unique for
redescending M-estimators. If s is chosen such that w((z—t)/s) = 0 holds for |z —t| > 4,
say, there will be solutions estimating the centers of N'(10,1) and N(30,1) as well, since
the “window” of points with positive weight w around the center of each of the three
clusters will only contain points from the same cluster. This leads to the thought that
the solutions of (2.3) for redescending M-estimators might be used to locate an unknown
number of clusters stably in the presence of outliers.

The main problem is the choice of s. In robust statistics one often uses a preliminary
robust estimate of scale, for example the MAD. But such an estimate depends on at
least half of the points. That is, if the largest cluster contains fewer than half of the
points, s depends on points of at least two clusters and gets too large for a single cluster.
Furthermore the clusters may have differing scales. If AM'(30,1) would be replaced by
N (30,6), a weight window adjusted to variance 1 may capture only few points of this
component, while working with variance 6 may destroy the separation between the other
two populations.

The idea of FPC analysis is to define the location (regression parameters, respectively)
and scale estimators jointly via a fixed point condition using only the corresponding
non-outliers, so that both parameters are adapted to the local cluster. Such parameter
estimators can no longer be described as minima of some global criterion like (2.1), since
there is no natural quality ordering among them. The weights will be chosen so that
they can only take the values 0 (outlier) and 1 (non-outlier). That is, a solution of
(2.3) is characterized as corresponding to a subpopulation (defined by the weights for
all points) that is exactly the set of non-outliers w.r.t. its own parameter estimators. A
generalization to continuous choices of w, leading to fuzzy clusterings, is possible.

The resulting estimators fall in the class of simultaneous M-estimators of location
and scale as defined by Huber (1980, p. 136), but the theory given there does exclude
redescending ¢-functions. Morgenthaler (1990) to my knowledge was the first author to
investigate the use of redescending M-estimators for locating different subpopulations.
He discussed the choice of s in a linear regression setup based on the MAD of residuals
of the LS-estimator as well as using a decreasing sequence of values for s, but he did not
treat clusters with differing scales.

Alternative suggestions for the use of robust techniques in cluster analysis - not
generalized to linear regression clusters up to now - were made by Davies (1988) and
Cuesta-Albertos, Gordaliza and Matran (1997).
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3 Fixed Point Clusters in Linear Regression

3.1 Definition for datasets

Let Z := Z,, .= (X,y) := ((z},%1),-.-, (x},yn)), where z; € IRP x {1}, y; € IR, i =
1,...,n, be a regression dataset. For a given indicator (weight) vector w € {0,1}" let
Z(w) = (X(w),y(w)) be the dataset consisting only of the points (z}, ;) with w; = 1.
n(w) is the number of points indicated by w. For FPC analysis in the regression setup,
particular weight vectors are of interest. They indicate the points lying close (in terms
of a variance parameter o) to the regression hyperplane defined by a parameter [3:

Wz 5,02 1= (1[(y,~ —a8)? < 002])1,:1,".7”.
An FPC is defined as a data subset defined by some weight vector w indicating the
non-outliers w.r.t. to the LS-estimator 3(Z(w)) weighted by w itself. Outlyingness is
measured by means of the weighted error variance estimator ¢(Z(w)), i.e., parameter
estimators satisfying a fixed point condition analogously to (2.3). Some tuning constant
¢ > 1 has to be chosen to define the tolerance of the outlier classification. The choice of
c is discussed in Section 7.1.

Definition 3.1 An indicator vector wgz g2 € {0,1}" is called Least Squares-Fixed
Point Cluster Vector (LS-FPCV) w.r.t Z (and the indicated points form an LS-
FPC), iff (8,0?) € IRP™ x IR§ is a fized point of

fz: (B.0%) — (B[B(wzp,0)], 62 [B(wzp,.2)]),
where f(Z(w)) = (X (w)X(w)) ™ X (w)'y(w),
P(8) = s o (v = BZ)

In case of the non-ezistence of (X(w)'X(w))™!, fz(8,02%) := (8, 00).

For example, consider the points indicated by triangles in Figure 3.1. They are indi-
cated by the weight vector w = wg g ,2 where (3 corresponds to the solid line and the

dotted lines show 2’3 &+ v/co?. They form an LS-FPC for ¢ = 6.635, since one finds

A

(B(Z(w)), 6*(Z(w)) = (B,0?).

Consider on the other hand the squares with values of “duration” between 2 and 4.
If the LS-regression line is estimated for this data subset, their error variance is so large
that some of the circles and some of the triangles would get inside the corresponding
strip. This would make the error variance of the resulting data subset even larger and
it would also change the regression line, so that the fixed point condition is not fulfilled
and this data subset is not separated enough from the rest to form an LS-FPC. The full
result for the Geyser data is discussed in Section 9.

Note that FPCs may intersect or include each other. In particular, all subsets
Z(wz5,2) with 0> = 0 and non-collinear covariate points form LS-FPCs. It will be
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Figure 3.1: Old Faithful Geyser data with LS-FPCs, ¢ = 6.635. The points indicated
by crosses form an FPC as well as the triangles. A further FPC consists of the circles
together with the crosses.

discussed later how to avoid trivial meaningless LS-FPCs in the output of the proce-
dure.

Since the FPC-property of a subset does only depend on the points inside the strip
defined by its parameter estimators, the deletion of any of the points outside the three
shown FPCs (i.e., the points denoted by squares), or the addition of such points, would
not change the FPC-property of any of these clusters.

3.2 A fixed point algorithm
for LS-Fixed Point Cluster Vectors

It is practically impossible to check the FPC-property of every subset of a dataset, ex-
cept if it is very small. But LS-FPCVs can be found by means of the usual fixed point
algorithm. Its convergence is shown as Theorem 3.2. The use of the algorithm for an
implementation of FPC analysis is described in Section 7. The convergence result will
be needed for the consistency theory of Section 5 as well.

Fixed point algorithm (FPA): Choose w° € {0,1}" with n(w®) >p+1, k=0.
Step 1: Compute 3(Z(w*)), 5%(Z(w*)).
Step 2: wit! = wy;(wk) = 1((y; — #}B(Z(w*)))? < co?(Z(w*))), i=1,...,n.

Step 3: End if w® = w**!, else k = k + 1, step 1.
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Theorem 3.2 (Convergence) Letc > 1. If (X(w)X(w))™! exists for allw € {0,1}"
with n(w) > p + 1, then for some k < oo : w* = wz(w*), i.e., the FPA converges in
finitely many steps.

3.3 Definition for distributions

In order to investigate the statistical properties of LS-FPC analysis, I define a distribution
version of LS-FPCs. Let P denote a distribution on IRP x {1} x IR, i.e., a distribution
for regression data points (z',y) as above. LS-FPCs of a distribution should consist of
all points of appropriate strips around regression hyperplanes where the distribution is
“regression cluster-shaped”. They are indicated by weight functions of the form

w2 (w,9) = 1[(y — ')’ < co?].

For some measurable indicator function w let P, denote the conditional distribution of
P under {w = 1}, i.e., the restriction of P to the points indicated by w.

Theoretical LS-FPCs of distributions are defined by replacement of the regression
and scale estimators by their corresponding functionals in Definition 3.1.

Definition 3.3 An indicator function wgq2, (3,0%) € IRP™ x IR{ is called Least
Squares-Fixed Point Cluster Indicator (LS-FPCI) w.r.t P, iff (8,0?) is a fived
point of

o (8,0%) = (B[P, .| 6% [P, .])
where B(P,) = argﬂmin P,(y — 2'B)?,

52(Pw) = Pyu(y — ZBIB(Pw))Q-

If arg min P, (y — 2'3)? is not defined uniquely, fp(83,0?) := (8,0).
B

(This implies Pwg 2 > 0 for all LS-FPCIs.) (3.1)

Under suitable conditions, LS-FPCVs turn out to be consistent estimators for LS-FPCls
in Section 5. That is, LS-FPCVs can be viewed as reasonable estimators of clusters of
distributions, if the LS-FPCIs are such reasonable clusters. Some examples are discussed

in Section 6.
The components of the functions fz, fp respectively, are written as follows from

now on: fBz(83,0?) := B[Z(wz,ﬂ,ﬁ)]a 05(8,0%) := 6% [L(wz,2)], Bp(B,07) = B [Pwﬂ,az]v
0%(8,0?) := 62 [Pwﬂﬂ].

Remark 3.4 The regression equivariance properties of the LS- and variance estima-
tor carry over to FPCVs and FPCIs, i.e., wge2 is FPCI w.rt. P iff wge2 0 D =
W(A-1Y/(af+b),a202 18 FPCI w.r.1. PP under linear transformations of the form

D: IRP™? s IRP*? (z,9) — (Az, ay + 2'b),
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A € IR"*Y? jnvertible with last column (0,...,0,1), a € IR\ {0}, b € IR”*'. This holds
analogously for FPCVs. The proof is straightforward, see Hennig(1997), Remarks 8.5
and 8.7.

4 Fixed Point Clusters - General

Here is a rougher description of FPCs: Consider a subset of the dataset. Decide for
all points of the data subset, whether they are close to the subset (represented by its
regression and scale parameter estimator) or lie out. If the non-outlying points are
exactly the points of the subset, the subset forms an FPC. That is, the FPC property
defines homogeneity (no outlier included) and separateness (all others are outliers) of a
cluster in terms of outlier identification.

This description may be generalized to arbitrary clustering problems. Only an outlier
identification rule is needed, that divides the whole dataset into outliers and non-outliers
w.r.t. any given subset. The subsets, which do not contain any outlier, and w.r.t. which
the whole rest of the data consists of outliers, are the FPCs. Applications to clustering
problems apart from clusterwise linear regression are sketched out in Hennig (1998).

Appropriate outlier identifiers can be found as follows: Davies and Gather (1993)
emphasized that a definition of the term “outlier” should rely on the idea of an underlying
distribution of the homogeneous part of the data. They define “outlier regions” (ORs) as
atypical regions of such “reference distributions”. For example, in the linear regression
case the class of distributions of the type Pj3 ;2 ¢ can be considered as the class of reference
distribution for homogeneous data, where Pg ;2 ¢ is defined as the common distribution
of (z,y) according to

y=2B+u, L(u)=N(0,0%), L(z)=GaG, (4.1)
i.e., a model with random covariates, where
r and u stochastically independent, G||z||* < co, (Gzz')™" exists. (4.2)

Then,
A, Py g2 g) = {(z,y) € IR (y — 2'B)* > co?},

¢ := c¢(a) being the (1 — a)—quantile of the x3-distribution, defines an a-OR in the sense
of Davies and Gather, i.e., A(«, P32 ¢) = o so that the points in the area of low density
of the error distribution are defined as outliers. For example, ¢(0.01) = 6.635. In the
definition of LS-FPCs, the parameters 3 and o? are simply replaced by estimators.
That is, an OR is estimated on the basis of the data subset under consideration.
It is treated as a set of non-outliers coming from a member of the family of reference
distributions, and the whole dataset is treated as generated by a distribution of the form

(1—¢)Py+eP*, 0<e<]1, (4.3)

where P, is a reference distribution for homogeneous data, and P* is arbitrary, but
should be concentrated on A(«, Py) with appropriate a. Models of the form (4.3) are
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called “contamination models”. They are often used in robust statistics (e.g. Huber,
1981). Mixture models of the form

k k
qu’,’ Zéi = 1, (44)
i=1 i=1

where P;, 1 = 1,...,k are cluster reference distributions with distinct parameters, are

more familiar in cluster analysis (e.g. DeSarbo and Cron, 1988). They are of the con-
tamination type (4.3) as well, but they assume a particular structure for P*, while FPC
analysis needs P* to be more clearly separated from the cluster generating distribution
Py, i.e., Pg, ¢ in this paper. This is illustrated from a theoretical viewpoint in Section
6, while the simulation study of Section 8.2 shows the benefit of allowing a less restrictive
P* than mixture based CA methods.

From the viewpoint of robust outlier identification, it is questionable to estimate an
OR by use of non-robust estimators like the LS-regression estimator. If a dataset (or
a subset) contains outliers, they will affect such estimators. Davies and Gather (1993)
discuss alternative outlier identifiers for the case p = 0 and show the superiority of
identifiers based on robust estimators for the problem of finding large outliers in the
presence of multiple outliers. Boscher (1992) suggests alternative outlier identifiers for
the linear regression case. FPCs may be defined by the use of more general estimators
of ORs. The most obvious idea is the replacement of regression and scale parameters B
and 62 of Definition 3.1, the corresponding functionals of Definition 3.3, respectively, by
more robust alternatives.

I concentrate on the LS-version here for reasons of computational and theoretical
simplicity. Its non-robustness may do less damage for the purposes of cluster analysis,
since the aim is to find outlier-free data subsets, and there is no robustness problem for
the data subsets which are in fact homogeneous and well separated. Recall from Section
2 that Definition 3.1 defines a redescending M-estimator as opposed to an LS-estimator
for the whole dataset.

For heterogeneous data subsets, however, the estimated OR may get very large, so
that there is usually an additional FPC corresponding to (almost) the whole dataset,
even if the latter consists of some clearly separated clusters.
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5 Consistency of LS-Fixed Point Cluster Vectors

The LS-FPCIs of the models are the “theoretical clusters” to be estimated by the LS-
FPCVs. FPC analysis is intended to be a reasonable tool to analyze data from con-
tamination models (4.3) where the component Py = Pg, ,, ¢ is well separated from P*.
Therefore it is desirable that the parameters of the LS-FPCVs are consistent for the
parameters (3;,07) in some sense. The number of the FPCIs of distributions can vary
as well as the number of FPCVs of datasets, even that of data drawn i.i.d. from the
same distribution with n — co. Here are aspects of the consistency of FPCs:

1. Do LS-FPCVs estimate LS-FPCIs consistently?

(a) If P has an LS-FPCI, there should be a sequence of LS-FPCVs consistent for
it (Theorem 5.3).

(b) For large enough n, all LS-FPCVs should appear close to some LS-FPCI of P
with large probability. (Corollary 5.2. There is no result relating the number
of LS-FPCVs to that of LS-FPCIs.)

2. Do LS-FPCIs adequately reflect the structure of distributions of the contamination
type (4.3)7

(a) The contamination model should have an LS-FPCI belonging to Pg, ,, ¢, if it
is well separated from P* (Theorem 6.1, Corollary 6.2, Examples 6.4-6.8).

(b) P* may contain further parts of the type Ps ,2 . Therefore it is not reasonable
to expect that the LS-FPCI mentioned above would be the only one. But P
should not have LS-FPCIs in areas where it does not give rise to any clustering
of the data (Theorem 6.1, Examples 6.4-6.8).

(c) If the LS-FPCIs correspond to well separated components of the type P ;2 ¢,
they should fulfill the assumptions of the consistency results (Lemma 6.3,
Examples 6.4-6.8).

Throughout this section P denotes a distribution on IR? x {1} x IR, where L(Z,) =
P* n e IN.

The basic result for the asymptotic existence of LS-FPCVs close to the LS-FPClIs,
the non-existence elsewhere, respectively, is the uniform consistency of fz, (3, 0?) for
fp(B,0?%) for all (3, 0?) belonging to some suitable set.

Let C be some compact subset of IRP*! x IR . Define

V(ie)= U {ly-2'8) <co®}
(B,02)eC

as the union of all (z,y) belonging to one of the wg ,2-stripes for (8,0?) € C. V(C) is
closed and hence measurable as proven by Hennig (1997), Remark 13.10. Consistency
of fz, for fp within C requires the following assumptions:

V(B,0%) € C: P{(y—2'B)? =co?} =0, (5.1)

Vz € RPN\ {0} : P{a'2=0}nV(C)) =0 (5.2)
Py?1[(z,y) € V(C)] < oo, Pllz|*1[(z,y) € V(C)] < o0, (5.3)
inf Pwg,2 > 0. (5.4)

(B,0)eC
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The assumptions (5.1) and (5.2) are fulfilled if P is Lebesgue-dominated. Finiteness of
Py? and P||z||? suffices for (5.3). (5.1) and the moment conditions (5.3) are needed to
ensure the continuity of fp. (5.2) prevents the covariate matrix from getting collinear.
The assumption (5.4) together with (5.1) forces C to be bounded away from o> = 0.
Since C' is compact, this suffices for (5.4) to hold if P has a non-vanishing Lebesgue-
density. (5.4) is necessary since FPC analysis deals with arbitrary small subsets of the
data, and increasing n does not prevent the occurrence of very small data subsets such
that their local estimators of regression and error variance lie far from their theoretical
values.

Lemma 5.1 (Uniform consistency of fz, on C) If (5.1)-(5.4) hold for some com-
pact C C IRP*! x IR, then for all k > 0

P*{3ng > p+1¥n > no, (8,0%) € C: |f2,(8,0%) — fr(B.0%)| < v} =1

This means that for such C'; which can be arbitrary large as long as it is compact and
bounded away from o? = 0, LS-FPCVs occur eventually only outside of C' or where

fp(B,0?) is very close to (3, 0?):

Corollary 5.2 (Non-existence of LS-FPCVs) Let k > 0. Let C fulfill the assump-
tions of Lemma 5.1. Then for large enough n there exists P*°-a.s. no LS-FPCV wg, g,

with (3,0?) € C and || fp(B,0?) — (B8, 0%)|| > k.

The corollary follows directly from Lemma 5.1.

It is necessary to investigate fp to assess the statistical meaning of this statement.
The examples of Section 6 show how fp may look like.

This will help to understand the meaning of the following assumption as well, which
is additionally required to show the existence of consistent sequences of LS-FPCVs for
LS-FPCIs. Suppose

3 LS-FPCI wg, ;2 w.r.t. P, a5 > 0. (5.5)

(If there exists such LS-FPCI with o3 = 0, then Pwg, o > 0 and for large enough n there
are P®-a.s. enough points (z,y) with (y — 2’(y)*> = 0, so that wz, g, ¢ is an LS-FPCV.
That is, in this case there exists a consistent sequence of LS-FPCVs.)

It will be assumed that d¢; >0, 1 >a >0:

VO <e<e: (B,0°) € BBo,03) = fr(B,0°%) € Bae(Bo, 7). (5.6)

This assumption is needed to force fz,(8,0?%), where (8,0?) is close to (B, 0?), into
shrinking neighborhoods of (fy,c3). Let C := B, (5, 03). (5.6) follows immediately, if

fp(C)CC,1>a>0: Y(B,07),(B2,03) € C:
1£p(B1,07) = fp(B2, 03)|| < al|(By, 07) — (B2, 03I, (5.7)
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i.e., contractivity of fp within C as needed for Banach’s Fixed Point Theorem that guar-
antees the existence of a fixed point within C' (but only for fp, not for the non-continuous
fz,)- See Section 6 for a discussion of cases where this is fulfilled.

Theorem 5.3 (Consistency) Assume (5.5), (5.6) and (5.1)-(5.3) for C =
Be,(Bo,03). Then,

Pe{¥n >p+1 Jwz,,.2 LS-FPCV w.r.t. Z, :
Tim (6, 02) = (6, 02)} = 1

Remark 5.4 The conditions (5.6) and (5.7) in the given form are not invariant under
data transformations of the form D of Remark 3.4. But the convergence statements
of Lemma 5.1 and Theorem 5.3 remain fulfilled: With D(x,y) = (Az,ay + z'b) let PP
denote the distribution of D(z,y) under L(z,y) = P. Assume a # 0 and A~ as existent.
—1y/
Let B := ( a<A0 ) (?2 - Nlzll@-1yB-1 == 2*(B 1)'B 'z defines a norm on IRP*?. If
the Euklidean norm in the conditions (5.6) and (5.7) (including the definition of B.)
is replaced by || ® |[(g-1yB-1, then the conditions hold for fpp in an ey-neighborhood of

B(fg), iff they hold for fp in the original form. Since all norms on IRP™ metrize the
0

same topology, the proofs of Lemma 5.1 and Theorem 5.3 can be adapted easily to the
norm || ® ||g-1yB-1.

Remark 5.5 The FPCs are defined by a particular outlier region here. But the main
ideas to prove consistency might be used for some other definitions of FPCs as well:

1. Get convergence of the FPA by finding a statistics that is strictly decreased by the
algorithm.

2. Check uniform consistency of fz, for fp.

3. Assume contractivity of fp in some neighborhood of the fized point (5o, 03) to be
reached consistently.

4. The FPA does not leave small neighborhoods of (Sy,03) for large enough n because
of 2. and 3. and there must be a fixed point of fz, because of 1.

6 LS-Fixed Point Cluster Indicators of some
contamination and mixture models

This section starts with some theoretical results under relatively strong conditions. First,
the existence and uniqueness of an LS-FPCI in the case € = 0 is shown. Corollary 6.2
and Lemma 6.3 (giving conditions for an LS-FPCI to fulfill the assumptions of Theorem
5.3) allow € > 0, but require P* to give mass 0 to some neighborhood of {y = 2’3, }. This
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does clearly not hold for mixtures of more than one regression with normal distributed
errors.

The theory is supplemented by numerical evaluations of fp for some mixtures of
one-dimensional normal distributions (i.e., p = 0). The results show that reasonable LS-
FPCIs again exist, if the mixture components are separated well enough. They provide
an illustration of the practical meaning of Corollary 5.2 and assumption (5.7).

In the case € =0, P = Py, ;2 ¢ is a homogeneous linear regression distribution. Con-
sequently there is only one LS-FPCI:

Theorem 6.1 (Homogeneous normal regression) Let c > 3. Wg, ko2 1S the unique
LS-FPClw.r.t. P = Py, ;2 ¢ where k is the unique zero of

2V/ckp(v/ck)

h(k) :=1—k—®(\/&)_¢(_\/&).

Theorem 6.1 shows that, given an LS-FPCV w w.r.t. some data set Z, one can inter-

pret (Bz(w), Ué,gw)) as a Fisher consistent estimator of the parameters (3;,0?) of some
homogeneous linear regression distribution, of some linear regression part of some con-
tamination mixture respectively, as in Corollary 6.2. k£ depends on the pre-chosen c only,
e.g. ¢ = 10 yields k = 0.9815, ¢ = 6.635 yields k = 0.9001. Essentially, 02 does not
estimate the variance of the normal error distribution, but the variance of the truncated
normal distribution of the non-outliers w.r.t. 8z and itself.

The Theorem leads easily to the existence of a suitable LS-FPCI in the contamination
model with € > 0, if there is no overlap between the LS-FPCI of the component P, 02,

and P*:

Corollary 6.2 wgy, .2 is LS-FPCI w.r.t. P defined by (4.3) with Py = Py, ;2 g, if
P*wg, 42 = 0. (6.1)

(Proven as Theorem 13.1 of Hennig (1997).)

The uniqueness of the LS-FPCI is lost in this case. This is reasonable since P* may

generate clusters elsewhere. (6.1) means that P* has to generate outliers w.r.t. Pwﬂ o2
1,R0y

with probability 1. Note that (6.1) becomes weaker with smaller c. If one allows some
overlap of P* and Pwﬂ ..»» broofs get rather complicated (Hennig (1997), but consider
1,807

the examples at the end of this section). If the overlap or ¢ would be small enough and
P* would be continuous, continuity considerations lead again to the existence of some
LS-FPCI w belonging to Py, ;2 ¢. Since the form of P* is not specified, FPC analysis
cannot distinguish between non-outliers w.r.t. this w generated by Pjs, ;2 ¢ and those
generated by P*. Therefore (3(P,),5%(P,)) would not be equal to (3, ko?), but lie in
some neighborhood.

Now conditions will be given, which ensure that the LS-FPCI of Corollary 6.2 fulfills
the assumptions of the consistency theorem.
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Figure 6.1: P = Np: a)z-axis: (3, y-axis: fp - b) z-axis: o2, y-axis: 0%

Lemma 6.3 (Contamination mixture with normal regression) Letc >3, P =
(1—€)Ps 02g+eP", 1>€>0, where

Gllz||® < o0, Ya #0: G{d'z =0} =0, (6.2)
Jder > 0: P*(V(Be, (41, ko?)) = 0, (6.3)

where k > 0 is defined as in Theorem 6.1 and fulfills furthermore

k>1-—

c—1

Then the assumptions of Theorem 5.3 are fulfilled with o = (1, of = ko?.

Remark: If eP*{(y — 2'31)? < co?} > 0 but sufficiently small, condition (6.3) could be
presumably replaced by assuming P*y?1[(y — 2'3)? < ¢?] and P*||2?|[1[(y — 2'8)? < o?]
to be continuously differentiable w.r.t. (3,0?) for (3,0?) € B, (81, ko?). Then (8, 02)
would appear in some neighborhood of (3, ko?).

(6.4) can be verified numerically for given ¢ and holds for all values applied in this
paper.

In the case p = 0, the function fp is easy to evaluate and visualize numerically for
normal mixtures!. Here are some examples. ¢ = 6.635 was used, except if indicated.

Example 6.4 P = Ny;. That is, 1 = 0,02 = 1 in Theorem 6.1. Figure 6.1a shows
Bp(B,0%) as a function of B for o® = 0.1,0.25,0.5,0.75,1. (I always added the identity
curve to make the fired points visible.) Regardless of o2, the only fived point of Bp is 0.
Note that assumption (5.7) would follow for a one-dimensional function f if its increase
in a neighborhood of a fized point would be smaller than 1 (contractivity). This holds
obviously for (p.

Figure 6.1b shows 0%(0,02) as a function of 0. There are two fized points: 0 and
0.9001. Step 1 of Theorem 6.1 shows unique existence of a fized point for o® > 0. wgy

'For p > 0, suitable parallel regression hyperplanes result in the same values
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Figure 6.2: P = 3Ny1 + $Nop.001: a) p.d.f. with LS-FPCs - b) z-axis: 3, y-axis: (p

cannot be an LS-FPCI unless Pwgg > 0.
Given some k > 0, Corollary 5.2 almost surely excludes the existence of LS-FPCVs

where || fp(B3,0%) — (B,0%)|| > & for large enough n, (8,0%) from any compact set C.
Eventually, oll LS-FPCVs will fall in one of two classes:

e They appear in a shrinking neighborhood of (3,0%) = (0,0.9815),

e or they contain only very few points since o> ~ 0 or |B| very large or both. (If
o? would be very large but not |G|, {gs.2 = 1} would contain almost all points.

O'%n (8, 0?) would approzimate op of Figure 6.1b and would be smaller than a large
o?.)

The implementation of FPC analysis given in Section 7 excludes too small LS-FPCVs.
In this example, such small FPCVs do not provide interesting information about the
data, while (By,03) can be consistently estimated by (Bz,,0z, /0.9001).

Observe that 0% is contractive in the neighborhood of o® = 0.9815, but not in the
neighborhood of 0. A fized point algorithm applied to fp with starting values (3, 02) from
some neighborhood of (0,0) would never converge to (0,0), since the increase of 0% is
larger than 1 in a neighborhood of 0. Collatz (1966) calls such fized points “repulsive”.
As mentioned before, there are LS-FPCVs wg, .2 with o = 0 even for large n, but if
n is large enough, and 3 is not too far from 0, oz, (8,0%) comes close to op(0,0?) with
high probability and therefore gets larger than o®. This means that 62(Z,(w*)) usually
not decreases further during the FPA, if 6*(Z,(w")) has been already small.

Remark 6.5 [ have restricted the considerations about contractivity of fp to the one-
dimensional functions Bp(e, 0?) for fivred % and 0%(f3, ®) for fived 3. As shown in Lemma
6.3, fp is contractive around (0,0.9001) for P = N(0,1), and it cannot be contractive if
this is not even fulfilled for the one-dimensional projections. But for the further examples
I only presume the contractivity of fp in case of the contractivity of both Bp(e,0?) and
a%([3,®) on the basis of numerical inspection and smoothness considerations.

Example 6.6 P = %No,l + iN()’o_()ol. A cluster of “inliers” is added to the standard
normal distribution here (Figure 6.2a. The LS-FPCs are drawn below the x-axis; they
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Figure 6.3: P = %N'o,l + %./\/'0,0_001: a), b) z-axis: 02, y-axis: 03

are indicated fat, if they fulfill (5.7)). Figure 6.2b shows again Bp(8,0%) as a function of
B for fized 0% = 0.02,0.2,0.5. For 0® = 0.001 the curve would have the same shape but
could not be distinguished optically from the identity curve. Again the only fized point of
Bp is 0, regardless of o2, and again Bp is contractive in a neighborhood of 0. There can
be no LS-FPCI with Bp # 0, and there is no such mizrture component as well.

Figure 6.3a and b show 0%(0,0?) as a function of different domains of o*. There are
fized points at 0 and about 0.0013, 0.017} and 0.544, while there are only two components
in the mizture®. Again wog cannot be an LS-FPCI. The discussion of the previous
example concerning o® ~ 0 holds again®. The fized point 0.0174 of 0% is repulsive for
B = 0. This means that if n is so large that oz, provides a good approximation of op, the
FPA will move 6*(Z,(g)) away from 0.0174, so that an LS-FPCV is found only seldom
in this area, but this cannot be excluded theoretically.

op is contractive around (0,0.0013) and (0,0.544), so that almost surely there exist
consistent sequences of LS-FPCVs for these two LS-FPCIs (under the reservation of
Remark 6.5). These are not the parameters of the mizture components. The reason is
that FPC analysis does not enforce a partition of the data. The second mizture component
Noo.oo1 is only separated from those points of Ny that lie far enough from 0. But
points from the first component Ny 1, truncated to the non-outlier region of Ny .01, have
nevertheless a larger variance than points from Nygoo. And there is no data analytic
information to separate the first one from the second one.

Howewver, there are only few points from the first component in this area and so the
LS-FPCI with (3,0%) ~ (0,0.0013) corresponds well to the points from Ny g.001-

Contrarily, (0,0.544) would be a bad choice as an estimator of the parameters of the
first component. Since almost all points from Nygo01 are non-outliers with respect to
N1, the standard normal component of this mizture is poorly separated from the rest
(and the concept of “separateness of mizture components” as used in this paper turns
out to be asymmetrical). The interpretation is that the relation between the width of the
non-outlier region and variance of the truncated distribution does not seem “normal” to
the FPC' analysis procedure if (8,0%) =~ (0,1), but for (0,0.544), because of the “inliers”
from the second mizture component®.

2For 02 > 0.6, there is no further fixed point.
3Note, however, that “~ 0” means “remarkably smaller than 0.001” in this example.
*If the proportion of A/(0,0.001) would be increased to %, only one LS-FPCI would remain, namely
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Figure 6.4: P = %No,l + %N5,0.255 a) p.d.f. with FPCs - b)z-axis: 3, y-axis: o2. Fat line:
Bp(B, %) = 3, dotted line: 0%(8,02) = o2

If one would consider FPC' analysis to be an estimation procedure for parameters of
mixtures, it should be ruled out by this example. The example shows that this is not
what the method essentially does. The components of mixture models cannot always be
interpreted as “clusters”. A mixture of two normals with only moderately different scales
and means can hardly be distinguished from a homogenous population. Surprisingly large
differences of the parameters are necessary for two normal distributions to be “separated”,
i.e.,to produce a large amount of outliers with respect to the other one (Wellmann and
Gather 1999).

FPC analysis provides a proposal how to define the “clusters” of a normal mizture.
According to the concept presented here, clusters are interpreted in terms of internal
homogeneity and external separateness. The normal distribution serves to define “homo-
geneity” and “separateness”. Internal homogeneity is measured by the relation between
the width of the non-outlier region and variance of the truncated distribution. P truncated
to [—v/6.635 * 0.544,/6.635 * 0.544] is “more normal” in this sense than P restricted to
the non-outlier region of Ny .

Example 6.7 P = %N’o,l + %N5,0_25. This is an example with two normal mixture com-
ponents that generate clearly separated clusters (Figure 6.4a). The parameters of the
LS-FPCIs should be close to the parameters of the mixture components. Figure 6.4b)
shows the pairs (8,0?%), for which Bp(8,0?) =3 (fat line), o%(8,0?) = o2 respectively
(dotted line). The intersections of the fat and the dotted line mark the fixed points of
fp. Apart from 0% = 0 there are five of them: approzimately (0,0.9), (0.4, 2.39), (5,0.23),
(4.45,1.89), and (2.5,6.87). Figure 6.5a shows Bp as a function of B for o = 0.25 (dot-
ted), o* =1 (thick), 0® = 6.8 (very fat). In the latter case, Bp is nearly constant around
B = 2.5 since o? is so large that {wg .2 = 1} has almost probability 1. PBp is clearly

that corresponding to A/(0,0.001)
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Figure 6.5: P = tNo1 + tN50.05: a) z-axis: 3, y-axis: Bp - b) z-axis: 02, y-axis: o5

contractive here around 2.5 for 0> = 6.8, as well as around 0 and 5 for the smaller
values of 2. Figure 6.5b shows 0% as a function of o® for 3 =0 (dotted), 8 =5 (thick),
and 3 = 2.5 (very fat). It turns out that 0% is only contractive in the neighborhoods of
the fized points (3,0%) = (0,0.9), (5,0.23) corresponding to the two mizture components,
and (2.5,6.87) corresponding to the non-outlier region of the whole dataset. FPC anal-
ysis does not take care if the distribution inside the non-outlier region of a cluster has
a normal shape®. This is not the case for the LS-FPCI corresponding to the parameters
(2.5,6.87). If an outlier identification is computed on the basis of points from distinct
mixture components, the non-outlier region gets large. The corresponding LS-FPCI is
only homogeneous in the sense that the points inside would “belong together” in some
manner compared to any added gross outliers®.

Observe further that in the examples up to now the contractivity assumption (5.7)
held for the “more meaningful” LS-FPCIs in terms of mizture components, while other
fized points were repulsive.

Example 6.8 The last ezample illustrates the meaning of the term “clearly separated”.
Figure 6.6a shows the p.d.f. of P = %No,l—i-%]\fd,o_%, d = 2.5. The density is bimodal, but
the amount of mass that cannot be clearly assigned to one or the other mixture component
is not negligible. Apart from o = 0 there is only one further fized point of fp as can
be seen from the plot of Bp(B,02) = B (fat line), 0%(B,02) = o respectively (dotted
line) (Figure 6.6b). This fized point corresponds to the non-outlier region of the whole
dataset, as discussed in the previous example. If the distance d between the two mixture
components increases, the fat line gets closer to the dotted line. At about d = 2.9, fp
starts to have a fived point at about (d,0.25) (Figure 6.7a). At this stage, the second
component is separated well enough from the first one, but not the first one from the
second one. At about d = 3.7, an LS-FPCI for the first component appears (Figure
6.7b). The example illustrates that the fized point concept of “clustering” requires more
separation than the identification of “clusters” with mizture components or neighborhoods

SHennig (2000) discusses the distinction between more and less meaningful FPCIs on the basis of
the Kolmogorov-distance to an LS-FPCI of a homogeneous normal population.

6This effect does not vanish if LS-functional /expectation and variance are replaced by robust func-
tionals as suggested in Section 4
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Figure 6.7: a) pdf of P = %N(m + %Ng,o_%. b) pdf of P = %N()J + %N3_7,0_25. Both
with LS-FPCs.

of modes. The degree of separateness needed for FPCs can be modified by the use of the
tuning constant c. The larger c, the larger the region of non-outliers and the more
separation between clusters is needed. For ¢ = 10, there is only one LS-FPCI for d
smaller than 3.7, where the LS-FPCI corresponding to N (d,0.25) appears. For ¢ = 5,
this mixture component keeps its LS-FPCI down to d = 2.4.

Again it turns out that FPC analysis leads to essentially different findings than mix-
ture estimation or mode seeking. It is subject to the applicator to decide if it corresponds
more to his or her image of a cluster.
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7 Implementation of the procedure

As mentioned before, a complete search for all LS-FPCVs of a given dataset is impossi-
ble. In this section an implementation of a procedure is described to find all “interesting”
FPCVs with high probability. The term “interesting” is discussed below. The implemen-
tation involves the choice of some tuning constants, which is discussed in detail. Find a
short description of the implementation in Section 7.4. The basic procedure is simple:

1. Choose the number of algorithm runs 4,, and the tuning constant c.

2. Repeat i,, times: Generate a subset indicator w® with n(w®) = p+2 randomly” and
apply the FPA until convergence. Store all found FPCVs, count the number of
times that each FPCV has been found.

The choice of ¢ and 1, is discussed in the Sections 7.1 and 7.3.

Applying the basic procedure, one may observe that the number of found FPCs is
often larger than one would like to interpret, unless n is very large or i, is so small that
the result of the analysis depends strongly on chance. There are some reasons for that:

e Often there is more than one version of the same visible cluster in the data, since
FPC analysis allows an arbitrarily large overlap between the clusters. Consider
a single point that is neither a clear outlier, nor clearly consistent with the other
points of a given FPC. If such a point is added to or removed from an FPC, the
FPC property might remain fulfilled. It does not decide necessarily between these
two versions of the cluster. Contrarily, partitioning methods base such a decision
on assumptions about the nature of the rest of the data. Such assumptions are
avoided in the FPC setup.

e Often there appear small subsets of a dataset that can be fitted almost exactly
by a regression hyperplane. Since their separation from the remaining points is
measured by their very small error variance, they can meet the FPCV definition.
For example, all data subsets lying exactly on a regression line (including all subsets
of p+1 points) lead to FPCVs with variance 0, as mentioned in Section 3.1. If ¢, ,,
is large enough, some algorithm runs lead to very small FPCVs by chance.

o If the dataset is sparse in IRP™ i.e., if n is small or p is large, it is not very
difficult for subsets to be separated well enough from the rest of the data and
thus to be FPCVs. This is in agreement with Rousseeuws (1994) words that “my
interpretation of the “curse of dimensionality” is that several structures can exist
stmultaneously in the same dataset.” Partitioning methods and methods based on
mixture models suffer from lots of local optima of the criterion function in this
situation (usually hidden from the applicator), FPC analysis yields lots of FPCs,
as can be seen in the simulations of Section 8.1.

e The consistency theory does not exclude the occurrence of FPCVs in the neigh-
borhood of repulsive fixed points, which turned out to be of low interpretative
value in the Examples 6.6-6.8. However, if n is large, then one can expect that
the FPA converges to such FPCVs very seldom because of the repulsiveness of the
corresponding fixed points w.r.t. fp, which is well approximated eventually.

"The choice of n(w?) is justified in Section 7.3.
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All these FPCs might give relevant information about the dataset, but the researcher
might not want to work through more than 20 or even more than 200 FPCVs to find the
most important features of the data. Therefore an applicable procedure needs a third
step, which will be described precisely in the Sections 7.2 and 7.4:

3. Reduce the number of FPCs to be interpreted by

e defining groups of similar found FPCVs (clusters of clusters),
e discarding all FPCVs of groups that were found too seldom,

e choosing a representative FPCV for each of the remaining groups.

7.1 The tuning constant c

The tuning constant ¢ defines the size of the distance that a point must have from the
center of a normal distribution to call it an “outlier”. The larger ¢, the more separated
data subsets have to be to get FPCUs. The choice of ¢ determines the definition of the
structures FPC analysis looks for, and not the quality of their estimation. As for the
p-value in testing, there is no “optimal” or “correct” choice of c. The researcher has to
decide about the degree of separation of clusters he is interested in.

Some statisticians do not like tuning constants because of the lack of “objectivity”
of subjective choices. But it seems to me that such choices are required for all good
statistics since careful model choices are always subjective decisions. Tuning constants
are a way to make the subjectivity explicit.

Here are some theoretical considerations. Example 6.8 shows the degree of separation
of clusters required by some choices of ¢ asymptotically. For example, ¢ = 10 and even
¢ = 6.635 need a very strong separation to find FPCs corresponding to the existing
mixture components. From a stochastic viewpoint, “clusters” are often associated with
modes or mixture components, and this may lead to the belief that ¢ must be chosen
much smaller. But there are some arguments against that.

c is defined to be the (1 — a)-quantile of the y2-distribution in the definition of
A(a, Pgy2,). For a = 0.01,c = 6.635 is obtained, i.e., 99% of normal distributed data
(linear regression data with normal errors, respectively) are defined to be non-outliers.
Davies and Gather (1993) define the tuning constants of their outlier identifiers in such
a way that the probability exceeds 0.95 that none of n points from a homogeneous
population falls into the corresponding outlier region. For ¢ = 6.635, the corresponding
n is 4. For n > 68, the probability for at least one regularly generated outlier is larger
than 0.5. ¢ = 10 corresponds to a = 0.00157. This choice leads to a probability of
approximately 0.95 that none of 33 i.i.d. observations from Py € P, falls into A(a, Py).

For the clustering problem, which is not treated by Davies and Gather, it could be
analogously desired that all points of a homogeneous population should belong to the
corresponding FPC. This would be the case if none of them would fall into the estimated
outlier region based on LS-estimator and estimated residual variance, which corresponds
to A(a, Pso2,) only asymptotically. But for p > 0 the distribution of the residual of
a point depends on its regressor value and cannot be utilized directly for the choice of
c. A table for the case p =0, n < 20 can be found in Barnett and Lewis (1994, Table
XIIIb, p.485). For 20 i.i.d. normal distributed observations and a probability of 0.95
for absence of estimated outliers, ¢ = 7.344 must be taken, compared to ¢ = 9.12 using
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the method of Davies and Gather. For large n, both methods lead to very large (and
asymptotically equal) choices of c.

For large n it is clearly very restrictive to demand that no single observation from
a homogeneous population should be classified as an outlier. But one may consider the
variance of the members of the corresponding LS-FPCI to measure its similarity with
a non-truncated normal distribution. For ¢ = 6.635, it is about 90% of the variance of
the underlying normal distribution, for ¢ = 10 it gets more than 98%, see the remark
following the proof of Theorem 6.1.

According to the arguments given up to now, one would choose ¢ increasing with
n. For the aims of cluster analysis, however, the experiences from the simulations (see
Sections 8.1 and 8.2) point in the opposite direction. A smaller ¢ leads to a weaker
requirement of separation and therefore to a larger number of FPCs. For small n and
especially for large p there appear lots of meaningless FPCs. It would be reasonable
to choose ¢ such that the expected number of found FPCs for a homogeneous normal
population does not clearly exceed 1. This leads to a very large ¢ for small n and large
p, while there seem to be no problems with ¢ = 6.635 for e.g. p =1, n = 200.

It is difficult to establish a theoretical foundation for the relation between n, p, and
c. One may specify an asymptotic value for ¢, ¢ = 10 or ¢ = 6.635, say, and choose ¢,
according to the Table 8.2 in Section 8.1 as long as such ¢, is not smaller than c¢. This
way, ¢, = c for large enough n, and the results from the Section 5 remain valid for the
concrete procedure 8.

7.2 A similarity measure for clusters and representative FPCVs

The number of found FPCVs can be reduced without loss of too much relevant informa-
tion, if very similar FPCVs are interpreted as corresponding to the same “pattern” of the
data. This can be done formally by defining groups (clusters) of FPCVs and by declaring
only one “representative” FPCV of each group as “interesting”. It is reasonable to define
“similarity” between FPCVs by means of the number of common data points and not
by means of their regression and error variance parameters to avoid sensitivity to the
scaling of the parameters. A similarity measure between the indicator vectors v and w
of subsets of a dataset is defined by relating the number of points of the intersection of
the subsets to the sum of their sizes:

Hi: vi=1}+|{i: wy=1}

Se(v,w) := (7.1)

so that 0 < s,(v,w) < 1, where s,(v,w) = 0 iff v and w have no point in common, and
s.(v,w) =1 iff v = w. To define a partition of the FPCVs, one can specify 0 < squ < 1
so that v, w are interpreted as “similar” if s, (v, w) > sq,:. The Single Linkage clusters of
index s.,; are defined as the connectivity components of the graph with the FPCVs as
vertices and edges between all pairs v, w where s,(v,w) > s.;. They can be computed
by an algorithm described in the Section 7.4 as “Step 5”. This seems to be the easiest
method to get a reasonable partition based on similarities without assumptions about the

81f ¢, \\ ¢, but not constant for large enough n, the theory holds as well, but it is not obvious how
to relate the interpretation of the results for n with ¢, > ¢ to the examples of Section 6.
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number of groups®. In the resulting partition, v and w are always joined if s, (v, w) > Seys-
If s,(v,w) < Seut, v and w are sometimes joined, namely if there is another FPCV (or
a “chain” of joined FPCVs) similar to both. The choice of a small s.; can lead to
heterogenous groups that hide valuable information about the dataset. A large s.,; may
not reduce the number of FPCVs considerably. I suppose s.,; = 0.85, which means that
two FPCs of 20 points each are considered as similar if they have at least 17 points in
common. A subset of at least 16 points is considered as similar to a set of 20 points.

For each of the groups, a representative FPCV is chosen. The set of the representative
FPCVs is designed to reveal the essential clusters of the data. Let ¢,, denote the number
of findings of the FPCV w during 4, ;, algorithm runs. Section 7.3 treats the choice of 4,
and gives arguments for the following suggestions: For each of the groups, the FPCV w
with the largest i,, can be considered as representative. In case of equal i,,, the smallest
FPC should be chosen.

The results of Table 8.1 in Section 8.1 may be used to assess the effect of the Single
Linkage reduction. The similarity s, is used in Section 8.2 as well to measure the quality
of the cluster recovery by the compared cluster analysis methods.

7.3 The number of algorithm runs, the size of FPCVs and the
number of findings

As mentioned above, an FPC analysis may lead to a number n, of FPCs that is too large
to interpret. In this section it is attempted to choose the number ¢, , of algorithm runs
in such a way that

e all FPCs corresponding to relevant structure of the data are found with large
probability and

e as few further FPCs as possible are found.

Furthermore, the result of an FPC analysis should be as stable as possible in spite of
the dependence on random starting subsets.

Suppose that a dataset of size n contains an FPCV w of size n(w), which is ho-
mogeneous and well separated from the rest of the data. To approximate roughly the
probability p,, that this FPC is found by one run of the FPA, imagine that it is found
by the FPA with a starting constellation of n(w®) points if and only if all these points
are contained in the FPC. That is,

(i) = u(w)- (7.2)

From my experience, p,, seldom happens to be much larger than g, .. It often appears
between gy () /2 and In(w), and sometimes it is smaller. The latter case means that
the FPC has lots of subsets of size n(w®) leading to other FPCVs if used as starting

9In the literature there are some criticisms of Single Linkage clustering. Sometimes it leads to a
“chaining effect” by joining vertices with small similarity by chains of vertices in between. This can
happen here as well. However, the speed of computing and the clarity of the interpretation of the
clusters in terms of s, is in favor of Single Linkage clustering for the application discussed here.
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configurations for the FPA. Then w could not be considered as stable; its parameters
would not be supported by many of its subsets. This may indicate that

1. there are similar FPCVs supported by some of the subsets of w,
2. w is not in the neighborhood of an “attractive” (i.e., fulfilling (5.6)) FPCI,

3. the points of w do not form a homogeneous regression population (this is possible
for FPCs; see the discussion of Example 6.7) so that small data subsets lead to
considerably different parameter estimators and possibly to FPCVs that are subsets
of w.

In the first case, the similar FPCVs are expected to fall into the same Single Linkage
group of clusters (see Section 7.2). The approximation (7.2) may then be reasonable for
the probability of finding an FPCV of this group by an algorithm run.

In the cases 2 and 3, w may be considered as “less interesting” than a more attractive
fixed point of fz,. Thus it is reasonable to base the choice of i, , on the approximation
(7.2) to find the Single Linkage groups of FPCs of main interest.

Gn(w) gets smaller for larger n(w®), and less than p+ 2-points lead to an error variance
of 0. Therefore it is advisable to start with n(w®) = p+2 points. If n(w)/n is very small,
Gn(w) 18 very small as well, so that one cannot expect to find very small FPCVs by a
feasible number of algorithm runs. Therefore a decision is necessary about the smallest
size Ny, of an FPCV that one wants to find with high probability.

inp can be chosen so that the approximated probability to find an FPCV with npy,
points at least 4., times is at least 0.95:

inp :=min{i : QB(%, ¢n,.;0.05) < imin}, (7.3)

where QB(n, p; a) denotes the a-quantile of the Binomial(n, p)-distribution. To make
the computation fast by keeping i, , small, %,,,, = 1 must be chosen. But the result of
the analysis can be made more stable by choosing 4,,;, larger:

In order to keep the result stable, it is reasonable to exclude FPCVs that appear only
by chance. Two kinds of FPCVs are suspicious of being not reproducable by further
applications of the whole FPC analysis procedure:

1. FPCs found too seldom: 4, /iy, is a positively biased estimate for p,,, since FPCVs
with ¢,, = 0 cannot be observed.

2. Too small FPCs: p,, cannot be considerably larger as g, for small n(w), and p,
is presumably overestimated by 4, /iy, if a small FPCV is found too often.

If n(w) < n_ defined by
n_ :=min{n : QB(inyp, ¢n;0.5) < imin} (7.4)

then an FPCV w will be reproduced with an estimated probability of at most 0.5. Thus
it should be excluded.

If an FPCV is found seldom, there can be similar FPCVs corresponding to the same,
possibly relevant, pattern of the data. But Single Linkage groups of FPCVs should be
excluded as well, if they are found less than 4,,;, times. This is the more stable the larger
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Tmin 18. tmin = 3 does not lead to too long computing times for the n and p values used
in the simulations of the Section 8.2, but for p > 2 it could be advisable to take i,,;, = 2,
see Section 8.1 for a comparison.

Since p,, measures the stability of an FPCV, it is reasonable to choose the FPCV
with the largest ¢,, as the representative FPCV. In case of equality I propose the FPCV
with smaller n(w), since in general it is easier to find larger FPCVs, as explained above.

7.4 A description “ready to run”

Step 1 Choose ¢ according to Table 8.2 (take the closest n), but not smaller than
6.635, Nmin = %, Tmin = 3, Seut = 0.85. Of course, all these choices are subjective
since they concern trade-offs between more information and better interpretability,
more stability and lower computing time, respectively, as discussed in the previous
sections.

Step 2 Compute i, , according to (7.3), n_ according to (7.4). (If ¢,, becomes too
large, 4min = 2 does not change too much and may be the easiest way to save
computing time, see Section 8.1).

Step 3 Repeat i, , times: Generate a subset indicator w° with n(w®) = p+2 by random
and apply the FPA. Store all found FPCVs w with n(w) > n_. Count the number
of times that each FPCV has been found.

Step 4 Compute the similarities for each pair of FPCVs according to (7.1).

Step 5 Compute the Single Linkage clusters of index s.,; of FPCVs by the following
algorithm:

Step a) Suppose that 1 < n. FPCVswy, ..., w,, were found. Let jr := 1 (number
of FPCV under consideration), jg := 1 (number of group under considera-
tion), group(w;) := F(j) := 0, j = 1,...,n. (F(j) indicates if w; had been
already “under consideration”).

Step b) group(w;,) == jg, F(jr) :== 1.

Step c) Find all w; where j # jp, group(w;) = 0, and s.(w;,, w;) > Secut-
group(w;) := jg for them all.

Step d) Let j_ be the smallest j # jp with F(j) =0, group(w;) = jg, if there is
any. Else 5 :=0.

Step e) If j_ > 0: jp:=j_, F(j_) :=1, step c). Else:

Step f) Take the smallest j with group(w;) = 0. If there is any: jr := j, jg :=
je + 1, step b). Else end. jg groups of FPCVs are constructed.

Step 6 For j =1,... 54

group(w)=j

If 4; > 4min, choose

w} := argmax {4, } (In case of equality take w with smallest n(w)).
group(w)=j
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The w}, j=1,..., jg, with ¢; > i, are the representative FPCVs. Let n, denote
its number in the following.

The C-software needed about 40 seconds for a dataset from constellation “Square-p2” of
Section 8.2 as well as for the Geyser-data on a Pentium-266. Because of the increasing
number of algorithm runs, the time increases exponentially with p and seems to increase
linearly with n. Therefore, p > 4 is not feasible at the moment.

8 Simulations

8.1 FPCs in homogeneous populations and choice of ¢

It was discussed previously that in a population consisting of only one homogeneous
regression component asymptotically only one FPC is to be expected. But, as mentioned
in Section 7.1, for small n and increasing p, the data gets too sparse, resulting in very large
numbers of FPCs. The simulations of this section are to show the relation between the
number of found FPCs, n, p and the tuning constant c. Here, all points (z1,...,%,,y) €
IRP*! were generated according to Nog,.,- The procedure of Section 7.4 was used with
imin = 2. (I repeated some trials with 4,,;,, = 3 resulting in moderately lower values of n,
and larger values of n.. For example: p =1, ¢ =10, n = 50 leads to n,(n.) = 4.4(16.3)
instead of 6.1(13.3) for 4,,;, = 2. That is, ¢,,;, = 3 yields better results in terms of n,.)

There were 10 simulations runs for each constellation. For larger p and small ¢ not
only 7, , got very large, but the large n. also resulted in a large amount of computing time
(and required memory) to handle the similarity matrix between the FPCs. Therefore it
is generally advisable to have many points for larger p, or, at least, to use a large c. The
number of found FPCs n. was recorded as well as the number of their Single Linkage
clusters found often enough (n.,.). The simulation results are given in Table 8.1.

While it is obvious that the number of FPCs decreases with increasing n, increasing
¢ and decreasing p, these relations do not seem to follow a uniform functional pattern.
To give an orientation, Table 8.2 shows for each combination of n and p the smallest
value of ¢ from Table 8.1 such that the average n, equals or is smaller as 1.5, that is, one
may expect a homogeneous population to lead to only one representative FPC with a
probability of at least 0.5. The entry “> 30” means that ¢ = 30 still leads to considerably
more than 1.5 representative FPCs, but n, is small enough to perform an FPC analysis
of such data and interprete the result exploratory. For p > 2 and too small n it does
not seem reasonable to carry out an FPC analysis. (I doubt that any kind of linear
regression cluster analysis would be reasonable in these cases.) If desired, n, can also be
made smaller by the choice of a larger 4,,;, (to the price of a higher computing time, see
above) or by choice of n,,;, > %, which may be reasonable for small n.

8.2 Comparison of methods

The performance of LS-FPC analysis was compared to two other procedures from the
literature by means of a Monte Carlo simulation, namely

Maximum Likelihood Clusterwise Linear Regression (MLCLR) as explained by
DeSarbo and Cron (1988). They assume a fixed sequence of regressor values
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p=20 c=6 c=10 c=15 c=20 c =30
n =25 4.4 (9.0) 2.4 (3.8) 1.8 (2.3) 1.9 (2.5) 1.4 (1.6)
n = 50 2.4 (4.6) 1.0 (1.4) 1.0 (1.1) 1.0 (1.0) 1.0 (1.0)
n = 100 1.3 (2.2) 1.1 (1.1) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)
n = 200 1.0 (1.7) 1.0 (1.1) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)
p=1 c=6 c=10 c=15 c=20 c =30
n =25 28.4 (78.2) 19.7 (39.2) 13.7 (23.0) 11.0 (19.0) 6.7 (10.7)
n =50 17.5 (52.0) 6.1 (13.3) 3.4 (6.0) 1.8 (2.6) 1.5 (1.9)
n = 100 5.5 (15.0) 1.3 (2.0) 1.0 (1.1) 1.0 (1.1) 1.0 (1.0)
n = 200 1.4 (2.7) 1.0 (1.2) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)
p=2 c=6 c=10 c=15 c=20 c =30
n =25 137.7 (703.0) | 150.0 (366.6) | 124.0 (223.8) | 103.0 (164.6) | 79.7 (106.6)
n =50 90.5 (383.8) 42.6 (100.9) 19.4 (34.4) 10.5 (16.6) 5.1 (6.5)
n = 100 36. 8 (142 5) 5.6 (15.7) 1.3 (2.3) 1.4 (1.6) 1.0 (1.1)
n = 200 .2 (13.3) 1.0 (1.1) 1.0 (1.0) 1.0 (1.1) 1.0 (1.0)
p=3 c=6 c=10 c=15 c=20 c =30
n =150 | 508.0 (1980.8) | 480.8 (1636.5) | 278.9 (684.9) | 170.6 (363.7) | 78.7 (143.0)
n =100 | 254.8 (1171.4) 41. 4 (122 9) 7.8 (14.3) 2.2 (3.6) .1 (1.6)
n = 200 31. 7 (147 1) 0 (1.8) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)
n = 300 .0 (10.3) .0 (1.5) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)

Table 8.1: Average number of representative FPCs (found FPCs) n,(n.) for homogeneous
data

Z1,...,%, and model ¥y, ..., y, as independently distributed according to

8

E(yl) = Z ejNa:ﬁ;ﬂj,a]?a

=1

where ¢; >0, j=1,...,s, and Zej = 1. The ¢; denote the proportions of the s

=1
mixture components. They compute Maximum Likelihood estimators for the pa-
rameters (e, 8;,03), j =1,...,s under fixed s using an EM-algorithm, which also

provides estimators €;, 1 =1,...,n, j = 1,..., s, for the probability that the point

(xi,y:), conditional on its value, was generated by the mixture component j. The

point (z;, ¥;) can then be classified as belonging to component j(7) := arg max{é;; }.
J

Wedel and DeSarbo (1995) propose the Consistent Akaike’s Information Criterion
(CAIC) of Bozdogan (1987) to estimate the number of mixture components s. I
applied this procedure with estimators from a random partition of the data points
as starting values for the parameter estimators, an upper bound of 7 for s and
a lower bound of 107° for the o2, j = 1,...,s (otherwise the likelihood function
would be unbounded). The algorlthm was terminated when the increase of the
loglikelihood function fell below 10~7.

Model Based Gaussian Clustering with Noise (MBGCN) as implemented in the
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p=0|p= p=2 p=3
n =25 30 | > 30 | too large
n = 50 10 30 > 30 | too large
n =100 6 10 15 30
n = 200 <6 6 10 30
n = 300 10

Table 8.2: Smallest ¢ from simulations with n, < 1.5

software package mclust based on the work of Banfield and Raftery (1993). A cur-
rent version is treated in DasGupta and Raftery (1998). They assume the points
zi = (xi,y:), i =1,...,n, as i.i.d. distributed according to

E(zz) = 601/[0 + Z GjNaj,Zja

=1

where Uc denotes the uniform distribution on some convex set C, a; € IRP™, %,

positive definite (p + 1) x (p + 1)-covariance matrices for j =1,...,s,¢; >0, j =
S
0,...,s, and Zej = 1. The xz;-values from IR” do not include a component for
=0

the regression intercept in this setup. Such a normal mixture model can also be
applied to linear regression data, since a linear regression distribution Pjg,2 ¢ is
a p + l-variate normal distribution if GG is assumed to be a p-variate normal. In
fact, DasGupta and Raftery (1998) propose their method for “highly linear” data.
The mixture component Ue is designed to contain noise or outliers not belonging
to any of the normal components. The covariance matrices ¥; can be decom-
posed as X; = A\;D;A;D;, where \; is the largest eigenvalue of X;, D; is the
matrix of eigenvectors, A; = diag(1, agj, ..., a@p1);)- The software mclust com-
putes Maximum Likelihood estimators using the EM algorithm for the parameters
€, (€1,01,%1), ..., (€5, Xs) from starting values given by some hierarchical model
based method from Banfield and Raftery (1993). The component memberships of
the points can be estimated by analogy to the MLCLR procedure. The Bayesian
Information Criterion BIC (Schwarz 1978) was used for the estimation of the num-
ber of components s.

The form of the covariance matrices may be restricted. DasGupta and Raftery
propose to assume A; = (1,a), o < 1for all j =1,...,s in their two-dimensional
setup to get linearly shaped clusters. The simulations were carried out without
restrictions (“MBGCN.vvv”) as well as with assuming all A; as equal but un-
known(“MBGCN.vev”).

An initial estimation of the noise component is needed, which was generated by the
software NNclean explained in Byers and Raftery (1998). This software requires
the choice of a constant K for the number of nearest neighbors of a point involved
in the calculations. I chose K = 10. s < 7 was again assumed. A lower bound for
the covariance determinant (to bound the likelihood function) and a convergence
criterion were used as implemented in mclust.



8 SIMULATIONS 29

The used implementation of Least Squares-Fixed Point Clustering (LS-FPC) was de-
scribed in Section 7.4.

Obviously the procedures differ with respect to their underlying models. MBGCN
assumes normal regressor distributions. The MLCLR model does not contain an out-
lier component, and it assumes the probability of (z;,y;) to be generated by mixture
component j to be ¢; regardless of x;. I call this latter assumption “assignment indepen-
dence”. It will be illustrated by the discussion of the simulated data constellations. The
assumptions of LS-FPC are most general, but it is no exact estimation procedure for
normal mixture components, as shown in Section 6. That is, procedures are compared
that clearly do not estimate the same features of the data. However, all the methods
may be applied to the same data with similar interpretation of the results, since it is not
obvious how to decide between the models for given real data. For example, the minefield
datasets treated by DasGupta and Raftery (1998) do apparently not meet the normal
assumption, and DeSarbo and Cron (1988) do not give arguments in favor of assignment
independence or the absence of outliers for their marketing application. Therefore it is
interesting to study the performance of their procedures in cases where the assumptions
are not fulfilled, but where one may consider the methods as appropriate.

The simulations deal with the recognition of clusters generated by normal linear
regression distributions Pjs,2 ¢ in mixture models. The clusters are strongly separated
so that there exist LS-FPCIs estimated by LS-FPC matching the mixture components.

The results are to illustrate the behavior of the various methods. I have chosen four
different constellations of n,p, the 3, 02, G-parameters and noise for this paper. These
and further simulations (Hennig 1997) indicate that the results depend strongly on all the
parameter choices. An arbitrary “ranking” of the procedures could easily be illustrated
by the choice of the appropriate constellation. I do not attempt to show that LS-FPC
is generally better than the ML-methods, but at least there are some situations where
it is superior. The constellations are:

Square-p2: n = 48, p = 2, all z;-values were generated by U 1), T2 := x2. For the first
24 points: y = z1 + u. For the points 25-48: y = 0.5z +u, L(u) = Ny .0001 for all
points. See Figure 8.1. The assumptions of MLCLR are met since the data contain
only linear regression clusters and the distribution of the independent variable does
not vary between clusters. The assumptions of MBGCN are not met because of
the non-normal regressor distribution.

Square-pl: The data sets of this constellation were generated as the data of the con-
stellation Square, but the values of o were not included, thus n = 48, p = 1.

This is data with a linear and a nonlinear cluster. It meets only the assumptions
of LS-FPC.

3+Noise: n =100, p = 1. Points 1-40 were generated by L£(z1) = Ny .09, ¥ = 21 + u,
points 41-60 were generated by L(z1) = Nso09, ¥ = —21 + 5 + u, points 61-90
were generated by £(z1) = Mas .05, ¥y = 1+u, L(u) = Njg.o1 for points 1-90. The
points 91-100 were generated by U[_1 g)x[-1,2)- See the left side of Figure 8.2. The
assumptions of MBGCN are met, approximately even that of MBGCN.vev. The
assumptions of MLCLR, are not met because of the noise and a strong violation
of assignment independence: The domains of the regressors are nearly disjoint for
the three clusters.
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xydatal[,2]

sqrdat$x1 xydatal,1]

Figure 8.1: Data from the “Square”-constellations. Left: Triangles denote one of the
FPCs not corresponding to a mixture component. Right: MBGCN.vev-partition.

2+Noise: n =73, p = 1. Points 1-40 were generated by z; = |z.|, L(z.) = N1, y =
z1 + u, L(u) = Nyp.oo0a- Points 41-70 were generated by L(z) = N3s51, y =2+
u, L(u) = Njp.0025- Points 71-73 were generated by z = 6, y = 2+u, L(u) = Noa.
See the right side of Figure 8.2. This is a constellation of two regression clusters
and three outliers. Neither the assumptions of MLCLR, nor them of MBGCN are
met since the regressor distribution of the first cluster is not normal, the noise is
not uniform, and the regressor distributions of the two clusters differ strongly.

There were 200 simulation runs for each method with each constellation. The results
are given in the Tables 8.3 and 8.4. The estimated number of clusters nc (meaning the
number n, of found representative FPCs in the case of FPC analysis) was recorded as
well as the maximum similarity s, between an estimated cluster and the given clusters
of the constellation. nc does not include the noise component in case of MBGCN. The
estimated number of LS-FPCs cannot be interpreted in the same manner as for the ML-
methods. The number of FPCs can often be expected to be larger than the number of
clusters found by the partition procedures since

e FPCs may intersect or include each other (in particular there is always almost
an LS-FPC containing the whole dataset, similar to the largest LS-FPCIs of the
Examples 6.7 and 6.8), and

e the number of found clusters of the other two methods was limited by seven.

The average maximum similarity (over the simulation runs) was used as a measure of
how good the methods discovered the given clusters. s, was discussed in Section 7.2. To
interprete the simulation results, recall that a found cluster of similarity of smaller than,
say, 0.7 or 0.75 to a desired cluster can hardly be interpreted as a good recovery of this
cluster.
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Figure 8.2: Left: Data from constellation “3+4Noise” with MLCLR-partition. Right:
Data from constellation “24-Noise” with MBGCN.vvv-partition.

Where the model assumptions of one of the ML methods were fulfilled, the corre-
sponding method led to the best results, as one should expect: MLCLR was best for
“Square-p2”, MBGCN was best for “3+Noise” (overestimating nc, however). In both
cases, LS-FPC yielded better results than the misspecified ML-method. MBGCN was
completely confused by the non-normality of the regressor distribution of the “Square”-
constellations, MLCLR suffered strongly from the strong assignment dependence in
“3+Noise”. In the constellation “2+4Noise”, where the model assumptions of both ML
methods were violated, LS-FPC led to the best results. The solutions shown in the
Figures 8.1 and 8.2 may illustrate the weaknesses of the three methods.

The performance of LS-FPC depends on the size of the cluster, as can be seen in
“34+Noise”. A smaller FPC is more difficult to find, as explained in Section 7.3, while
the partition methods often find “all or nothing”. Note the good result of MLCLR
for the first cluster of “Square-p1”, where the rest of the data deviates extremely from
the model assumption. Usually, the presence of points not belonging to any linear
regression mixture component does not prevent the “correct” clusters from being found
by MLCLR (except in the case of strong assignment dependence). The other points
are simply divided to further clusters (sometimes lots of them). This behavior can be
observed at “2+Noise” as well, where the recovery of the two clusters is good, but n¢
gets too large.

The number n, of representative FPCVs is reasonably low at three of the four con-
stellations. After subtracting the usual FPC of the whole dataset, it can keep abreast
of the ML methods as an estimator of the number of “cluster-shaped” mixture compo-
nents. At “Square-pl”, it is clearly the best. However, the result of more than 11 Single
Linkage groups of FPCVs found for the constellation “Square-p2” is a serious drawback,
even though the groups corresponding to point 1-24, point 25-48, respectively, usually
came out with a number of findings 7,, on ranks between 2 and 4 among all groups of
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Constellation Square-p2 Square-pl
Method Pt. 1-24 | Pt. 25-48 ne || Pt. 1-24 | Pt. 25-48 | ng¢
MBGCN.vvv 0.464 0.448 | 4.86 0.678 0.531 | 4.00
MBGCN.vev 0.393 0.402 | 5.85 0.597 0.577 | 4.63
MLCLR 0.983 0.979 | 2.10 0.973 0.652 | 3.93
LS-FPC (¢ = 30) 0.960 0.956 | 11.49 0.960 0.667 | 2.87
LS-FPC (c = 10) 0.922 0.914 | 22.78 0.875 0.674 | 4.60
LS-FPC (¢ = 50) 0.894 0.894 | 5.54 0.879 0.668 | 2.10

Table 8.3: Average maximum similarity s, of found cluster and average number of found
clusters n¢ for constellations “Square-pl” and “Square-p2”

Constellation 3+Noise 2+Noise
Method Pt. 1-40 | Pt. 41-60 | Pt. 61-90 | n¢ || Pt. 1-40 | Pt. 41-70 | nc¢
MBGOCN.vvv 0.918 0.878 0.907 | 3.95 0.848 0.933 | 3.03
MBGCN.vev 0.934 0.909 0.930 | 4.02 0.772 0.883 | 3.77
MLCLR 0.694 0.714 0.529 | 3.04 0.934 0.914 | 3.68
LS-FPC (¢ = 10) 0.989 0.762 0.823 | 5.03 0.966 0.971 | 3.30

Table 8.4: Average maximum similarity s, of nearest found cluster and average number
of found clusters n¢ for constellations “3+Noise” and “2+Noise”

FPCVs (behind the FPCV where the iteration started with the whole dataset). This is
in agreement with the result of Table 8.1. The comparison with ¢ = 10 and ¢ = 50 shows,
that ¢ = 30 allows the best recovery of the clusters in terms of s,. The smaller number
of FPCVs for a larger ¢ has to be paid by a worse estimation of the relevant patterns.
The results for ¢ = 10 show that a larger number of FPCVs does not automatically lead
to FPCVs corresponding perfectly to the mixture components.

9 Application to the Old Faithful data

Data on the duration of eruptions and the waiting time between the eruptions of the
Old Faithful Geyser in the Yellowstone National Park have been discussed in several
publications on the basis of data from various time periods. A literature overview, as
well as the data set analyzed here, can be found in Azzalini and Bowman (1990). These
data were collected in August 1985. Measurements are in minutes. They are shown in
Figure 1.1.

The duration of an eruption of the geyser is modeled here as dependent on the
waiting time since the previous eruption. There seem to be at least two different groups
of dependency, corresponding to the eruptions with lower and higher duration, the latter
group with a moderately decreasing tendency for increasing waiting times.

Some authors (e.g. Cook and Weisberg, 1982) model the duration of an eruption
as an independent covariate for the subsequent waiting time. Their approach does not
reveal any differences between groups. There are no publications up to now that address



9 APPLICATION TO THE OLD FAITHFUL DATA 33

clustering and dependency between successive events at the same time. Azzalini and
Bowman (1990) analyze the data with time series models. They assume for their analysis
that there are two different patterns of dependency, while I use the data set to illustrate
how to find such kind of heterogeneity.

The data show some other features: There is a clear outlier with duration smaller
than 1. The probability for a long eruption was clearly larger if the waiting time had
been short, i.e., the assignment to the two groups is dependent on the independent
variable. There are 53 points with duration= 4 exactly, and there are about 20 points
with duration= 2. This is due to inexact observations during the night, which were coded
as 2 (short eruption), 3 (medium length eruption, only once) and 4 (long eruption) by
Azzalini and Bowman.

FPC analysis was applied according to the procedure described in Section 7.4, i.e.,
¢ = 6.635, 4,, = 809. This resulted in eight FPCs. There were six Single Linkage
groups of FPCs, and four of them were found three times or more. I concentrate on the
interpretation of the four representative FPCs.

The whole dataset was found 521 times as an FPC. It has been discussed previously
(Section 4, Examples 6.7, 6.8) that the computation of LS- and error scale estimator on
the basis of points from heterogeneous populations leads usually to a very large region
of non-outliers and therefore to an FPC corresponding to (almost) the whole dataset.
According to the discussion of Section 7.3, this FPC can be expected to be found often.
This is an artifact of the method and has to be known in order to interprete the results.

The other representative FPCs are more interesting. The Single Linkage group of
the second one was found 217 times. It consists of the circles together with the crosses
of Figure 3.1 of Section 3 and corresponds to the group with the longer durations. It
excludes the points with the two largest durations as outliers as well as most of the points
with medium duration of the eruption. Some more of these points would be included by
the choice of ¢ = 10, while maintaining roughly the same four representative FPCs. The
Single Linkage group of the third representative FPC was found 31 times. It contains
the points denoted by triangles in Figure 3.1 and corresponds to the group with the
shorter durations, excluding the outlier with duration smaller than 1. The points with
duration= 4, denoted by crosses, form the fourth representative FPC, which was found
8 times.

The second, third and fourth representative FPCs give a good description of the
main features of the dataset. The possibility of overlapping FPCs is useful here, since an
interpretation of the points with duration= 4 as an own cluster is reasonable (“group of
inexactly observed long eruptions”) as well as an interpretation of them as a part of the
larger “long duration”-group. The points with duration= 2 form an FPC as well, but it
was not found often enough during the iterations, since its number of points is too small
(see Section 7.3 for an explanation).

I applied MBGCN.vvv and MLCLR to the dataset as well, as explained in Section
8.2. In both cases, there are multiple local maxima of the likelihood function for most
numbers of clusters n¢, leading to strongly varying partitions, so that the results depend
on the randomly chosen starting configurations. The best solution of five iterations for
each nc < 7, followed by the choice of an optimal number of clusters nc, are shown
in Figure 9.1. The procedures needed about the same computing time as the LS-FPC
analysis.
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Figure 9.1: Old Faithful Geyser data with partition of MLCLR (left) and MBGCN.vvv
(right, diamonds denoting estimated noise).

As mentioned in Section 8.2, both ML-methods need a lower bound on the error vari-
ance, the covariance determinant, respectively, because otherwise the likelihood function
would be unbounded. Since there are data subsets with variance 0 along the “duration”-
axis, the choice of these lower bounds affects crucially whether these subsets result in
clusters of the ML-partitions or not. The lower bound of 107¢ of MLCLR was seemingly
small enough to find the “duration= 4”-cluster. The “duration= 2”-cluster was not
found, presumably because of unfortunate starting configurations. The problems here
may be similar to those of the LS-FPC analysis with the search for too small clusters.

The MLCLR solution suffers strongly from the assignment dependence in the data.
Therefore, the points with the shorter duration do not result as a cluster of the MLCLR-
partition.

MBGCN.vvv did not find any of the subsets with singular covariance matrices. The
point with the longest waiting time is excluded from the “short duration”-group. There
is an ML-cluster of points with medium duration, even if it is not very well separated.
The points with long duration are divided into two parts. This corresponds to the aim
of the method, since the distribution of the “waiting”-values for the points with long
duration seems more like a mixture of two normal distributions than like a homoge-
neous normal, and MBGCN.vvv looks for subsets that can be described by common
2-dimensional normal distributions, not necessarily by common regression lines (as well
as MBGCN.vev).

For these data, the LS-FPC solution seems to be the best, in particular in the light
of the discussion of Azzalini and Bowman (1990), which give geological evidence for the
existence of two distinct patterns of eruptions, corresponding to the second and third
representative FPC, while there are no arguments for breaking the “long duration”-group
into two parts as in the MBGCN.vvv-solution. Important for these data are the abilities
to deal with subsets of error variance 0 and with clusters including each other.
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10 Conclusion

A new concept to define clusters was presented in this paper: An FPC is a data subset
that does not contain any outlier, but all other points are outliers w.r.t. the FPC. The
basic idea for FPC analysis is to compute iteratively reweighted estimators for which all
outliers have zero weight, as for redescending M-estimators. FPC analysis was developed
here for clusterwise linear regression, but it may be adapted to other clustering problems.
FPCs are not necessarily exhaustive, they may intersect and include each other and they
are locally defined, i.e., the FPC property of a data subset does not depend on very
distant parts of the dataset.

The existence and consistent estimability of theoretical LS-FPCs of certain probabil-
ity models of interest was investigated. FPC analysis is not meant as a procedure which
is optimal with respect to particular reference models and target functions. It should be
a data analytic tool which may be valuable under various deviations from the standard
models of the model based CA. However, I tried to give it a solid stochastic foundation.
The computation of FPCs and the choice of the required tuning constants was discussed
in detail. The simulations and the application to the Old Faithful Geyser dataset showed
the ability of the proposed method to deal with data sets that not exactly fulfill the usual
mixture model assumptions.

fixreg, a C-software for LS-FPC analysis, can be obtained from

http://www.math.uni-hamburg.de/home/hennig/

An R/S-plus-module is in preparation and will be available from the same web site.
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11 Proofs

11.1 Proof of Theorem 3.2

Part 2 contains the main idea of the proof!’: Step 2 of the FPA should get the error
variance 62(Z(w")) small by adding points with squared residual < c6?(Z(w*)) and
excluding those with larger residuals. Since ¢ > 1, the inclusion of new points does not
necessarily decrease the error variance. Part 2 of the proof will show that it can be
multiplied by an appropriate factor m,,) such that the product 7" = Wn(wk)a'2(Z(wk)) is
always decreased. m,,») is a product of n(wF) factors smaller than 1. That is, the FPA
tries to unite many points (,(,+) small) with small 6%(Z(w")). Part 1 shows B(Z(w"))
to be always uniquely defined.
Some notation:

m_1 —1 —1 1
Wm:=Hl1<c- <1><1—C_ >+1<_ z1>—],
i=p+1 1—p 1—Dp 1—p C

wt = maX(w"“'Jr1 —wk, 0), wooi= max(wk —wht, 0),

the maximum taken componentwise. w™ and w™ indicate the data points that are added,
removed respectively, by step 2 of the FPA. Assume o7 > 0 for all £ up to part 3.
Part 1: Show Vk : n(w*) > p+1 by complete induction, which means that 3; is uniquely
defined Vk. Recall n(w®) > p+1 and show for m > 0 : n(w™) > p+1 = n(w™™) > p+1.
By definition

Hi:w™ = 1A (y; — 2iBm)? > co} = n(w™) =
= o} (w™) 2 e = nw”) < MR (11.1)

Assuming n(w™) > p+c+ 1:

n(w™) > n(w™) — n(w) > (1 - %) n(w™) + 2L >

>(1-Yp+c+)+2E =p+c>p+1.
On the other hand n(w™) € IN and with (11.1):
n(w™ <p+c+l=1>n(w’)=0= nw™™) >nwm).

Part 2: Show that
T:{0,1}" — [0,00) : W — My(u)og(w) (11.2)

is strictly decreased by step 2 of the FPA unless n(w*) = n(w™) = 0, i.e., w*t =

wz(w*) = w*. Therefore, no w™ with w™*! # w™ can be repeated during the FPA,
and the FPA converges in a finite number of steps because there are only finitely many
indicator vectors of length n.

10The main idea is taken from the proof of Theorem 9.2 in Hennig (1997), where the convergence of
a modified FPA was proven.
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Assume that n(w*) > 0, or n(w™) > 0 and show T'(w* ™) — T'(w*) < 0.

( k+1) ( - nwk+1)0k+1 T (wk)O l%
)

- ( ey 1p — Tp(uwk ) wi‘i”lﬂl) (Mi41 — My). (11.3)

n(wk+1)—p—
Yield
My = mﬂin(y(wk“) — X(w")8) (y(w**) — X(w*)B) <

)
< (y(w) = X(w*)Br) (y (W) — X(wh)B) <
< My, + n(wt)eco? — n(w™)co? (11.4)

by definition of w* and w~. If n(w™) > 0, there is strict “<”. Hence with (11.3):

k1 K ity (R(W*) —p — 14 [n(w*) — n(w)]c) 2 _.
T(w + )—T('w )S ( n(wk+1)—p—1 — Tp(wk) | O =: ¢-
(11.5)
Let d :=n(w™) — n(w™) = n(w**!) — n(w*). If d = 0 then
| — atwh) _n(wk)—p—1+4dc
B T (wk+1) N n(wkH) D — 1

and therefore ¢ = 0 and T'(w* ™) —T'(w¥) < 0 (there is strict inequality in (11.5) because
d =0 and w* # w**! imply n(w™) > 0). Show further

Tn(uwt) n(wk) —p—1+dc
Tn(wk+t) N w’““) -1

(
)

d<0=

(11.6)

k

which implies ¢ < 0 and again T'(w*™) — T'(w*) < 0 by strict inequality in (11.5), and

k
T (wk) n(w®) —p—1+dec
> 11.7
ﬂ—n(wlﬂ'l) n U)k+1) —pP— 1 ( )

d>0=

implying ¢ < 0 and strict decrease of 7.

Proof of (11.6): If n(w**!) < p +c, then

Wn(wk)

) —p—-1+4d —1)d
n(w") —p +c:1+ (c—1) <0<
n(wktl) —p—1 n(wktt) —p—1 T (wk+1)

On the other hand, with n(w®) > n(w**!) > p+ ¢, get

n(wk)—1 —d
Wn(wk) ( C— 1) ( c—1 )
- -5 ) > (1- .
T (whk+1) i:n(l;l,ﬂ_l) 1—p n(wktl) —p—1

Use (1—-b)™>1—bmfor0<b<1,me€IN. Let b= ——5——, m = —d. Then

n(wk+t1)—p—1

Tn(w c—1 n(w®) —p—14dec
(710)21_'_61 e} — ( )k+1p ‘
T (wh+1) n(wktl) —p—1 n(wktl) —p—1
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Proof of (11.7): By complete induction over m > 0 (see Hennig (1997) for details) get
for b > 0,m € IN:

c—1)m _\m m
1—%>(1—b0+—7}1) 1(%) 2Vm1,m2€ﬂ\70:m1+m2=m (11.8)
assuming ¢ > 1 and £ < 1. (11.9)

In particular get 1 — % = If’:—m’"c > 2> (%)m (11.10)

Start with n(w**!) > p+c—1. Since n(w**?) > n(wk) > p+1, apply (11.8) with m = d,
my = n(w*) — max(n(wk), [p+c—1] +1), b= n(w*) —p— 1. (11.9) is fulfilled since

c—1 __ c—1
b+m ~ n(wktl)—p-1 <L

. n(wht)-1 . - 1 1
Tt ] (1 (‘f L 1) (1 - 1) +1 (C, > 1) _) -
n(wk) i=n(wk) =D Rl /) 1—D c

B H c— 1) [p+c—1] 1

)T
max(n(wh), |[p+e—1[+1)<i<n(wk+l)—1 ETP) (k)

Cc
1 m1 o\ d—m (c—1)d _ nfwkFt)—p-1
<(-mwmm) () <1-msims = st

ie., (11.7). With n(w**!) <p+c—1 get

Tn(wh+?) _ (l)d < n(w*) —p—1
n

T (W) ¢ (wk) —p—1+dc

because of (11.10).

Part 3: o7 = 0 for some k. o2_; > 0 = n(wF) > p+ 1 because of part 1. Further,
wh=1= (y; —2i6)° =0, W =1 (y; — 26:)° = 0 and n(w*t?) > n(w*) > p+ 1.
Hence o7, = 02 =0, Byt1 = B, wFt? = whth,

11.2 Some useful results for the following proofs

Assumptions: Let @ be some measure on (IRP™?, IBP*?), M C IRP*! x IR™.

Qy? < 0o, Q||z|]? < oo, (Qrx')™! exists, (11.11)
Q{(y — 2'6)? = co?} =0 V(B,0%) € M, (11.12)
(Qza'wg y2(x,y)) ! exists V(8,0?) € M, (11.13)

Proposition 11.1 argmin Q(y — 2'8)? = (Qzx')"'Qzy exists uniquely under (11.11).
B

Proven as Proposition 11.1 of Hennig (1997).

Proposition 11.2 Letli(a,b) := Qu(z,y)1[(y—2'b)? < ca?] wherev : IRP™ — IR?, Q|lv(x,y)| <
00. Uy is continuous on M under (11.12).

ly(ay, by, az,bo) := Q1[(2'b2)* > a2]1[(y—'b1)? < cai] is continuous in (ay,by, az,by) €
M x IRP*? under (11.12) and (11.13).

fo is continuous on M under (11.11), (11.12) and (11.13).

Continuity of [; and fgy were proven as Proposition 11.2/(11.9) of Hennig (1997). Con-
tinuity of [ follows by analogy to (11.9) of Hennig (1997).
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11.3 Further preparations for the proof of Lemma 5.1

Here are useful parts of the “uniform convergence of the empirical process”-machinery,
see e.g. van der Vaart and Wellner (1996), Pollard (1984):

Let F be a class of measurable functions IR* — IR. For some real-valued function A,
|h| denotes the supremum norm. Some measurable function F' with |f| < F Vf € F is
called Q-finite envelope if () is some measure with QF < oo.

Definition 11.3 For € > 0 and some measure Q on (IR, IB?), the covering number
N(e, F, Q) is the minimum number of balls {g : Q|g — f| < €} needed to cover F. The
centers f need not to belong to F.

Definition 11.4 F is called permissible if it can be indexed by some T with Borel-
o-field B in such a way that f(e,e) is IB* @ B-measurable and T is an analytic subset
of some compact metric space. (Pollard 1984, Example 2.3.5. of van der Vaart and
Wellner (1996))

Theorem 11.5 Let F be permissible with P-finite envelope F'. If
Ve > 0: logN(e, F,P,) = op(n), (11.14)
then sup |P,f — Pf| — 0 P* — a.s.
fer
(Van der Vaart and Wellner (1996), Theorem 2.4.3)

Definition 11.6 Let C be a collection of subsets of some set S. C is said to shatter
some set S, C S if every subset of S, can be formed as S, N C, C € C. C is called a
Vapnik-Chervonenkis(VC)-class with index V(C) € IN, if C shatters no subset of S
with V (C) elements.

Proposition 11.7 Subsets of VC-classes are trivially VC-classes. Classes of intersec-
tions of sets from VC-classes are VC-classes (van der Vaart and Wellner (1996), Lemma
2.6.17).

Proposition 11.8 F fulfills

Ve > 0: suplog N(eQF,F,Q) < oo,
QeQ

Q being the set of all finite measures with 0 < QF < oo, and therefore (11.14), if the
set of subgraphs {(z,t) € IR*** . t < f(x)}, f € F, is a VC-class (van der Vaart and
Wellner (1996), Theorem 2.6.7). Such F is itself called VC-class.

Proposition 11.9 The set of indicator functions Z(C) of some class of sets C is a VC-
class iff C is a VC-class.

Proof: C shatters some set S, = {s1,...,s,} iff the class of subgraphs of Z(C) shatters

{(51,0),...,(ss,0)}.
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Proposition 11.10 For some positive, measurable function f and some measure (Q on
some S with Qf < oo, let fQ be the measure with density f w.r.t. Q). Then, for sets of
measurable functions F,G with Q-finite envelopes F,G:

Vus0: N@w76,Q) < N (5, 7.6Q) N (5.6.7Q).

FG being the set of functions fg, f € F, g€ G.

Proof: Let F, with |F,| = N(5,F,GQ) some set of suitable functions such that the

balls {g: GQlg— f| < 5}, f € F., cover F, analogously G.. Let h = fg, fe F,geg.

Let h, := f.gs, f« € Fs, 9« € Gy such that GQ|f — f.| < 5, FQlg — g.| < 5. With that,
1fg— fog:l <|fg— fegl +|fige = fegl < |f = fullgl + | fillge — gl =

Proposition 11.11 If F, is a finite dimensional vector space of real valued functions on
S, F. as well as the class of sets of the form {f > 0}, f € F. are VC-classes. “>" can
be replaced by “<7”, “>7 “<” respectively (van der Vaart and Wellner (1996), Lemma
2.6.15, 2.6.17, Pollard (1984), Lemma I1.18).

From Propositions 11.11 and 11.7 get that

Proposition 11.12 The set {{wg,2 =1}: (B,0%) € D} is a VC-class for arbitrary
D C IRP™ x R{.

Further propositions are needed for the proof of Lemma 5.1. For (¢,83,0%) € IRP*" x
IRP™ x IR define
fropor(@,y) = (y = 2't)"1[(y — ') < co’], (w,y) € IR? x {1} x IR.

Proposition 11.13 Under the assumptions of Lemma 5.1, define o2 := max{o? :

*

(B,0%) € C}. Vn > 0 3dg,, < oo such that ||t|]| > dc, = (aig)chft,g,g > co? + 1
,8%)€E

and, P®-a.s. for large enough n, inf P,fig. > co?+1.
(8,s2)eC ™

Proof: S, :={z € IR? : ||z|| = 1}. Show that there exists 7 > 0 such that

o= (ﬂ70'2)EiCI},fZ€SP+1 P(Lﬁ70—2,7—,z) > 0’ L,[)),02,T,Z = {|:I;IZ‘ > T} n {wﬁ70—2 = 1} (1115)

Suppose that (11.15) does not hold. Then, because of the compactness of S,;; and C,
there is a sequence (8,02, Ty, Zn)nen With

(ﬁn;ag;Tnazn) — (5070'(%7(),250), (50,03) € C, 2y € Sp-l—la

and P(Lg, 52 r,..) — 0. Use Proposition 11.2 to get P(Lﬂo,o—g,o,zo) = 0. But this contra-
dicts (5.4) because of P({|z'z| = 0} N {wg, .2 = 1}) =0 by (5.2). Therefore (11.15).
Further get

inf P,(Lgy2r,) —ap >0 P™ —as.

ap, —
" (B,02)€C, 2€Sp+1
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since the sets {|z'z| > 7} = {222/ — 7 > 0}, 2 € Sp11 form a VC-class by Propositions
11.11 and 11.7, and so do the intersections with the sets {wg,2 = 1}, (3,0%) € C by
Propositions 11.7 and 11.12. By Propositions 11.9 and 11.8, Theorem 11.5 can be applied
to their indicator functions; permissibility is obvious. For t € IRP™, (3,02) € C, (z,vy) €

. get |z't| = |2’ L-|||t]] > ||t||7 and hence for @ = P and P*-a.s. for sufficiently
& |

2t
B0 T TTe] 1]

large n for QQ = P,:
Qfipor = [y — 2t)*1[(y — 2'B)* < co?|dQ >
> [(y = 2'1)*1[Lg g2 7, 1dQ > [ [tz |([t'x] = 20y )1[Lg 52 7, + 1dQ >
> [tll(l[tlraq — 2Qlyl),

which exceeds co? for sufficiently large ||¢|| since ag > 0 and Q|y| < oco. Existence of
dc,, follows.

Corollary 11.14 Letn > 0, (3,0%) € C. For Q@ = P and P®-a.s. for Q = P,, n large
enough:
inf 02 > arg min 2+ 1.
1Hl>de. Q13 gt Qftp, n
Proof: Qfsp.2 < co? by definition of fr.p.02-

Proposition 11.15 Under the assumptions of Lemma 5.1,

Vk>0: inf inf Pfigsr— P 02),8,02 ) > 0.
" (B,zlrgl)ec‘llt—ﬂp%g,ﬂ)llzn( fupa = Phautsoy o)

Proof: Suppose that the Proposition does not hold, i.e., there is some sequence (t,,, Bm, 02, )menw
where ||t,, — Bp(Bm,02,)]| > £ > 0 and

— 0.

‘Pftmvﬁmao'?n - PfﬂP(ﬁmva'?n)vﬁmvo'?n

(tms Bm, 02,)men has a compact domain since (8, 02) € C and ||t,,]| < dc, by Corollary
11.14 for large m. Hence the sequence can be chosen convergent to some (o, 5y, 03) €
{lItll < dey} x C where [to — Bp(Bo, 08)| > k. Pfi 02 is continuous in (¢, 3,0%) under
(5.1) and (5.3) by Proposition 11.2, thus
Pftm,ﬂm,a'?n — Pfto,ﬁo,d'g = Pfﬁp(ﬁo,ag),ﬁo,ag'
In contradiction to that, argmin Pf; g, ,2 is uniquely defined because of (5.2) and (5.3)
t

(Proposition 11.1). This proves the proposition.

11.4 Proof of Lemma 5.1

Define for some 1 > 0

For={fupar: Ml < dey (8,0%) € OY.

Fc is permissible by its parameterization. F¢ has P—finite envelope Fo(z,y) := y? +
2|y|l|z||de,, + ||lz||*dZ,, and is VC-class with help of Propositions 11.12, 11.9, 11.11 and
11.10 (use G =1, F = F¢). Theorem 11.5 yields

sup \Prfipor — Pfigo2| =0 P —as. (11.16)
(8,02)€C,|[t]|<dc,y
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By definition fz,(wg,2) = argmin P, f; g 2. For sufficiently large n, the argmin can
t

be taken over {||t|| < d¢,} by Corollary 11.14 and exists uniquely with probability 1
because of (5.2) and (5.4) . Thus ||8p(8, 0?)|| < dc,, Y(8,0?) € C.
Now for arbitrary x > 0:

sup ‘Pnfﬁp(ﬂ’(ﬂ)’ﬁ’(ﬂ — Pfﬁp(ﬁ’oz)”g’ﬂ — 0 P* — a.s.,

(B,0%)eC

sup sup |Poftpor — Pfipo2| = 0P —as., thus
(B,02)eC {|[t=Bp(8,0?)[[>k}IN{|It] <dc,n }

Pw{anowzno: sup IIﬁzn(ﬁ,oz)—ﬂp(ﬁ,02)ll<f<c}=1- (11.17)
(ﬂ,U'Q)EC

Further, by definition,

Pof 2),8,02 Py (6.02) 502
2 — n n IBZn (/870 )7570 2 2 — ﬂP(ﬂa‘T )7ﬂ70
O'Zn(ﬁ7 U) (n _p _ 1)Pn{’wﬂ’02 — 1}7 UP(/87 ) P{wﬂ70_2 — 1}.

Theorem 11.5 yields

sup |P{wge2 =1} — P{wg2 =1} — 0 P* —as., and
(8,0%)eC

— 0 P*® —a.s.

Sup ‘Pnfﬂzn (57‘72)55’0—2 - Pfﬁp(ﬁ,o-2)”@,g-2
(B,0%)eC

since, by (11.16),

Sup Pnfﬂzn(ﬂ,o'Q),ﬂ,o'Q - Pfﬁzn(ﬂ,02)w3,02 - 0 POO - a'S"
(Bo?)eC
SUD | Pafsp(s02).807 = Plapsonpe| = 0 P —as,
(B,02)eC
Pnfﬂp(ﬂ,0'2),ﬁ,0'2 Z Pnfﬂzn (ﬂa02)aﬁao—2
P f2,8.0%).80° = Pfsp(8.0),8,0-
Observe
TLPn o o P o2 o2
Sup fﬂzn(ﬁy 2)aﬂa 2 _ fﬁp(ﬂa )7ﬁ7 — 0 POO _ a-S.,
(B,02)eC (n —p— 1)Pn{w5702 = 1} P{w5702 = 1}

since the denominators are guaranteed to be P*>-a.s. nonzero for large enough n by
(5.4). This proves Lemma 5.1 together with (11.17).

11.5 Proof of Theorem 5.3

Because of Theorem 3.2 and (5.2), there exist LS-FPCV w,, w.r.t. Z, for all n € IN-
with probability 1. For sufficiently large n, there exist P=-a.s. all fz, (ws,2), (8,0%) €
B, (B0, 03) for some ¢; > 0 since

e >0: P N {wgoe =1} | >0, (11.18)
(ﬂao'Q)EBel (ﬂO,Ug)
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as shown at the end of the proof.
Choose ¢,k > 0 small enough that ae + k < € < min(eg,€1). (5.4) follows from
(11.18). Hence Lemma 5.1 can be applied. With help of (5.6) get

P> {3ny € IN> Yn > no, (8,0%) € Be(Bo,03) = fz,(8,0%) € Be(fo,05)} = 1. (11.19)

Thus, the fixed point algorithm started with some wg .2, (8,0°) € B(f,0}), stays inside
of Be(f,0%) with probability 1. It converges by Theorem 3.2 and (5.2), and therefore
fz, has a fixed point almost surely for all n € IN-, and for n > ny it can be found in
B(Bo,02). Let (1;)iev some sequence with 7; \, 0. Let U :=

N {3no € IN> ¥n > ng Jwg, o2 LSFPCV wrt. Zy: | fz,(Bn, 02) — (Bo, 03)l < mi}

niieN
and observe P°°(U) = 1, which proves the theorem.
Proof of (11.18): Get by (5.5), (3.1) and (5.1)
Plwg, .2 =1} = P{(z,y): (y— 7'B)* < cog} > 0.

If (8,0°%) € Be(Bo,03), {wsr2 = 1} contains all points (z,y) with (y — 2/'3)* < cof —

Kk, k > 0, for which
K K K
min [ —, , > €, 11.20
(oo a1 ) (1120

since then co? > cof — % and

(=) = (g~ o' (Bo—F))? < (v Bo)* +2v/eoollalle+ lal*€ < (y—a'Fo)? + .
Hence with € \, 0,

N {wg > =1} 2 {(z,y) : (y—2'6)? < coj},

(B,O'z)EBe (ﬁ()’a-(%)

therefore (11.18).

11.6 Proof of Theorem 6.1

Observe under o? = (

op(Br,0%) =0 < 0p(B,0°) Yoo, B # fu,

i.e., (81,0) is the only fixed point of fp. In the following 7 > 0. Because of the
equivariance properties of LS-FPCI and LS-FPCV from Remark 3.4, assume w.l.o.g.
B1 = 0,02 =1, i.e., x and y are stochastically independent under P. The proof proceeds
as follows!!:

Step 1: h has a unique zero.

"This is the proof of Theorem 12.1 of Hennig (1997), shortened here.
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Step 2: w2 is FPCI w.r.t. P iff 02 = k.
Step 3: If 3 # 0, wg 2 is not FPCI w.r.t. P.

Proof of step 1: Use

h(s®) = 0 < ho(s) := (1 — s°)[®(v/cs) — ®(—+/cs)] — 2v/csp(v/cs) = 0.

Observe s > 1 = hy(s) < 0, ho(0) = 0, and show hg(s) > 0 in some neighborhood
of 0:

ho(s) = 2s[v/es(c — 1)p(ves) — (B(Ves) — B(—+/es))] >
> 24/es[(c — 1)p(v/es) — 20(0)] > 0
in some neighborhood of 0 since ¢ > 3, (¢ — 1)p(y/cs) — 2p(0) > 0. Continuity of
ho ensures the existence of some zero argument > 0.
To show uniqueness of this zero, use

Bi(s) = 0 hu(s) = y/Es(c — 1)p(y/Gs) — (B(y/as) — B(—y/as)) = 0,
sll)rgo h1 (8) = —1.

Notice h1(0) = 0. hy has the same sign as hy, for all positive arguments. Calculate

hi(s) = Vep(Ves) [(c — 1)(1 — es?) — 2],
h1(0) = v/ep(0)(c = 3) > 0.

hi(s) < 0iff 0 > (¢ —1)(1 — es®) — 2 < 0, which is strictly monotone decreasing in
s?. Thus, k] has a unique zero s, which is local maximum of hy, hi(s2) > 0. hy
decreases strictly monotone for s > s, and must have some unique zero, which is
the unique local extremum of hy. Thus, hy can only have a unique zero.

Proof of step 2: If 0> = 0, then Pwg,> = 0 and wg,2 cannot be LS-FPCI because of
(3.1). Consider 0 > 0. 8p(0,0?) = 0 because of Proposition 11.1.

020, 0%) = Ny?1[y? < co?] 1 2V ca?p(v co?
’ N1[y? < co?] ®(vco?) — ®(—Vco?)’

i.e., (0,0?) is fixed point of fp iff 02 = k.

Proof of step 3: Suppose that wg 2 with 3 # 01is FPCI w.r.t. P. ¢ = 0 is impossible
since P{wgo = 1} = 0. Define

Fy(t) = P(y - «'0)’1 ((y - 2'8)° < es°) ,

i.e., Bp(83,0?) = argmin Fs(t). With v := ”:%” get
t

14
2Fs(t) = =2 viPai(y — 2't)1 ((y — ') < co?)
i=1

(.%Fg(ﬁ) = —ﬁG[x'ﬁJ(x'ﬁ)], where

J(u) =Ny —uwl(ly-u)’<cj), co:=es
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Show uJ(u) < 0 for u # 0:
wl(w) = [ uly— u)illy - ul < clp(y)dy =
= [ uly ~ ul1lly — ul < cl(1ly > u] - 1ly < u])p(y)dy =
- /u|t|1[0 <t < eo)(pt + u) — p(—t + u))dt =
= / Jul [E]10 <t < o] ((t + |ul) — o(=t + |u]))dt,
since p(t +u) = o(—t + |u|), (-t +u)=o(t+ |u|)

for u < 0. Get uJ(u) <0 by

t>0,w>0= wtlpt+w) —p(—t+w)] <O0.
Since Gzx' was supposed to be invertible (see 4.2), G{z'8 = 0} < 1. That is,
%Fﬁ(ﬁ) > 0, and 8 # Bp(8,0?). The proof is completed.

11.7 Preparations for the proof of Lemma 6.3

Theorem 11.16 Let K be some compact convez subset of IR?, CY(K) 3> f = (f1,---, f4) :
K — IR?. Then,

Vo,y € K |[f(x) = F)ll < lldfllkllz - yll, where

wm:%( [@4 )

Proposition 11.17 Let hy : IR — IR be continuous, where hy, hy;(z) = x;h1(x) G—integrable
fori=1,....p+1, hy : IR — IR be continuous, N -integrable and Jyy < 0o : |ha| < yo.
Then,

7 7q

Proof e.g. in Kdnigsberger (1993).

l: R™? — IR, I(a,b) /h1 Yha()1[(y — 2'8)? < a?]p(v)dM(y) ® G(x)]

is continuously differentiable.

Proof:
a+z'b

l(a,b) = Gj(a,b,z), where j(a,b,x) := / hi(z)h2(y)e(y)dy.

—a+2'b
By continuity of A and ¢ get

2 j(a,b,x) = hi(z)[ha(—a + 2'b)p(—a + 2'b) + ha(a + z'b)p(a + z'b)],
1=1,...,p+1: %j(a,b,x) =
= z;[h1(x)ha(a + 2'b)p(a + 2'b) — hi(x)he(—a + z'b)p(—a + z'D)].

The derivative w.r.t. a can be bounded Va,b by |hi|yo, the derivatives w.r.t. b; by
2|h1;|yo. The bounds are G—integrable as well as |j(a, b, ®)| Va, b, which can be bounded
by |h1|| [ h2dN|. Thus, integration and differentiation are exchangeable at [ and all
partial derivatives are continuous by continuity of h;, hs and . The proposition follows.
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11.8 Proof of Lemma 6.3

Because of the equivariance properties of FPCI and FPCV from the Remarks 3.4 and
5.4, assume w.l.o.g. B = 0,02 = 1, i.e.,  and y are stochastically independent under
Py 1,6- Consider (6.3) and L(y) = M) under Py, g, and get (5.1) by continuity of L(y),
(5.2) by (6.2), and (5.3) by (6.2). wpy is LS-FPCI w.r.t. P and k is uniquely defined
by Corollary 6.2, which requires P*{y? < ck} = 0 by (6.3), thus (5.5) is fulfilled. Show
(5.7) by application of Theorem 11.16 and Proposition 11.17:

To prove (5.7), it suffices to have ||dfp| . o =: @ < 1 for some ¢ > 0. Complete
the proof by showing

fp is continuously differentiable in (0, k), (11.21)
p+2 B
,_max, Z l pr] k)| <1 (11.22)

At first, observe that 1[(y — 2'8)?> < co?|dP* = 0 for (8,0%) € B (0,k), therefore
frlB B., (0,)- Apply Proposition 11.17 and get explicitly

B (0k) = [Py1c
Z1(a,b) = Ghy(z)[ha(—a + z'b)p(—a + 2'b) + ho(a + z'b)p(a + 2'b)], (11.23)
i=1,...,p+1: gl(a,b) =
= Gz;[h1(z)ha(a + 2'b)p(a + 2'b) — hi(z)ha(—a + 2'b)p(—a + 2'b)].  (11.24)
Now compute the partial derivatives of fp,, , in (0,k). fp,, (B,0°) is defined by

F(B,0% Bpy,(B,0%) =0, where
F(B,0%,t) := (Py1gza'l[(y — 2'8)* < co?|)t — Po1cryl|(y — 2'B)? < co?].
By Proposition 11.17, F is continuously differentiable w.r.t. 3,02, ¢; the G—integrability-
conditions follow from (6.2). If 6 > 0 then Py;g{ws,2 = 1} > 0 for arbitrary £.
S F(B8,0%t) = Py1,cea’l[(y — 2'B8)* < co?] is invertible by (6.2), 8p,, , is continuous at
83,02 (Proposition 11.2). Thus, by differentiation of implicit functions,

1= (2572) " (559)

continuously in some neighborhood of (0,%). Notice Bp,, ,(0,k) = 0 by step 2 of the
proof of Theorem 6.1. Evaluate with help of (11.23), (11.24)

OF(B.0%.1) _ - ,
(ﬂ,02,t):(0k0)_[¢)(\/&) ®(v'—ck)]Gzx!,

ot
. a2 2 —
— sorPoreryll(y —a'B)* < co ”(ﬂ,a2>:<o,k> -

(11.25)

t:ﬁPO,l,G’ (ﬂ70—2)

3F§ﬂ,02,t) ‘
99 [(8,02,t)=(0,k,0)

- e _
- 6al(“’b)‘<a,b):<\/@,o> ok

= L [Ga(—Vck)p(—V/ck) + Gz (v/ck)p(v/ck)] = 0,

OF (B,02,t) _ 8 32 2 —
9 1(g,02t)=(0,k0) op Pocryllly —2'B)° < co ]‘(ﬁ,rﬂ):(o,k) -
(Gl eRp(V) = o~V RV, ., =

= —2V/cko(Vck)Gra' =

8 2 _ _ 2Vcko(Vck) 8 2 —
:> aﬂﬁpo’l,(; (/370- )‘(ﬂ,gz):(o,k) — (b(\/&)i(b(\/ick)]:p‘klﬂ aUZ/BPO,l,G(ﬁ70- )‘(ﬂﬁ'?):(o,k) - 0
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Notice 1 > 1 — Ex(y?|y? < ck) = % > 0 (Hennig (1997), Proposition 11.7).

Now consider

[é) _ 9
3(/3702)01230,15(6’ 0°) = 9(a,bo,b1) lo(a, bo’bl)‘(a,bo,h):r(ﬂﬂ?) (B,0%) r(B,07), where

r(ﬁa 02) = (V co aﬁa ﬁPo,l,G(ﬁao- ))al()(a'abO;bl) = %a
la(a,bo) == Po1,c{(y — 2'b)* < a?},
ll(a, bo,bl) = P(),l,(;(y — x'b1)21[(y — $,b0)2 S 0,2], (a,bo,bl) € IR x IRP-H X IRP-H.

l; and therefore [y are also continuously differentiable if b; € B,(0), n < co: Continuous
differentiability w.r.t. (a,bo) follows from Proposition 11.17, Exchangeability of integra-
tion and differentiation w.r.t. by holds with jy(a, by, b1, ) := fa:f;',%o( — 2'b1)%o(y)dy
since

0
Jo(a, b, by, x)

<2 E 2
|%m < 2(lal| Exly + nlle]?).

:”ﬂx/HMWy—fmwwMy

—a+x'bo

which is G—integrable as well as jo(a,bg, b1, ®) V(a,bg,b1). l2(a,b) > 0 is continuously
differentiable by Proposition 11.17 as well as r. Together with (11.25) get (11.21).
Observe by symmetry considerations o | ,(8,0%) = 0%, ,(=8,0%),
) _
thus gzo% | (ﬁ,a2)‘(ﬁ’g2):(0’k) =0. Use for a > 0

li(a,0,0) = ®(a) — ®(—a) — 2ap(a), Zli(a,0,0) = 2d%p(a),

b(a,0) = ®(a) — ®(=a), 2b(a,0) = 2p(a).
to compute
a —
570 Pu1. (B "2)‘(@02):(0,1@) -
Ve
5 2vk
0 =
a(a‘vbOabl) l() (a’ b()) bl) (a,bo,bl):’l‘(o,k) P 2
807Pr01.0 s )‘(ﬁ,02)=(0,k)

C N

~ vk aalo(a bo’bl)‘( bo,b1)=(Vck,0,0)
VS k(v R)[B(VeR)~(—VeR)| - [B(v/ck) - B(—Vek) - 2V/ekp(V k)| L p(VeR)
o [®(Vck)—®(—Vck)]? o

_ 1 2f f Vekp( 1-k
_(C_EJr e )w&)w v = e= D5
by definition of k. Get |250% | (5,02)\( o | <1by (6.4).

Altogether, ||dfp|
This completes the proof.

Veko(Vek .
By (0k) < Max (#é(_\/)c—k), (c— 1)T> < 1 proving (11.22).
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